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From electrons to phase diagrams with
machine learning potentials using pyiron
based automated workflows
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We present a comprehensive and user-friendly framework built upon the pyiron integrated
development environment (IDE), enabling researchers to perform the entire Machine Learning
Potential (MLP) development cycle consisting of (i) creating systematic DFT databases, (ii) fitting the
Density Functional Theory (DFT) data to empirical potentials or MLPs, and (iii) validating the potentials
in a largely automatic approach. The power and performance of this framework are demonstrated for
three conceptually very different classes of interatomic potentials: an empirical potential (embedded
atom method - EAM), neural networks (high-dimensional neural network potentials - HDNNP) and
expansions in basis sets (atomic cluster expansion - ACE). As an advanced example for validation and
application, we show the computation of a binary composition-temperature phase diagram for Al-Li, a
technologically important lightweight alloy system with applications in the aerospace industry.

The advent of machine learning interatomic potentials (MLPs) is revolu-
tionising the field of computational materials science, enabling simulations
of large systems and complexmaterial properties with ab initio accuracy1–5.
However, the development of these data-driven interatomic potentials is a
computationally intensive task that needs automated and reliable
workflows.

The life cycle of MLP development can be broadly divided into the
following tasks: (i) generating a database containing reference data, (ii)
fitting the model parameters to the reference data, and (iii) validating the
resulting parametrization for a specified range of properties. Furthermore, it
is often necessary to provide a feedback loop between the tasks via an active
learning approach to ascertain transferability6,7.

The initial task of setting up the reference database usually
requires to perform many thousands of density functional theory
(DFT) calculations for a broad range of atomic environments that
span the configuration space of interest as completely as possible.
Such computations can nowadays be facilitated using either general
workflow frameworks8–11 or tools designed specifically for a particular
MLP class12–17. Nevertheless, there is still lack of standardized
workflow setups, computational metaparameters and structural
databases. Therefore, each research group relies mostly on their own

expertise and experience. This may not only lead to inconsistencies in
the generated data (for instance, due to variations in DFT settings,
such as the exchange-correlation functional, Brillouin zone sampling
or plane wave cutoff)18,19, but it can also strongly limit exchange of
data from different sources and their collection into greater
databases.

The situation remains similar when it comes to the second stage of
MLP development, namely, fitting the model parameters. Many optimi-
zation algorithms and software tools are tailored to a particular class of
potentials and are not easily transferable. Thus, a researcher must not only
identify an appropriate type of potential that is suited for the system of
interest, but often needs to learn a variety of specific software tools each of
which uses its own terminology.

The final task in the development cycle is a thorough validation
of the fitted parametrization. It should be stressed that simple
correlations between the predictions of the potential and the
reference DFT data, e.g. for energies and forces, are in most cases
not sufficient and may be even misleading. It is crucial to evaluate
not only fundamental physical properties, such as energy-volume
curves, elastic moduli or phonon spectra, but to perform also
dynamical simulations at finite temperatures that scrutinize

1Max-Planck-Institut für NachhaltigeMaterialien GmbH, 40237Düsseldorf, Germany. 2ICAMS,Ruhr-Universität Bochum, 44801Bochum,Germany. 3Lehrstuhl für
Theoretische Chemie II, Ruhr-Universität Bochum, 44780 Bochum, Germany. 4Research Center Chemical Sciences and Sustainability, Research Alliance Ruhr,
44780 Bochum, Germany. 5Technische Universität Darmstadt, Fachbereich Material und Geowissenschaften, Fachgebiet Materialmodellierung, 64287
Darmstadt, Germany. 6Max-Planck-Institut für Eisenforschung GmbH, 40237 Düsseldorf, Germany. e-mail: s.menon@mpie.de; neugebauer@mpie.de

npj Computational Materials |          (2024) 10:261 1

12
34

56
78

90
():
,;

12
34

56
78

90
():
,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-024-01441-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-024-01441-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-024-01441-0&domain=pdf
http://orcid.org/0000-0002-6776-1213
http://orcid.org/0000-0002-6776-1213
http://orcid.org/0000-0002-6776-1213
http://orcid.org/0000-0002-6776-1213
http://orcid.org/0000-0002-6776-1213
http://orcid.org/0009-0007-1754-031X
http://orcid.org/0009-0007-1754-031X
http://orcid.org/0009-0007-1754-031X
http://orcid.org/0009-0007-1754-031X
http://orcid.org/0009-0007-1754-031X
http://orcid.org/0009-0005-3906-4751
http://orcid.org/0009-0005-3906-4751
http://orcid.org/0009-0005-3906-4751
http://orcid.org/0009-0005-3906-4751
http://orcid.org/0009-0005-3906-4751
http://orcid.org/0000-0002-6029-8748
http://orcid.org/0000-0002-6029-8748
http://orcid.org/0000-0002-6029-8748
http://orcid.org/0000-0002-6029-8748
http://orcid.org/0000-0002-6029-8748
http://orcid.org/0000-0001-8216-2254
http://orcid.org/0000-0001-8216-2254
http://orcid.org/0000-0001-8216-2254
http://orcid.org/0000-0001-8216-2254
http://orcid.org/0000-0001-8216-2254
http://orcid.org/0000-0002-4492-3371
http://orcid.org/0000-0002-4492-3371
http://orcid.org/0000-0002-4492-3371
http://orcid.org/0000-0002-4492-3371
http://orcid.org/0000-0002-4492-3371
http://orcid.org/0000-0003-4669-8056
http://orcid.org/0000-0003-4669-8056
http://orcid.org/0000-0003-4669-8056
http://orcid.org/0000-0003-4669-8056
http://orcid.org/0000-0003-4669-8056
http://orcid.org/0000-0002-1220-1542
http://orcid.org/0000-0002-1220-1542
http://orcid.org/0000-0002-1220-1542
http://orcid.org/0000-0002-1220-1542
http://orcid.org/0000-0002-1220-1542
http://orcid.org/0000-0001-7101-8804
http://orcid.org/0000-0001-7101-8804
http://orcid.org/0000-0001-7101-8804
http://orcid.org/0000-0001-7101-8804
http://orcid.org/0000-0001-7101-8804
http://orcid.org/0000-0002-7903-2472
http://orcid.org/0000-0002-7903-2472
http://orcid.org/0000-0002-7903-2472
http://orcid.org/0000-0002-7903-2472
http://orcid.org/0000-0002-7903-2472
mailto:s.menon@mpie.de
mailto:neugebauer@mpie.de
www.nature.com/npjcompumats


spurious behaviour of the model outside of the training domain.
Existing initiatives20–22 have mostly focused on classical interatomic
potentials while automatized validations of MLPs are still rare23.
This makes it difficult for users to determine a safe application
range of a particular MLP parametrization for their application. A
thorough validation is also indispensable before applying the model
in simulations of complex material properties, such as studies of
extended defects, phase transformations, or predictions of phase
diagrams.

Our aim is to demonstrate the whole MLP development cycle
for three representative model potentials to elucidate the complete
process to interested researchers, not on a benchmark comparison
of different types of potentials. We introduce a set of standardised
workflows that cover all aspects from generation of DFT data to
MLP fitting and validation, as schematically illustrated in Fig. 1. As
an example of an advanced application, we evaluate the phase
diagrams for a prototypical binary system. The workflows presented
here are reusable, reproducible, and most importantly, largely
automated. While exposing all intricacies of the methods involved,
we show that they significantly reduce the technical complexity. By
providing the computer codes and software tools, we encourage to
use this manuscript as a practitioner’s guide into the field of
modern MLP development as well as advanced thermodynamic
applications.

