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Despite the progress in the measurement and accessibility of plant trait information, acquiring sufficiently complete data 
from enough species to answer broad-scale questions in plant functional ecology and biogeography remains challenging. A 
common way to overcome this challenge is by imputation, or ‘gap-filling’ of trait values. This has proven appropriate when 
focusing on the overall patterns emerging from the database being imputed. However, some applications force the imputation 
procedure out of its original scope, using imputed values independently from the imputation context, and specific trait values 
for a given species are used as input for computing new variables. We tested the performance of three widely used imputation 
methods (Bayesian hierarchical probabilistic matrix factorization, multiple imputation by chained equations with predictive 
mean matching, and Rphylopars) on a database of tropical tree and shrub traits. By applying a leave-one-out procedure, we 
assessed the accuracy and precision of the imputed values and found that out-of-context use of imputed values may bias the 
estimation of different variables. We also found that low redundancy (i.e. low predictability of a new value on the basis of 
existing values) in the dataset, not uncommon for empirical datasets, is likely the main cause of low accuracy and precision in 
the imputed values. We therefore suggest the use of a leave-one-out procedure to test the quality of the imputed values before 
any out-of-context application of the imputed values, and make practical recommendations to avoid the misuse of imputa-
tion procedures. Furthermore, we recommend not publishing gap-filled datasets, publishing instead only the empirical data, 
together with the imputation method applied and the corresponding script to reproduce the imputation. This will help avoid 
the spread of imputed data, whose accuracy, precision, and source are difficult to assess and track, into the public domain.

Keywords: BHPMF, gap-filling, imputation, mice, plant trait, Rphylopars, sparse matrix

Introduction

The use of plant functional trait information to answer ques-
tions in ecology and biogeography has greatly increased in 
recent years. While they have contributed to this, large-
scale, open-access data repositories (Kattge  et  al. 2020) are 
still rather sparsely populated, so that it is difficult to obtain 
information for more than a handful of traits for any given 
species. At the finer scales of local to landscape studies, it is 
sometimes possible to obtain the missing information from 
the field, which is also a better practice to use on-site trait 
data for studies with local questions (Palma  et  al. 2022). 
However, this is often unfeasible for regional, continental or 
global scale studies. One increasingly common way to over-
come this constraint is the use of imputation methods to 
fill the trait information gaps for species orindividual plants 
(entities in the trait datasets).

A range of methods with different degrees of suitability for 
different situations exists in the literature (Johnson et al. 2021, 
Enders 2022). Imputation methods are designed to allocate trait 
values that are, on average, consistent with the patterns in the 
observed data. In general, a good imputation method should 
be useful to keep incomplete cases and thus prevent the loss of 
information and, at the same time, avoid distorting the infor-
mation provided by the empirical data. When data are missing 
completely at random the consequence of removing incomplete 
observations is a decrease in statistical power, due to decreased 
sample size (Nakagawa and Freckleton 2008), but no estimation 
bias is expected in the statistics. However, in real datasets, the 
missing data for a given variable are often related to the values of 
other variables. In these cases, deleting incomplete cases can lead 
to misleading results in comparative studies or biased estima-
tions (Penone et al. 2014). The literature about imputation pro-
cedures recommends that the imputation model should contain 
all variables in the analysis model and any interactions between 
variables, as well as any auxiliary variables not included in the 
analysis model to make the missingness mechanism assumptions 