As a model case, we chose the binary Al-Li system24,25. Al-Li
alloys are well suited for aerospace applications since they exhibit low
density and high mechanical strength26,27. Apart from a recent work28,
there is a lack of interatomic potential for this system, making it both
desirable and a challenging option from the perspective of MLP
development. We selected three prototypical examples of interatomic
potentials: a classical central-force potential based on the embedded
atom method (EAM)29,30, a high-dimensional neural network
potential (HDNNP)31,32, and the atomic cluster expansion (ACE)6,33.
We use calphy34 for the calculation of phase diagram, and employ
pyiron11 as a workflow creation and management environment to
bring together various software tools. Our goal is to enable seamless

creation and validation of interatomic potentials while taking a step
towards the FAIR (Findable, Accessible, Interoperable, and Reusable)
data and software principles35,36 in the field of MLP development.

Results
pyiron as a platform for automated workflows
We employ pyiron11 as a workflow environment for all stages of theMLP
development andvalidation, as illustrated inFig. 1.Thedevelopment cycle is
facilitated with pyiron by connecting the fundamental building blocks:
1. Generic and easy-to-use structure generation tools that combine

standard software libraries in the field of computational materials
science such as ASE37, pymatgen38, PyXtal39, and others in a
convenient and interoperable package;

2. An interoperable interface to a variety of electronic structure and
atomistic simulation software packages such as VASP40–42 and
LAMMPS43;

3. A common storage format for energies, forces and stresses that can be
used efficiently for hundreds of thousands of training configurations
implemented in pyiron as the class TrainingContainer (see
Section “TrainingContainer”);

4. A common interface to the fitting tools used in this work, namely,
pacemaker22,44, RuNNer45–47, and atomicrex48, implemented in
pyiron as the PotentialFit class;

5. A common interface to validation workflows and tools for thermo-
dynamic properties such as phonopy49 and calphy34.

Block (1) enables users with different backgrounds to generate easily
new configurations or to import them from existing databases. The com-
mon interface in Block (2) provides a seamless switching between different
quantum engines or simulation protocols to create training data with
minimal changes in an existing workflow. It can also be employed to design
and test a workflow using a lower-level method, which is computationally
cheap, before switching to a production run using a higher-level theory.
Blocks (3) and (4) provide flexibility to experiment with different MLP
formalisms on the same data or selected subsets. In addition, Block (3)
provides analysis and plotting routines for all types of training data

Fig. 1 | A schematic illustration of the MLP development cycle. Here, pyiron is employed as a workflow manager to combine different software tools and packages.
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generated in Block (2). Finally, Block (5) provides access to validation
routines, helping a user to assess the quality of the fitted MLPs.

Construction of a reference DFT dataset for the Al-Li system
Selection of the reference data needed to parametrize an interatomic
potential is one of the most important steps in the life cycle of MLP
development. For creation of the reference DFT data we employed VASP
5.440–42, using workflows as described in Section “VASP”. We employed the
projector augmented wave (PAW) method50 and the GGA-PBE exchange
correlation functional51. Several convergence tests were conducted to ensure
the obtained energies and forces are highly accurate and consistent. These
tests were carried out for three representative structures, namely, face-
centred cubic (fcc)Al, body-centred cubic (bcc) Li, and theB32-typeβ-LiAl,
in a range of 30 % volumetric strain around their respective equilibrium
volumes. Based on these tests, the followingDFT settings were used: a plane
wave cutoff of 750 eV, a k-mesh spacing of 0.1Å−1, and the Fermi smearing
methodwith awidth of 0.1 eV.With these settingswe observed less than 0.5
meV/atomdifference in the energies as compared to calculations performed
at 800 eV plane wave cutoff and 0.05 Å−1 k-mesh spacing.

There exist multiple strategies for generation of relevant atomic con-
figurations. We find that a combination of domain knowledge, active
learning, and random search can be employed effectively for the con-
struction of a balanced training dataset. In this three-step strategy, domain
knowledge is employedfirst to select structures basedoncommonstructural
prototypes available in standard crystallographic databases52. Thereafter, we
use active learning algorithms during validation and simulations, and
random configurations obtained using a random-structure-search
procedure53 to augment the dataset.

The domain-knowledge step is focused on structures that are
known to be important for the system of interest and to ensure that
they are represented with high accuracy. In this work, we queried
both elemental and binary structures with formation energies less
than or equal to zero from the Materials Project database52. Subse-
quently, a series of transformations was applied to these structures
and their supercells, including uniform and non-uniform deforma-
tions of the cells and random displacements of atoms (see Supple-
mentary Note 1-2). These steps ensure that not only perfect bulk

structures but also their distortions, which are crucial to reproduce
elastic and vibrational properties, are included in the training data.

We then used active learning to ensure that even during extended
simulations, which are needed to compute thermodynamic properties (See
Section “calphy”), potentials remain stable and accurate. Within the active
learning loop, we iteratively selected structures based on high uncertainty
indicators54 derived from running molecular dynamics simulations for
several Al-Li phases of interest.

Finally, we added random structures that are far from equili-
brium. This step ensures a broader coverage of the configurational
space. Relying on domain knowledge and active learning only may
result in a short sighted training set that hampers the extrapolation
capabilities of the fitted MLPs, whereas a random sampling-based
approach alone might lead to the risk of missing or under-
representing important phases in a material. The random struc-
tures were generated following a recent workflow53 that utilizes the
PyXtal39 software as described in Section “PyXtal”. We generated an
initial set of structures of each space group for varying numbers of
atoms (Not all space groups can be generated for every composition
of the cells due to Wyckoff multiplicity constraints.), which are then
relaxed using DFT first allowing only the volume to vary, followed by
a full relaxation of the cell shape and internal degrees of freedom. It is
not necessary that these relaxations lead to highly accurate minima in
the potential energy landscape, so low accuracy DFT calculations can
be employed to speed up this step. These relaxed structures are then
recomputed using the required precision to ensure consistency of the
training dataset. This procedure, very similar to ab initio structure
search methods55, and originally developed for this purpose, has
recently been applied for machine learning potentials56. The primary
advantage of this approach is that it can help to find basins of the
potential energy surface without domain knowledge, while also
exposing the potential to a greater variety of structural and chemical
environments53.

Finally, randomdisplacements and variations of the cell shape and size
were applied to the relaxed structures to obtain additional samples around
the minima of the potential energy surface. Detailed parameters for the
random perturbations are described in the Supplementary Note 1. The
initial set of random crystals as well as structures resulting from both the
minimization steps and the random perturbations are then combined and
added to the training set. The complete workflow is implemented in
pyiron and the primitives introduced in the previous section II A.

Through the combination of these three strategies — domain-
knowledge, active learning, and random search—wewere able to construct
a robust and extensive atomic structure data set that captures awide rangeof
configurations.ThedistributionsofDFTreferencedata over energy, volume
and composition are shown in Fig. 2 and further information is provided in
the Supplementary Figs. 1–3.

Training of data-driven interatomic potentials
The training ofMLPs is usually carried out using dedicated computer codes
that are tailored to a particular model architecture. In our case, we used
atomicrex48, RuNNer45–47 and pacemaker44 to fit the EAM, HDNNP
and ACE parametrizations, respectively. Due to differences in the fitting
procedures, the training data sets needed to be adjusted to the respective
codes and models.

For the EAM potential, we started by fitting potentials for the single
elements, following an approach outlined by Mishin et al.57. This approach
guarantees an exact fit of the lattice constant, cohesive energy and bulk
modulus by constraining the fitting parameters accordingly. Parameters of
functions describing Al-Li were fitted while keeping the single element
parameters constant. The training data was limited to the domain knowl-
edge subgroup of the whole set, containing 2081 structures. Because the
potential has less than 100 adjustable parameters, this amount of training
data is sufficient, and leads to faster parametrization routines. Furthermore,
the functional formofEAMshave limitedflexibility, so training to randomly

Fig. 2 | Energy distribution of the DFT reference data set as a function of the
atomic volume.The fraction of lithium atoms in each structure is represented by the
colour of the points.
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sampled structures far from equilibrium could impact the accuracy of the
more important low-energy structures. In the fitting process, energies were
weighted based on the distance of the formation energy to the convex hull
ED (in eV/atom) as

WE ¼ 100

ðED þ 0:2Þ4 ; ð1Þ

while a uniform weight of one was applied for forces. Further details about
the fitting procedure are provided in the Methods section and in ref. 57.
Details on the employed functional forms and constraints can be found in
Supplementary Note 3.

Before starting the HDNNP training process, the training data set was
refined by eliminating structures which were not relevant for the material
properties of interest. These included structures containing isolated atoms
without any bonding partners within a radius of 12Å, structures with large
positive formation energies or highly repulsive force components, and all
structures with atomic volume outside the interval of 10 Å3/atom–50 Å3/
atom. In total, 4915 data points were removed.

Using RUNNERASE47, we then carried out a grid search to optimize
the hyperparameters required for the HDNNP training performed with the
RuNNer code45,46. In particular, this includes the number, short-range
cutoff radius and parameters of the atom-centred symmetry functions
(ACSFs)58 describing the atomic environments, the hyperparameters of the
optimisation algorithm (Kalman filter59), and the neural network archi-
tecture. For each trial, HDNNPs were trained on five randomly selected
mini-batches of 200 data points and three random initialization seeds each.
1 ps NVT MD rapid heating runs between 300 K and 1000 K were per-
formed to test the capabilities of eachpotential in a basic application. Finally,
the best hyperparameters were selected based on the training accuracy and
simulation stability (length of the stable trajectories, number of extrapola-
tions)whichwere achieved across the15members of the group.The selected
hyperparameters are presented in Supplementary Note 4 and Supplemen-
tary Table 3. Then, a HDNNPwas trained with the selected settings on the
entire training dataset, randomly separated into a training (90%) and testing
set (10%).All data points have been equallyweighted in the training process.
The same applies to the relative weight of total energies and force
components.

The ACE parameterization was carried out using the Pacemaker
package44. A cutoff for all interactions was set to 7Å, based on the range of
DFT interactions. The total dataset was randomly divided into training and
testing sets with a ratio of 95% to 5%. Weights for the training structures
were assigned based on their energy distance to the convex hull, following
the energy-based weighting method44.

We performed a set of parameterizationswith an increasing number of
basis functions (hierarchical basis extension44) and chose basis set size equal
to 1000 functions per element as a good compromise between predictive
power and computational performance. This choice was based on the
analysis of errors in energy, forces, formation energies, and elastic constants
(see SI for more details). The final selected potential configuration, i.e.
maximumradial and angular indices, dependent on the correlation order, as
well as other ACE parameters are presented in Supplementary Note 5.

The final parameterization was performed from scratch in two stages.
In the first stage, a higher emphasis was placed on forces (κ = 0.99), while in
the second stage a more balanced distribution of energy-forces weights (κ =
0.3) was used. A strong core repulsion pair potential was added at distances
below 2 Å.

Comparison of training outcomes
An overview of all training datasets as well as the achieved training accuracy
for all three potentials is given in Table 1 and the correlations between
predicted and reference values for energies and force components are
provided in Fig. 3.

It is seen that all three fitting methods yield favourable training results
despite the different train set sizes and compositions. In line with our
expectations, the physically-inspired EAM requires the least amount of
training data spanning over large energy, force and volume ranges, albeit at
the cost of higher training errors. In contrast, the HDNNP and ACE utilize
most of the available training data and reach smaller errors with respect to
the DFT reference values than EAM. Due to the higher weighting of low-
energy structures employed in the training of the ACE potential, there are
less outliers around forces close to zero in Fig. 3c, while such aweighting has
not been applied in the HDNNP training.

To facilitate the validation and to compare objectively the accuracy of
all potentials, we created a single test dataset containing only structures that
were not part of any training dataset. The test structureswere restricted to lie
within 1 eV/atom or less above the convex hull, as these represent the
physically most relevant subset for the phase diagram simulations. In Table
1 and Fig. 3, we depict test setmetrics for this common test dataset only. For
all potentials, the test error metrics are smaller than those for the training
datasets. In the caseofACE, theoverallmetrics are additionally biaseddue to
the non-uniform distribution of energy-based weights.

Validation approach and strategy
Once the potentials have beenparameterizedwith thedesired accuracy, they
must be extensively validated. Energy and force RMSEs of the final fit
provide a first quantitative assessment of the potentials with respect to the
reference data. However, it is mandatory to evaluate a broader range of
fundamental material properties and to compare them to DFT reference
data, and when applicable, experimental observations.

An elementary assessment of transferability is to compare energies of
important bulk phases as a function of atomic volume. This data is fitted to
theMurnaghan equation of state to obtainMurnaghan curves, that contain
not only valuable information about the mutual stability of various phases,
but also can be used for an estimation of their bulk moduli. Figure 4 shows
theMurnaghan curves as predicted by all threepotentials for the fcc phase of
Al, bcc and fcc phases of Li, andfive binary phases (AlLi, Al3Li, Al2Li3, AlLi2,
and Al4Li9) that appear in the phase diagram25.

All potentials agree well with DFT for the ground states of Al and Li,
with someminor variations observed for both Li phases of the order of a few
meV (Note that the ground state according to reference PBE-DFT calcu-
lations is fcc, albeitwith a small energydifference compared tobcc, as seen in
Fig. 4b).When considering the binary phases in Fig. 4c, a clear distinction is
observed between the EAM potential and the MLPs. While the MLPs

Table 1 | Energy and force RMSE (MAE) of EAM, HDNNP, and ACE with respect to DFT

Potential Dataset Energy Force Volume E F

Size Range Range Range RMSE (MAE) RMSE (MAE)

[eV atom1] [eV Å−1] [Å3 atom−1] [meV atom−1] [meV Å−1]

EAM 2081 58 52 235 554 (82.2) 118 (89.9) 192 (116) 143 (68.7)

HDNNP 50834 3.5 20 40 10.6 (7.1) 10.2 (6.9) 64.2 (30.6) 49.2 (21.0)

ACE 51082 50 40 600 12.2 (7.5) 9.6 (6.6) 41.4 (16.9) 26.5 (11.7)

Test set metrics are given for a common test set including only structures within 1 eV/atom above the convex hull of the system. The size of the dataset and the energy, force and volume ranges of training
and testing data are also summarized.
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predict both the atomic volumes as well as the formation energies in
excellent agreement with DFT, the EAM potential shows a considerable
overestimation of the atomic volumes.