more plausible and to provide information about the missing 
values (Madley-Down  et  al. 2019). The chosen imputation 
method should be able to take advantage of the redundancies in 
the data structure (Box 1), e.g. if a phylogenetic signal is expected 
in a trait an imputation method incorporating a phylogenetic 
correlation matrix will be preferred. Also, it is recommended 
that the performance of imputation methods should be based 
mainly on statistical estimates instead of only on imputation 
error (Jardim  et  al. 2021). In summary, imputation methods 
are solutions for sparse data, but these solutions depend on the 
statistical model to be applied to the dataset and on the dataset 
itself. However, other applications are starting to appear, namely 
imputation performed as a way of predicting specific trait values 
(i.e. attributes) that will in turn be used as input information to 
compute new variables and perform further analyses based on 
them. Two common examples of these ‘out-of-context’ applica-
tions of the imputation procedure are: 1) the computing of trait 
community weighted means in local plots, which requires taking 
the attributes of a subset of species from a species by trait matrix 
to perform a summation of them weighted by the relative abun-
dance of each species in each plot (Garnier et al. 2004); and 2) 
the projection of new entities (e.g. species, communities) onto 
pre-defined phenotypic spaces (Segrestin et al. 2021), which also 
requires taking specific attributes for a given species as an input 
in a summation of the eigenvector of traits values that will allow 
the projection. In both cases, even when the imputation pre-
serves the data structure of the species by trait matrix (i.e. covari-
ation and taxonomic/phylogenetic structure), the procedure has 
no information about the community weighted mean where the 
species belong or the position of the species onto the pre-defined 
phenotypic space. Because the imputation method does not 
have that input, and because any imputation method does not 
create new information but extracts and distributes information 
already existing in the database (Box 1), if the isolated (out-of-
context) imputed values for specific attributes are incorrect, so 
will be the arithmetic operations made based on them. Previous 
works have raised concerns about using imputation methods in 
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local-scale studies or trait-based community ecology (Swenson 
2014, Swenson et al. 2017). Additionally, previous studies have 
shown that every known imputation approach produces inaccu-
rate values, even with as little as 5% missing data (Johnson et al. 
2021). It follows that, when an ‘extension’ application such as 
these is planned, a previous testing of the accuracy and precision 
of the imputed attributes becomes essential.

The present study aims to draw attention to the risk of the 
out-of-context uses of imputed values. For this purpose, we 
use an empirical trait database to illustrate the precision and 
accuracy of the imputed values and the effect of using such 
values out of the context of the imputation to compute new 
variables (community weighted means and position onto a 
pre-defined phenotypic space, in the present case).

Material and methods

Datasets

To produce the pre-defined phenotypic space, we used the 
dataset released by Díaz  et  al. (2022) which was the basis 
of a global spectrum of plant form and function (Díaz et al. 
2016). This dataset contains species mean values for six vas-
cular plant traits (plant height, stem specific density, leaf area, 

leaf mass per area, leaf nitrogen content per dry mass and 
diaspore mass). From this dataset, we got the subset of species 
with no missing trait values (’Díaz’s dataset’).

To test precision and accuracy of the imputed values 
and its consequences we worked with Baraloto et al. dataset 
(Baraloto et al. 2010a, b; dataset 269 in the TRY Database 
https ://ww w.try -db.o rg/Tr yWeb/ Home. php; hereafter 
‘Baraloto datasets’). This dataset involves Neotropical woody 
species, and preserves the trait information at the level of 
individual plants. We subset it by keeping data from the same 
traits as for the global spectrum of form and function (seed 
mass is missing in this dataset). Then, we kept individuals 
for which more than one trait were measured, and species 
for which more than one individual were measured. This 
resulted in a dataset of 7227 individuals from 448 species and 
200 genera. The aggregated species-level Baraloto’s dataset 
was 97.32% complete. The individual-level Baraloto’s data-
set achieved a 67.88% coverage (Supporting information). 
In this way we obtained the two related databases with the 
same species but different levels of redundancy, one having 
repeated observations within each species (at least two indi-
viduals), and the other having the mean value for each trait 
for each species. The individual level is more redundant than 
the species level dataset because the variability of traits within 
species is smaller than between species. As a consequence, if 
we know the trait value for one individual of a given species, 
the information added by a new individual of the same spe-
cies is less than the information added by a new individual of 
a different species.

Leave-one-out procedure

We tested the precision and accuracy of three popular impu-
tation methods on the species-level Baraloto’s dataset. First, 
it was the Bayesian hierarchical probabilistic matrix factor-
ization method (BHPMF, Schrodt  et  al. 2015). BHPMF 
was originally designed to preserve the covariation and tax-
onomic structure of plant attributes, and it suits well the 
needs of plant trait-based macroecology (Díaz  et  al. 2016, 
Bruelheide et al. 2018). Second, it was the multiple impu-
tation by chained equations (MICE) procedure, with the 
predictive mean matching (PMM) method (Little 1988, van 
Buuren et al. 1999). MICE-PMM imputes data by match-
ing observed values between traits, then populates missing 
values in incomplete traits by adopting information from 
the matched species. Third, it was Rphylopars. Rphylopars 
is a maximum likelihood frequentist method that uses a phy-
logeny and a sparse trait matrix to estimate simultaneously 
the across-species (phylogenetic) and within-species (phe-
notypic) trait covariance (similar to a phylogenetic mixed 
model) to reconstruct the ancestral state and impute miss-
ing values (Goolsby et  al. 2017). BHPMF and Rphylopars 
methods estimate a mean and a standard deviation (square 
root of the phenotypic variance in the Rphylopars method) 
for the imputed values. Because MICE-PMM is a process of 
multiple imputations we imputed 10 times and computed 
the mean and standard deviation from these.

Box 1.

Information and redundancy. Here we use these terms 
in the framework of the mathematical theory of infor-
mation (Shannon and Weaver 1964). Information is a 
measurement of the freedom of all elements in a mes-
sage. In our case, the ‘message’ could be the parameter 
values of a statistical model describing the relationship 
among variables and the elements could be the ele-
ments of the entities by traits matrix. Redundancy is 
the proportion of non-informative elements in the mes-
sage. An element is considered non-informative when 
it adds little extra information with respect to the one 
already provided by the other elements. The stronger the 
covariation structure in a matrix, because of e.g. con-
vergent evolution into syndromes and/or constraints 
related to evolutionary history, biomechanics or bio-
chemical pathways, the higher the redundancy will be 
because each element is less free to vary independently. 
In other words, in a highly redundant matrix, each new 
observation will contribute very little new information. 
The higher the redundancy, the higher the predictability 
of a new value on the basis of the ones already existing 
in the matrix. An example of how to operationalize and 
measure information in the context of imputation was 
introduced by Jardim et  al. (2021). They also showed 
that the proportion of missing data in a dataset is not 
always a good proxy of the proportion of missing infor-
mation in the same dataset.
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Before performing the imputation methods, the traits were 
log10-transformed and each log10-transformed variable was 
standardised by centering and scaling ( z x x xi� �( ) ( )/sd ),  
as recommended by Schrodt et al. (2015). The quality-check 
procedure consists of repeating the imputation process while 
removing each one of the elements in the matrix, one by 
one (Leave-one-out. Supporting information: script code 
1). The process was performed only for those entities (rows) 
with two or more known attributes (traits). At the end of the 
process, we obtained the empirically observed values along 
with the corresponding imputed values when this element 
was removed. On this basis, we carried out a series of quality-
control analyses. First, we controlled for imputed values fall-
ing out of the empirically observed range for each trait by 
constraining all imputed values to that range. Imputed values 
higher than the maximum or lower than the minimum values 
of a given trait were replaced by the maximum or minimum 
observed, respectively. Second, to assess the accuracy of the 
imputation, we performed an ordinary least squares linear 
regression analysis with the log10-transformed imputed values 
as a function of the log10-transformed empirically observed 
values. Because we aimed to assess the imputed values as pre-
dictors of the actual ones, we assumed the empirical values 
were measured accurately and their error was negligible com-
pared to the error in the imputed values. Here we expected 
an intercept = 0 and a slope = 1. Third, to assess the precision 
of the imputation, we computed an index accounting for the 
proportion of the total variance in a trait which is predicted 
by the imputed values:

Q
I O

O O

i i

i

� �
�� �
�� �

�
�

1
2

2

Where, Ii and Oi are the imputed and empirically observed 
values for the entity i, respectively, and O  is the mean 

empirical value across all entities. Q has an upper limit = 1 
(when there is no error in the imputation); the lower value 
could be < 0 if the errors are larger than the variance in the 
empiric values for a trait. This would mean that the overall 
empiric mean is a better estimation than the imputation. We 
also computed the root mean square error for the z-variables 
(zRMSE) to assess precision. The lower limit of zRMSE = 0, 
which would mean that the imputed values are equal to 
the empiric ones, i.e. the imputation is perfect. Because the 
z-variables are scaled by the standard deviation, a value of 
zRMSE>1 would mean that the imputed values are, on aver-
age, less precise than using the overall mean as an imputation 
for the missing values.

The BHPMF procedure was performed in R ver. 3.4.4 
(www.r-project.org), which is the version required to run 
the ‘GapFilling’ function from the ‘BHPMF’ R-package 
(Schrodt  et  al. 2015, https://github.com/fisw10/BHPMF). 
The MICE-PMM procedure was performed by running the 
‘mice’ R-package (van Buuren and Groothuis-Oudshoorn 
2011) in R ver. 4.4.0 (www.r-project.org). The Rphylopars 
procedure was performed by running the ‘Rphylopars’ 
R-package in R ver. 4.4.0 (www.r-project.org), assuming a 
Brownian motion evolutionary model. The phylogenetic tree 
was gotten by running ‘rtrees’ R-package (Li 2023), based on 
the Smith and Brown (2018) plants megatree.