The phonons predicted by the potentials are related to vibra-
tional properties of materials and reflect the model’s behaviour for
small perturbations near the equilibrium ground state structure that
are relevant for an accurate reproduction of phase diagrams. Figure 5
shows the phonon densities of states for fcc Al, bcc Li, AlLi and
Al3Li. Note that we restrict ourselves to the two binary phases with
xLi≤0.5, as this is the region considered in the phase diagram cal-
culations (see Section “Construction of thermodynamic phase

diagrams”). Similar to the Murnaghan curves, it is observed that
HDNNP and ACE both predict the phonon DOS with good accuracy,
while the EAM potential shows significant deviations for the binary
phases.

As an initial step before evaluating the binary phase diagram, we
evaluate andplot the formation energies of the binary phases as a functionof
Li content in Fig. 6. The so-called convex hull can in fact be thought of as a
binary phase diagram at zero Kelvin. The convex hull plot allows the for-
mation energies to be directly compared to DFT and our calculations show
that both HDNNP and ACE predict the formation energies well with DFT
accuracy while EAM predictions deviate from the reference.

Fig. 3 | Energy and forces (Epot and Fpot) predicted by the potentials compared to
DFT data. EAM potential is shown in (a) while the HDNNP and ACE potentials are
shown in (b) and (c), respectively.The corresponding values of theRMSEandMAEare

given in Table 1. Note that training data (purple) is a different subset of the reference
DFT dataset for each potential, while test data (orange) is based on a common test set
including only structures within 1 eV/atom above the convex hull of the system.

Fig. 4 | Equation of state curves. The predictions by the EAM, HDNNP, and ACE
potentials for a pure fcc Al, b pure bcc and fcc Li, and c different AlLi compounds.
The DFT reference is shown in black. In (b), as the bulk modulus of Li (11 GPa for
bcc and 13 GPa for fcc) is lower than the respective value of Al (76 GPa), the range of

energies is small, approximately 0.02 eV/atom, resulting in rather large visual dis-
crepancies. For the binary compounds in (c), the predictions of the HDNNP, ACE,
and DFT essentially coincide, and are thus hardly distinguishable.
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The elastic matrix elements C11, C12 and C44 for the fcc Al and bcc Li
ground states are computed with the fitted potentials and reported in Table
2. For fcc Al, themachine learning potentials match the DFT reference data
verywell while theEAMpotential overestimatesC11 andunderestimates the
other two elastic constants. For bcc Li, all potentials provide a good
description of the elastic matrix.

Construction of thermodynamic phase diagrams
Phase diagrams provide critical information about the material system, the
phases that are predicted to be stable at the given thermodynamic condi-
tions, and the conditions at which one phase transitions to another, or two
phases coexist. Phase diagrams are, therefore, a crucial and challenging test
for interatomic potentials. In general, the given interatomic potential should
be able to reproduce the key aspects of the phase diagram, or at least parts of
it, pertaining to the expected thermodynamic region where the interatomic
potential is to be employed.

The CALPHAD method60 is perhaps the most well-known
method for the calculation of phase diagrams, aided by experimental
observations of thermodynamic properties of a system. From an
atomistic perspective, different methods exist for the determination
of phase diagrams61,62. Broadly, the methods either evaluate phase
stability directly, through approaches such as coexisting phase
simulations63–65, or indirectly, by determining the Gibbs free energy
or chemical potential of the relevant phases66. We follow the
approach of calculating free energies, using the thermodynamic
integration method, in which the free energy difference between a
given system and a reference system is calculated67,68. We combine
thermodynamic integration with non-equilibrium Hamiltonian
interpolation and reversible scaling to obtain the free energies effi-
ciently (see Methods for more details). The workflow for such a
calculation boils down to the code as described in Section “calphy”.

For this methodology, a priori information about the relevant phases
is needed, which is motivated by the currently established phase
diagram25,69. In order to have a set of robust, automated, and efficient
workflows for the phase diagram determination, we consider only
substitutional defects in the off-stoichiometric compounds, and limit
ourselves to the left side of the phase diagram, until xLi = 0.5.
Therefore, we consider the fcc Al, AlLi in the bcc-like B32 lattice, and
the liquid. Furthermore, the L12 Al3Li appears as a metastable phase
in the experimentally determined phase diagram69, and on the convex
hull determined through DFT calculations (see Fig. 6), which makes
it an interesting candidate to be considered in the calculation of the
phase diagram.

For pure Al, we present the pressure-temperature P − T phase dia-
grams. In order to arrive at theP−Tphase diagrams, the free energies of the
relevant phases are calculated as a function of temperature and pressure. To
this end, we perform reversible scaling calculations which provide the free
energy over a given temperature range. A pressure range of 0–40 GPa is
chosen, with free energy calculations carried out at intervals of 10 GPa. The
fcc and liquid phases are considered, and at each pressure, the melting
temperature is obtained from the intersection of the free energy curves. A
system size of approximately 7000 atoms is chosen for both phases such that
any finite size effects are avoided. The same set of calculations is performed
with all three potentials, the results of which are shown in Fig. 7. In general,
all three potentials closely follow the predictions from experiments.
Although the zero pressure melting temperature is underestimated com-
pared to the experimental value70, it is comparable with the melting tem-
perature from ab initio calculations71.

For the construction of the binary phase diagram, the fcc and liquid are
considered in the composition range 0 ≤ xLi ≤ 0.5, and B32 AlLi in
0.4 ≤ xLi ≤ 0.5, andAl3Li in 0.2 ≤ xLi ≤ 0.3.We chose the composition ranges
for AlLi and Al3Li based on the relevant regions in the experimental phase
diagram. We then ascertain that the free energies of these phases were
significantly higher than the other phases outside of the selected composi-
tion range. In order to create an Al-rich fcc lattice with Li as impurity, Al
atoms are randomly selected and replaced by Li, that is, we assume that Li
impurities occupy substitutional lattice positions. Similarly, substitutional
Al impurities are introduced in theB32 structure to create off-stoichiometric

Fig. 6 | The convex hull for the Al-Li binary system as predicted by EAM,
HDNNP, and ACE. The black dashed line connects the points along the DFT
convex hull.

Fig. 5 | Phonondensity of states.Density of states as
predicted by EAM, HDNNP, and ACE in compar-
ison with the DFT reference for a fcc Al, b bcc Li,
c AlLi, and d Al3Li.

Table 2 | Elastic constants of elemental aluminium and lithium,
given in GPa, as predicted by the three potentials and the DFT
reference method

DFT EAM HDNNP ACE

Al-fcc

C11 129 98 131 130

C12 52 67 67 67

C44 32 46 49 39

Li-bcc

C11 15 15 12 13

C12 13 14 13 12

C44 11 12 12 11
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compositions. No other mechanisms, such as vacancies, or interstitials are
considered.

Within the selected composition range, we perform free energy cal-
culations at composition intervals of 0.01 for all the phases. At each com-
position, temperatures from 600 and 1000 K are considered, and the free
energy over this range is obtained in a single calculation using the reversible
scaling approach. Free energy calculations are performed with timescales of
25 ps for equilibration, 50 ps for switching, and system size of roughly 7000
atoms for each phase.

Once the free energies are obtained, at each temperature the free energy
for each phase with varying composition is extracted, as shown in Fig. 8. A
current limitation of our workflow is that it does not include the con-
tribution to the free energy due to configurational entropy in the solid phase,
therefore the ideal mixing contributions are added to the fcc, B32, off-
stoichiometric phases. In order to calculate the free energy of mixing, the
end-members are chosen to be the phaseswith the lowest free energy at xLi =
0 and xLi = 0.5 at the given temperature. Finally, the convex hull is calculated

at each temperature to extract the regions of stability for each phase. Fol-
lowing such a construction, the regions of phase stability and coexistence
can be obtained. Once again, the calculations are performed for all three
potentials and the results are shown in Fig. 9a–c. The reference phase
diagram calculated using the CALPHAD approach as implemented in the
pycalphad72 tool, with an AlLi database from ref. 73, is shown in Fig. 9d.

The HDNNP and ACE exhibit phase diagrams (Fig. 9b, c) show
excellent agreement with both the CALPHAD and the experimental phase
diagrams.Themain featuresof thephasediagram, suchas the solubility ofLi
in theAl lattice, the eutectic point (liquid→ fcc+AlLi), general shape of the
liquidus lines are all well reproduced. Both the eutectic composition and Li
solubility, are close to the ranges in experimental observations. A compar-
ison of the melting temperature of the end members, eutectic temperature,
eutectic composition, and the solubility of Li in the fccAl lattice are shown in
Table 3. The phase diagram of the EAM potential, as represented in Fig. 9c,
does not reproduce the characteristic features of the phase diagram, indi-
cating the possible limitations of an empirical interatomic potential. Even
though the EAM potential provides the closest estimate of the melting
temperature of pure Al as compared to experiments, it predicts the stability
of the competing phases incorrectly. Therefore, the applicability of the EAM
potential in this study is limited to properties of the pure phases, such as the
elastic constants.

The phase diagram calculated using the MLPs show some differences
as compared to the Fig. 9d and the phase diagram from experiments. Both
MLPs underestimate the melting temperature of Al and the eutectic tem-
perature by approximately 6% and 12%, respectively, which is expected and
consistent with the melting temperature predictions from DFT (refs. 74,75
and 76 with references therein). The prediction of a lower melting tem-
perature by the MLPs are also evident at increasing pressure, as seen from
Fig. 7.

Another major difference is the solubility of Al in the AlLi ordered
phase. Experimental andCALPHADphase diagrams show solubility, while
HDNNP and ACE predictions are on the contrary. This discrepancy could
be due to a limitation in the phase diagram calculation workflows rather
than the interatomic potentials. The workflows for calculating phase dia-
grams presented here only considers substitutional defects for the off-
stoichiometric compounds. However, in B32 AlLi, experimental studies
propose that at lower Li concentrations, the Li atoms exhibit a vacancy
mediated diffusion mechanism77. The exclusion of vacancies in favour of
substitutional defects could lead to the low solubility of Al in the AlLi phase.
Furthermore, the inclusion of the differentmechanismswould be needed to
study regions of the phase diagramwith xLi > 0.5. Our workflows, however,
can be extended beyond substitutional defects.

Although theAl3Li phase is present on theDFT convexhull, it does not
appear in the calculated phase diagram in the given temperature range,
which is in agreement with previous studies78. However, at lower tem-
peratures, the ACE potential predicts regions of coexistence of the FCC and
Al3Li, and Al3Li and AlLi, which disappears around 580 K (See Supple-
mentary Note 6 and Supplementary Fig. 8).

Finally, the phase diagram workflows is limited to the ideal mixing
approximation for the configurational entropy in the solid phases, which
could have an impact on the calculated coexistence lines in this material
system78.

Overall, to obtain the phase diagram presented in this work for a
potential, we require about 120 molecular dynamics simulations of about
150 ps each, making this approach computationally feasible even with the
more expensive MLPs. Apart from the selection of relevant phases and
temperature ranges, the rest of the workflow can be fully automated,
allowing for the calculation of phase diagrams to be a routine task in the
lifecycle of interatomic potential development. We observe that a 1 meV
difference in free energy of phases could result in up to 50Kdifference in the
calculated transition temperature (see Supplementary Note 7 and Supple-
mentary Fig. 9); this, in turn combined with the limitations of DFT in
predicting transition temperatures indicate that a difference in transition
temperatures as compared to the experimental phase diagrams is to be

Fig. 8 | Free energy of mixing, ΔF, for fcc, liquid, AlLi, and Al3Li at 800 K as a
function of the composition of Li, calculated with the ACE potential. Substitu-
tional impurity atoms are added in each of the phases to obtain free energy variation
with composition (up to 0.5 Li). The two-phase coexisting regions are identified
through common tangent constructions, indicated by black dashed lines.

Fig. 7 | Melting curve of fcc Al up to 40 GPa. The melting temperature, Tm, at
various pressures is calculated for EAM, HDNNP, and ACE. Melting temperatures
determined from laser melting experiments94 are marked in grey.
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expected. Nevertheless, the calculated phase diagrams are highly beneficial
to predict the thermodynamic conditions under which an interatomic
potential is reliable, and for the interpretation of the observed phase
transformation behaviour.

Discussion
In our presented framework, built upon the pyiron integrated develop-
ment environment (IDE), establishes a comprehensive, robust, and user-
friendly platform for the development of empirical and machine learning
potentials. We have successfully demonstrated its versatility by running all
tasks necessary in the development cycle of modern interatomic potentials,
covering the creation of systematic Density Functional Theory databases,
the fitting of DFT data to various interatomic potentials (EAM, HDNNP,
and ACE), and the subsequent validation through a largely automated
approach. The power and performance of the framework were exemplified
in the computation of a binary composition-temperature phase diagram for
the Al-Li alloy system, showcasing its applicability to running highly
complex simulation protocols over large datasets consisting of thousands of
individual atomic structures and for technologically important and complex
materials systems.

The potential applications of the framework presented here are vast. Its
user-friendly nature and adaptabilitymake it an accessible and open tool for
researchers in diverse fields, offering a streamlined approach to MLP
development. Future efforts may focus on expanding the range of potential
classes that can be incorporated, further enhancing the flexibility and

applicability of the framework to a wide range of materials science chal-
lenges requiring complex simulation protocols. Ongoing developments will
seek to optimize and automate additional aspects of the MLP development
cycle allowing researchers to address even more advanced materials prop-
erties needed e.g. to compute defect phase diagrams, thermoelectric beha-
viour, or superconductivity, thus paving the way for more efficient and
reproducible research practices.

We envision our presented framework to act as a foundational plat-
form, inviting researchers to explore and study the opportunities opened by
machine learning potentials and their diverse applications. The ongoing
commitment to openness, reproducibility, and automation positions our
framework as a flexible and expandable basis for innovation and discovery
in thequickly expanding landscapeof usingmachine learning approaches in
materials science.We therefore encourage the community to actively engage
with the provided computer codes and software tools, which are openly
provided via GitHub and Conda.

Methods
Workflows in materials science
The last few years showed a tremendous change in how high-performance
compute clusters are used:While historically largemonolithic codes allowed
an up-scaling on an increasing number of cores, with the advent ofmachine
learning a new type of computations becomes more and more important
wherehugenumbers of small andmedium-sized jobs runningvarious codes
need to be combined to get the final result. A prominent example is the

Fig. 9 | Phase diagram of Al-Li up to xLi= 0.5.The
phase diagram calculated using (a) EAM, (b)
HDNNP, and (c) ACE. In (d), the phase diagram
calculated using the CALPHAD method is shown.