Effect of the out-off-context use of the imputed 
values

From the previous step (section ‘Leave-one-out procedure’), 
we selected the imputation method producing the most pre-
cise and accurate imputed values. We assessed the effect of 
the out-of-context use of the imputed values by comparing: 
1) the trait community weighted means estimated from the 
actual versus imputed values; 2) the position of the species 
projected onto a pre-defined phenotypic space.

Table 1. Estimation of the accuracy (intercept and slope of the linear regression of imputed values as function of the empiric value, both 
log10-transformed), and precision (Q and zRMSE) of the imputation with respect to empirical values in the species level Baraloto’s datase, 
for each trait. H: adult plant height; SSD: stem specific density; LA: leaf area, LMA: leaf mass per area; Nmass: nitrogen content per unit leaf 
mass. In bold, are the best values for each trait and statistics.

Trait Imputation method Intercept [95% CI] Slope [95% CI] Q zRMSE

H BHPMF 0.944 [0.858; 1.029] 0.280 [0.214; 0.345] −0.006 1.587
 MICE-PMM 1.003 [0.942; 1.064] 0.233 [0.187; 0.280] 0.163 0.914
 Rphylopars 1.089 [1.044; 1.135] 0.163 [0.129; 0.198] 0.164 0.913
SSD BHPMF −0.117 [−0.132; −0.102] 0.427 [0.360; 0.493] 0.162 1.491
 MICE-PMM −0.177 [−0.188; −0.167] 0.160 [0.115; 0.206] 0.059 0.969
 Rphylopars −0.129 [−0.139; −0.119] 0.391 [0.348; 0.435] 0.414 0.765
LA BHPMF 1.875 [1.620; 2.130] 0.495 [0.428; 0.563] 0.214 1.679
 MICE-PMM 3.087 [2.917; 3.258] 0.169 [0.123; 0.214] 0.070 0.963
 Rphylopars 2.282 [2.119; 2.445] 0.388 [0.345; 0.431] 0.408 0.769
LMA BHPMF 1.180 [1.053; 1.308] 0.402 [0.337; 0.467] 0.158 1.338
 MICE-PMM 1.244 [1.145; 1.343] 0.367 [0.317; 0.417] 0.308 0.831
 Rphylopars 1.595 [1.530; 1.661] 0.189 [0.156; 0.222] 0.215 0.885
Nmass BHPMF 0.626 [0.537; 0.715] 0.528 [0.461; 0.594] 0.313 1.484
 MICE-PMM 0.913 [0.841; 0.985] 0.314 [0.260; 0.368] 0.225 0.879
 Rphylopars 0.775 [0.716; 0.834] 0.415 [0.371; 0.460] 0.453 0.738
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We computed the trait community weighted means from 
imputed versus the actual species trait values for a set of 1000 
simulated communities. Communities were simulated by 
sampling the species list of Baraloto’s dataset. The number 
of species in each community ranges from 10 to 100 with 
a random uniform distribution. The relative abundance of 
each species in each community follows a power law dis-
tribution with an alpha parameter belonging to a random 
uniform distribution ranging from 1.5 to 4. This results in 
a set of communities with richness ranging from 10 to 100 
and Shannon evenness ranging from 0.009 to 0.999. The 
power law distribution was simulated by running therpldis 
function of the ‘poweRlaw’ R-package (Gillespie 2015). We 
fitted an ordinary least squares linear regression of the com-
munity weighted means from imputed versus actual species 
trait values to asses the effect of imputation on the variable. 
We assumed the empirical values were accurately measured 
and their error was negligible compared to the error intro-
duced by the imputed values in the community weighted 
means calculus.

We defined a phenotypic space by performing a principal 
component analysis with Díaz’s dataset. We kept the same 
traits as in Baralotos’s dataset, this is plant height, stem spe-
cific density, leaf area, leaf mass per area and mass based leaf 
nitrogen content. These variables were log10-transformed 
and then standardized before running the prcomp function 
of the ‘stats’ R-package (www.r-project.org). Then we com-
pute the position of each species in Baraloto’s dataset onto 
phenotypic space defined by the first and second axes of the 
previous ordination analysis. To do so, we log10-transformed 
the imputed and the actual trait values, then we subtracted 
the mean and divided by the standard deviation of each 
log10-transformed trait from Díaz’s dataset. Once we have 
scaled the trait values according to the pre-defined pheno-
typic space we compute the actual and imputed position of 
Baraloto’s dataset species by a matrix multiplication of the 
vectors of scaled trait values by the eigenvector of principal 
components one and two. Finally, we fitted an ordinary least 
squares linear regression of the imputed versus actual PC1 
and PC2 position of the species to assess the effect of impu-
tation on these variables. We assumed the empirical values 
were accurately measured and their error was negligible com-
pared to the error introduced by the imputed values in the 
PC1 and PC2 position.