Table 3 | Comparison of the salient features of the phase diagram: the melting temperature of the end members, eutectic
temperature, eutectic composition and the Li solubility in fcc Al at the eutectic temperature as predicted by the different
interatomic potentials

Potential Melting Melting Eutectic Eutectic Li
temperature temperature temperature composition solubility
(K), xLi = 0.0 (K), xLi = 0.5 (K) xLi xLi

EAM 961 782 <500 0.25–0.35 0.1–0.2

HDNNP 871 846 786 0.33 0.20

ACE 886 837 771 0.32 0.21

Exp. 93370 965–99125 871–87625 0.234–0.30025 0.124–0.18025

DFT 888–97275

The melting temperature of fcc Al from DFT calculations is estimated to be 786–890 K71, depending on the chosen exchange-correlation functional (see Section “DFT Calculations”). Note that since the
eutectic point does not appear in the phase diagram predicted by the EAM potential, the values are an estimation.
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fitting and validation ofmachine learning potentials described in this paper.
The number of DFT calculations needed to get high-quality potentials is in
the range of a few ten thousands up to several hundreds of thousands
individual DFT calculations. Data management for such a large number of
jobs requires not only storing the input and output data but also of their
status, i.e., whether they ran successfully, whether they converged, or
whether they were aborted. If a jobs fail, they need to be resubmitted and it
may be necessary to correct their input. For job sizes of a few 10,000 cal-
culations, even small failure rates make a manual handling inefficient. For
these types of advanced calculations automated workflow systems become
almost mandatory.

In the presentwork, we have usedpyiron11 as aworkflowplatform to
include all the necessary tools to create advanced machine learning poten-
tials. pyiron provides features that are well-suited for these tasks: It pro-
vides an easy way to run large numbers of DFT calculations (to create the
reference data set), to perform the training, and to analyse extensive sets of
interatomicpotential calculations (for validation).pyironprovides several
features that make running such complex workflows efficient and intuitive
for users. Its generic input and output provide an easy way to substitute one
DFT code or potential/ML approach with another one. For example, to
replace theDFT code themain change would be to change the job type. The
generic input specifying the basis set, k-point sampling etc. remains
unchanged andwill be translated bypyiron into the code-specific format.
The close integration within the Jupyter ecosystem provides interactive and
easy access to all workflow components and data, and the availability of
advanced job management tools provides an efficient route to upscale and
run all calculations on modern supercomputer architectures.

DFT calculations
Density Functional Theory (DFT) is a quantum mechanical modelling
approach that has become the de facto standard for ab initio computations
ofmaterials properties, especially for larger systemsizes. Thismethod allows
for the calculation of materials properties without the need for fitting or
empirical parameters, offering a rigorous and first-principles-based fra-
mework for providing the large data sets needed to fit empirical or machine
learning potentials. In DFT, a pivotal approximation lies in the exchange-
correlation (xc) functional. This approximation enables the reduction of the
high-dimensional many-body interaction to a 3D mean field potential
incorporated into the Kohn-Sham equations.

A restriction of all available xc-functionals is that they cannot be sys-
tematically improved, i.e., deviations to experiment are inherent. Common
functionals, such as the PBE-GGA functional employed in this study,
generally demonstrate good agreementwith experimental results. However,
it is important to note that deviations exist, with errors in bond lengths
typically around 1%, discrepancies in elastic constants potentially reaching
10% and errors in the melting temperature in the order of 100 K.74,75

While the exchange-correlation functional represents the only non-
controllable approximation inDFT, there exist other parameters that can be
used to systematically improve accuracy, albeit at an increased computa-
tional cost. Among these, the plane wave energy cutoff, which defines the
completeness of the basis set, and the k-point sampling are particularly
crucial. Achieving convergence inmaterial properties concerning the choice
of these parameters is imperative, especially when employing DFT data for
training interatomic potentials. Inadequate convergence does not only lead
to often non-systematic deviations from converged results but also intro-
duces noise-like discontinuities in the energy surface due to the discrete
nature of the plane wave basis set and the k-point set. For the generation of
DFT datasets for potential fitting, it is therefore crucial to carefully select
these convergence parameters to ensure that the amplitudeof discontinuous
fluctuations remains small compared to the targeted error. To be used for
development ofMLPs, this typically means an energy convergence to about
1 meV/atom and a force convergence to about 0.1 eV/Å.

Whencarefully choosing these convergenceparameters,DFT is known
to smoothly interpolate between similar structures. This characteristic
renders DFT particularly well-suited for applications demanding a smooth

energy surface and derivatives (e.g. forces and stresses) such as developing
interatomic potentials.

Embedded atom method
InEAMpotentials the energy of the system is given by a pair potentialV and
a nonlinear function F, called embedding energy

E ¼ 1
2

X
ij

VðrijÞ þ
X
i

FðρiÞ: ð2Þ

Here, ρi is given by ρi =∑jρ(rij) and is called electron density. It is
motivated by viewing each atom in a solid as impurity that is embedded
in the hostmatrix and therefore subject to its electron density, leading to
attractive chemical interactions. Then, V can be considered as repulsive
core-core interaction29. In modern EAM potentials V, ρ and F are
chosen to best reproduce certain properties and do not necessarily
follow the constraints resulting from this motivation, e.g. V often
includes attractive terms.When freely choosing these function the EAM
formalism is equivalent to the effective-medium79 and Finnis-Sinclaire80

potentials. The potential we fitted closely follows a procedure applied by
Mishin et al.57.

High-dimensional neural network potentials
The general ansatz underlying the development of second-generation
HDNNPs, introduced in 2007 by Behler and Parrinello31,32, is that the total
energy Etot of a system can be decomposed intoM environment-dependent
atomic energy contributions Ei, such that

Etot ¼
XM
i¼1

EiðGi
!ð r!ÞÞ : ð3Þ

This approach, which extended the applicability of MLPs to
condensed systems containing large numbers of atoms, is based on
the assumption that for many systems the atomic energy to a good
approximation is a local property that depends only on the interac-
tion of a central atom with its neighbouring atoms inside a sphere of
radius rc. The environment inside this cutoff sphere is captured by a
vector Gi

!
of atom-centred symmetry functions, which in turn depend

on the coordinates of all neighbours while maintaining the manda-
tory rotational, translational and permutational invariances. The
functional form of these many-body descriptors is described in more
detail elsewhere58. Each entry in Gi

!
is passed to an input node of an

element-specific dense feed-forward neural network, which provides
the atomic energy as its output.

During training, the weights of all atomic neural networks are itera-
tively updated based on the loss gradients of both the total energies and the
atomic force components in the trainingdata set to achieve the bestmatch to
the reference values in the training set. Further information on the con-
struction and training of HDNNPs can be found in ref. 45 and ref. 7.

Atomic cluster expansion
The atomic cluster expansion (ACE)33 introduces basis functions that are
complete in the space of atomic environments. In analogy to HDNNPs and
other MLPs, the energy is represented by a sum of individual atomic
energies within a cutoff sphere, for N atoms,

Etot ¼
XN
i

Ei: ð4Þ

The individual energies are calculated from general, abstract atomic
properties (φi), which in ACE are expanded as

φi ¼
Xnv
v

cvBiv ; ð5Þ
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where cv are the expansion coefficients for thenvbasis functionsBiv. In linear
ACE, Ei is written directly as

Ei ¼ φi : ð6Þ

However, a more efficient approach is to calculate atomic energies as

Ei ¼ F ðφð1Þ
i ;φð2Þ

i ; :::;φðPÞ
i Þ ; ð7Þ

whereF can be any general non-linear function. TheACEpotential used in
this work employs amildly non-linear formwith two atomic properties and
a square-root embedding as in the Finnis–Sinclair method

Ei ¼ φð1Þ
i þ

ffiffiffiffiffiffiffi
φð2Þ
i

q
: ð8Þ

Thermodynamics
One of the most widely employed techniques to calculate free energies
through atomistic simulations is thermodynamic integration67,68. In this
computational technique, a system of interest and a reference system with
known free energy are coupled with a parameter λ. The Hamiltonian of the
combined system is given by

HðλÞ ¼ λHf þ ð1� λÞHi ð9Þ

whereHi, is the initial or reference system with the known free energy, and
Hf is the final system, or the system of the interest. If the system of interest is
in the solid state, we use a non-interacting Einstein crystal81 as the reference
state, while for liquids, an Uhlenbeck-Ford model82 is employed. The free
energy difference between the two systems can be calculated as

Ff ¼ Fi ¼
Z λ¼1

λ¼0
dλ

∂HðλÞ
∂λ

� �
λ

: ð10Þ

The integration has to be performed over a discretized λ array, and
therefore is computationally quite expensive,which calls formethodological
improvements. In the non-equilibrium approach to thermodynamic
integration83, the couplingparameterλ is time-dependent, and the switching
between the initial and final system is carried out in both forward and
reverse directions in a single time-dependent calculation. The work done in
such a switching process is calculated as,

Ws ¼
Z tf

ti

dλðtÞ
dt

∂HðλÞ
∂λ

dt ð11Þ

which is related to the free energy difference ΔF between the two systems,

ΔF ¼ Wrev ¼ Ws � Ed: ð12Þ

Ed is the energy dissipation in the switching process, which can be obtained
as the difference between the forward and reverse switching. The non-
equilibrium approach can be used to efficiently calculate the free energy of
the systemof interest at a given thermodynamic condition (P,T).Once a free
energy F(P, T) is known the free energy as a function of temperature over a
given range from T to Tf can be obtained in a single calculation using the
reversible scaling approach84. These approaches, and associated algorithms
have been discussed in more detail in ref. 34.

pyiron
pyiron is aworkflow framework for atomistic simulation, focused on rapid
prototypingandup-scaling simulationprotocols.Basedonanobject-oriented
approach, the individual componentsof a simulationprotocol inpyironare
combined like building blocks. Each pyiron object is connected to the
jupyter-based user-interface, the data storage interface which combines a

structureddatabase (SQL) and ahierarchicalfile format (HDF5) aswell as the
resource interface to connect to computing resources and parameter data-
bases. By implementing the potential fitting codes (atomicrex, RuNNer
and pacemaker), the simulation codes (LAMMPS and VASP) and the
thermodynamics code (calphy) based on the same job class, the technical
complexityof executing theunderlyingcodes is greatly reduced. Inaddition to
the three classes of interatomicpotentials discussedhere,pyiron can alsobe
used for parametrising Moment Tensor Potentials85, in addition to Angular
Dependent Potential86 and Tersoff 87 classical interatomic potentials.

As a first step of the simulation protocol a new project is initialized:pr
=Project("AlLi"). Theprojectobject is represented as a folder on the
file system and all calculations in this project are going to be executed in this
folder. From the project object the individual job objects are created using
the factoring pattern:

job = pr.create.job.SimulationCode('job_name')

The factoring pattern, which refers to using one object to create objects
of different types, has two advantages: On the one hand it allows the users to
use auto-completion in selecting the new object to create and on the other
hand the newly created object can be already initialized with information of
the object it is created from. In this case the job object receives its storage
location from the project object is was created from. The individual job
classes for theVASPDFT code, the different fitting codes andcalphy and
LAMMPS for validation are introduced below.

PyXtal
For the generation of random crystal structures we have wrapped the
python code PyXtal in the structuretoolkit module distributed
with pyiron.

import structuretoolkit.build.random as stkr
al_li_structures = stkr.pyxtal(
group=[227, 194],
species=["Al", "Li"],
num_ions=[4, 4],
repeat=10

)
would generate a list of ten structures each of the spacegroups 227 and

194 with stoichoimetry Al4Li4. More advanced options as document by the
PyXtal library itself, can be passed to the function as well.

VASP
Starting with the Vienna Ab initio Simulation Package (VASP)40–42, the job
object is created from the project object using the factoring pattern and an
atomic structure in the Atoms format defined by the Atomic Simulation
Environment (ASE) is assigned:

job = pr.create.job.Vasp("job_name")
job.structure = structure
In addition to the atomic structure also the input parameters which

determine theprecisionof theDFTcalculation canbe specifieddirectly through
the pyiron python interface. For this pyiron provides two interfaces, first
the generic interface which is independent of the specific simulation code and
second thecode-specific interface,whichallowsusers alreadyexperiencedwitha
specific simulation code to directlymodify specific input parameters. Using the
generic interface theplanewaveenergycutoff is set to750eV, thek-pointdensity
is set to 0.1Å−1 and the level of electronic convergence is defined as 10−8 eV:

job.set_encut(750.0)
job.set_kpoints(k_mesh_spacing=0.1)
job.set_convergence_precision(
electronic_energy=1.0e-8,

)
job.set_occupancy_smearing(
smearing="FermiDirac",
width=0.2,

)
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The advantage of using the generic interface is that the users can switch
between different DFT simulation codes by only changing the create job
function call pr.create.job.Vasp(), the rest of the commands
remain the same. For expert users pyiron also provides the option to
access the simulation code specific input directly. As an example, while the
electronic smearing can be specified using the generic set_occu-
pancy_smearing() function, it can also be modified based on the
VASP specific input file named INCAR, which can be accessed in pyiron
like a python dictionary:

job.input.incar["ISMEAR"]= -1
job.input.incar["SIGMA"]= 0.1
Finally, in addition to the simulation code-specific parameters the

pyiron job object also provides the option to specify the submission to the
high performance computing (HPC) queuing system:

job.server.queue = "gpu_queue"
job.server.cores = 4
job.server.gpus= 4
After the specification of the input parameters and resource assignment

is completed the pyiron job object can be executed using the run()
function. This triggers the internal cycle of writing the input files, submitting
the calculation to theHPCfor executionandonce the calculation is completed
parse the output files to provide the output to the pyiron python interface.