Effect of redundancy on the imputed values

Finally, we illustrated how the dataset redundancy affected 
the imputation in our case. The Bayesian part of the method 
BHPMF sets the ‘prior’ according to the mean value of the 
traits in the hierarchical grouping levels of the cases in the 
matrix. So, for each trait, we computed the relative range 
amplitude (i.e. the proportion of the total range amplitude 
of the dataset represented in each grouping level). The larger 
the relative range amplitude, the less precise the imputed 
values will be because of a less informative ‘prior’. To per-
form these analyses, we computed the relative error of the 

imputed values with respect to the actual values ([imputed 
– empiric] × empiric−1) and constructed a linear model to 
analyse whether the relative range amplitude for a given trait 
in the smallest grouping level (genus or species) has an effect 
on the relative error of the imputed values.

To performe these analyses we applied the leave-one-out 
procedure with the BHPMF imputation method on both, 
the individual- and the species-level Baraloto’s datasets. At the 
level of individuals we followed two strategies to vary the level 
of redundancy. The first one proceeded exactly as described 

Figure 1. Relationship between imputed and actual mass-based leaf 
nitrogen content values for the species level Baraloto’s dataset. 
Imputed values were obtained by performing (a) the BHPMF 
method, and (b) the Rphylopars method. The dashed line repre-
sents the identity line (intercept = 0; slope = 1). The continuous and 
dotted lines represent the fitted ordinary least-squares linear regres-
sion line and its 95% confidence interval.
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above in the section ‘Leave-one-out procedure’ (this is the 
individual level). In the second strategy we removed not only 
the measurement we aim to test but also all the additional 
information for the particular combination of species and trait 
being imputed in each step (this is the individual2 level). That 
is, we kept the within-species information (replicates) for all 
traits except the one being tested. When applying the imputa-
tion once to each full database (species- and individual- level), 
the outliers were constrained as previously described.

Results and discussion

Precision and accuracy of the trait imputed values

For the species level Baraloto’s dataset, the three imputation 
methods tested here produced imputed values accounting for 
0–45.3% of the proportion of the total variance in each trait 
(Table 1). The BHPMF imputation method exhibited the 
lowest precision across all traits, with zRMSE values exceeding 
one for every trait, indicating that the imputed values were, 
on average, less precise than the overall mean. Conversely, the 
Rphylopars method showed the highest precision for all traits 
except LMA, where mice-PMM proved to be more precise 
(Table 1). Furthermore, BHPMF was the only method that 
generated imputed values out of the observed empirical range 
of each trait in the dataset (Supporting information).

The three imputation methods tested here produced 
biased trait values. In four (H, LA, LMA and Nmass) of the five 
traits, the intercept of the regression of imputed as a function 
of empirical values was > 0 and the slope was < 1 (Table 1). 
This means that the imputed values at both extremes of the 
range were biased, overestimating trait values at the lower 
extreme and underestimating them at the higher extreme.  
For SSD, the intercept was < 0 and the slope was < 1 
(Table 1), meaning that this trait was systematically under-
estimated by the three imputation methods. The less biased 
method was BHPMF, this is the intercepts were closer to zero 
and slopes closer to one for the five traits (Table 1).

The imputed values for leaf nitrogen content were the 
most precisely and accurately imputed in the species level 
Baraloto’s dataset (Table 1). Figure 1 shows the dispersion 
and bias of the imputed values in respect to the actual values.

We found that none of the estimations of variability/uncer-
tainty associated with every single imputed value, according to 
the three methods tested here, was related to the relative error 
of each observation (100 × [|imputed value-actual value|/actual 
value]) (Fig. 2). As a consequence, nor the SD reported for 
every single value when performing the BHPMF method, nor 
the phenotypic variance estimated by Rphylopars, nor the vari-
ance associated with the multiple imputation by chained equa-
tions procedure are informative criteria to know the accuracy 
and precision of any particular imputed value.