TrainingContainer
Following the execution of the DFT calculations, the next step is the
aggregation of the outputs of these calculation to provide them to the fitting
codes for the interatomic potentials. In pyiron this is achieved by com-
bining two objects, the pyirontable object and the Trai-
ningContainer. The pyirontable object specifies a series of
functions which are applied to each job object in a given pyiron project,
following a map-reduce pattern:

table= pr.create.table()
table.add.get_job_name
table.add.get_structure
table.add.get_energy_tot
table.add.get_forces
table.run()
The aggregateddata, which is returned as a pandasDataFrameobject is

then stored in the TrainingContainer for reference in the
fitting codes:

tr = pr.create.job.TrainingContainer("tc_job")
tr.include_dataset(table.get_dataframe())
Additionally, the class defines commonplotting thatmake the creation

of graphs such as Figs. 6 and 4 easier, for example,
tr.plot.energy_volume()

atomicrex
The atomicrex interface exposes the full functionality of the code48 in a
pyiron python interface, while storing relevant inputs and output
necessary to reproduce fitting processes. An atomicrex job object can be
created with

job = pr.create.job.Atomicrex("AtomicrexJob")
Currently atomicrex implements EAM, modified EAM30, angular

dependent88, analytic bond order89 and Tersoff 87 potentials. They can be
set using

pot= job.factories.potentials.potential_type()
For potentials that allow for different functional forms like EAM

potentials it is necessary to define these functions. Here the user can choose
between predefined functions and own creations via a math parser.

morse= job.factories.functions.morse_B(
identifier="V",
D0=0.05,
r0=2.5,
beta=2.2,

S=2.4,
delta=0.0,
species=["Al", "Li"]

)
uf = ref.factories.functions.user_function(
identifier="UserElement1Element2",
input_variable="r"

)
uf.expression = "A*exp(r0-r)"
uf.derivative = "-A*exp(r0-r)"
uf.parameters.add_parameter("A", 3)
uf.parameters.add_parameter("r0", 5)
pot.pair_interactions[morse.identifier] = morse
pot.electron_densities[uf.identifier] = uf
Structures and corresponding fit properties can be directly assigned

using the generalTrainingContainer interface. If fine grained control
over weights is required they can also be added one by one:

s = pr.create.structure.ase.bulk("Al")
job.structures.add_structure(s,
identifier="SomeStructure",
relative_weight=10000)

job.structures.add_scalar_fit_property(
"atomic-energy",
target_val=-4.0,
relative_weight=100,

)
Nearly arbitrary parameter constraints can be addedusingmath parser

expressions:
job.input.parameter_constraint.add_constraint(
identifier="SomeContstraint",
dependent_dof="constrainedParameter",
expression="MathparserExpression",

)
Finally, the user can choose between an internal LBFGSminimizer and

a plethora of optimization algorithms provided via the NLopt library90 to fit
the potential.

algo= job.factories.algorithms.some_algo(
max_iter=1000

)
job.input.fit_algorithm = algo

RuNNer
Training with RuNNer usually passes through three stages: in mode 1, the
values of the atom-centred symmetry functions for the whole training
dataset are calculated and stored to disk, and the data is separated into a
training and a test set. mode 2 optimizes the parameters of the HDNNP in
order to represent best the reference energies and forces. Finally, mode 3 is
used to predict the properties of unknown configurations.

Thepyiron jobRuNNerFit reflects these steps. Similar to the other
training jobs, it is created by invoking the create routine of a pyir-
onProject object. Every RuNNerFit job also requires the specification
of a training dataset.

mode1= proj.create.job.RunnerFit('mode1')
mode1.add_training_data(dataset)
In the next step, a set of atom-centred symmetry functions must be

parameterized for the training dataset. runnerase offers the procedure
generate_symmetryfunctions to help with this task. Afterwards,
the job can be started using the run command:

sfs = generate_symmetryfunctions(dataset,
sftype=2,
cutoff=12.0

)
mode1.parameters.symfunction_short+= sfs
mode1.run()
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After the successful termination of mode 1, mode 2 is started by
reloading thefirst job and altering the settingrunner_mode. This tells the
underlying RuNNer code how to operate:

mode2= mode1.restart('mode2')
mode2.parameters.runner_mode = 2
mode2.run()
The same procedure is followed to runmode 3. In a RuNNerFit, the

execution of mode 3 is mandatory to complete training and obtain a full
prediction of both the train and test datasets:

mode3= mode2.restart('mode3')
mode3.parameters.runner_mode = 3
mode3.run()
In order to use the trained potential in an application with LAMMPS,

one can call the get_lammps_potential routine which returns the
requiredpair_style andpair_coeff commands. TheHDNNPpair
style is part of the LAMMPS interface provided by the n2p2 package91:

mode3.get_lammps_potential()

pacemaker
In order to setup the pacemaker job, one needs to create the corre-
sponding pyiron job and add the training dataset.

job = pr.create.job.PacemakerJob("pacemaker_
job")

job.add_training_data(dataset)
Parameters for ACE parameterization procedure will be initialized to

their defaults. However, one always can configure all of them. For example,
setting energy-force weights balance (κ from Ref. 44) as

job.input['fit']['loss']['kappa']=0.3
After that one can run the job and get the LAMMPS potential as well.

calphy
The computational approaches to obtain free energies as discussed in
Section III F consists of multiple interdependent steps, and presents a
complex computational workflow. In order to facilitate a user to
easily calculate the free energies, and at the same time retain the
ability to tune each step in the workflow as needed, we developed
calphy34, a python library for automated calculation of free ener-
gies. It uses LAMMPS as the molecular dynamics driver to perform
free energy calculations in an automated manner. calphy when
combined with pyiron, can leverage additional features such as
interoperability with other common atomistic simulation tools,
scaling to HPC systems, and job and data management.

Withinpyiron, a non-equilibrium free calculation, for example anAl
fcc lattice at 500 K and 0 pressure can be carried out by the following code:

pr = Project("free_energy")
job = pr.create.job.Calphy("Al_fcc_500")
job.structure = pr.create.structure.ase.bulk

("Al",
cubic=True).repeat(4)

job.potential = "Al-atomicrex"
job.calc_free_energy(
temperature=500,
pressure=0,
reference_phase="solid",
n_equilibration_steps=25000,
n_switching_steps=50000,

)
job.run()
The main inputs needed are the input structure and the

interatomic potential, apart from the thermodynamic conditions at
which the calculation is to be performed. For calculating the free
energy of a liquid system, the only change needed is refer-
ence_phase='liquid'. calphy automatically uses a different
reference system based on this command. To obtain free energies
over a given temperature range, one needs to change the temperature

option: temperature=[500, 800]. In this case, a free energy
calculation at 500 K is performed first, followed by a temperature
integration up to 800 K in another calculation.

LAMMPS
Beyond the free energies calculated with calphy to construct the phase
diagram, the LAMMPS molecular dynamics simulation code is used to
validatematerial properties calculated with the individualmachine learning
potentials. In pyiron the workflows to calculate the material properties is
defined independent of the specific simulation code, so in the first step a
referenceLAMMPS job is defined for the interatomic potential fittedwith the
atomicrex fitting code:

pr = Project('validation')
job = pr.create.job.Lammps('lmp')
job.structure = structure
job_lmp.potential = 'Al-atomicrex'
Following the definition of the reference job the next step is

assigning this reference job to the workflow to calculate a material
property, in this case the calculation of the elastic constants with the
ElasticMatrix job:

elastic = pr.create.job.ElasticMatrix('elmat')
elastic.ref_job= job_lmp
elastic.run()
By defining the calculation of the material properties independent of

the simulation code, the same validation calculation can be applied for the
LAMMPSmolecular dynamics simulation code to test the fitted interatomic
potentials as well as the VASP DFT simulation code, to enable a direct
comparison.

Software availability
The software used in this paper, pyiron, pacemaker, RuNNer,
atomicrex, calphy, LAMMPS, pycalphad, and PyXtal are freely
available from their respective repositories. A list of the software tools, along
with their repositories anddocumentation is provided in the Supplementary
Table 4. Exemplary workflows to illustrate the calculations mentioned in
this manuscript, along with the software versions required, are available in
an online repository92.

Data availability
The dataset used for parametrization of the interatomic potentials, along
with the free energy values for the constructionof the phase diagramare also
made available93. The LAMMPS compatible interatomic potential files are
available in both92 and93.
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