Effect of the out-of-context use of imputed values

This section aims to illustrate our concerns about the out-
of-context use of the imputed values. The results introduced 

Figure 2. From the species level Baraloto’s dataset, bivariate distribu-
tion of the absolute value of the relative error in the imputed values 
and the related uncertainty. (a) imputed values according to the 
mean value obtained by performing the BHPMF method and SD 
according to the standard deviation predicted by the same proce-
dure. (b) imputed values and SD obtained by performing the mice-
PMM method 10 times and computing the mean and standard 
deviation from these values. (c) imputed values obtained by per-
forming the Rphylopars method and SD computed as the squared 
root of the estimated phenotypic variance.
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here are not an exhaustive assessment of the factors affect-
ing the accuracy or precision of the computed variables. 
Because the method producing the most precise imputed 
values for most of the traits was Rphylopars, but BHPMF 
was the method producing the least biased imputed val-
ues, we explored the effect of the imputed values from both 
methods on the community-weighted trait means (CWM) 
calculus and on the projection of species onto a pre-defined 
phenotypic space (PCs).

In both sets of variables (i.e. the CWM and PCs) and for 
both imputation methods, the imputed values led to biased 
estimations (Fig. 3, Fig. 4, Supporting information). The 
intercepts of the regressions of imputed-derived values as a 
function of empirical values were > 0 and the slopes were 
< 1. This means that the imputed-derived values at both 
extremes of the range were biased, overestimating trait 
values at the lower extreme and underestimating them at 
the higher extreme. In line with Johnson  et  al. (2021),  

Figure 3. Relationship between community weighted means for each trait in the species-level Baraloto’s dataset computed, for simulated 
communities, with the actual value of each trait versus the imputed values by the Rphilopars method. The dashed line represents the identity 
line (intercept = 0; slope = 1). The continuous and dotted lines represent the fitted ordinary least-squares linear regression line and its 95% 
confidence interval.
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Page 8 of 12

we found that imputation is not accurate enough to esti-
mate trait values for individual species or records. As such, 
imputed values should be interpreted cautiously when 
any out-of-context use for these values is planned. Also, 
in agreement with Johnson et al. (2021), in our view the 
threshold for deciding on whether imputation is accurate 
depends on the research question.

The examples presented here are illustrative, but a more 
nuanced assessment is advised when using out-of-context 
imputed values. An imprecise or biased estimation could be 
tolerable in some contexts, depending on the magnitude of 
such errors. The leave-one-out procedure we used here is a 
tool that may help in that assessment (Fig. 5). In some cases, 
a picture of the imputed values' overall accuracy and preci-
sion could be enough to decide whether to use them. For 
a deeper evaluation, the frequency distribution of errors of 
the imputed values, obtained in the leave-one-out proce-
dure, could be used in a randomization process specifically 
designed to assess the error propagation in each situation.

Redundancy and error of the imputed values

We suspected that the poor performance of the imputation 
may be due to limited redundancy (as defined in Box 1) in 
the matrix, due to the fact that the traits chosen to compute 
the global spectrum of plant form and function were deliber-
ately selected to minimize redundancy (Díaz et al. 2016) and 
are thus weakly correlated overall.

To test how redundancy affects the accuracy and preci-
sion of the imputed values, we compare the outcome of the 
BHPMF method between the species-level and the individ-
ual-level Baraloto’s dataset. For all traits, the imputation at 
the species level was less precise than simply using the global 
average for each trait (zRMSE >1). Additionally, the sum of 
square errors for H was larger than the actual variance of the 
trait (Q < 0). The precision and accuracy of the imputed val-
ues improved in the individual-level dataset (Table 2 – level: 
individual) but decreased sharply, becoming similar to the 
one at the species level, when information on the same trait 
for additional individuals of the same species was removed 
(Table 2 – level: individual2). This strongly suggests that 
indeed the degree of redundancy in the empirical matrix is 
key to obtain imputed values close to the empirical ones. In 
this case, there are at least two individuals for each species, 
and therefore there is a higher redundancy in the individual 
level dataset than in the species level dataset.

The BHPMF method uses the average value for the group-
ing levels (species in this case) as priors for the imputation. 
As a consequence, 1) the procedure applied in individual2 
results in a situation similar to that of the species-level data-
set (that is, we removed most of the redundant information 
relevant for the imputation); 2) the narrower the variability 
within a grouping level, the more informative the prior will 
be. As expected, we found that, for all traits, the relative error 
of the imputed values in the individual-level dataset was posi-
tively impacted by the relative range amplitude of the trait 
within each species. In other words, the wider the relative 

range of the trait within the species, the larger the relative 
error of the imputed values (Supporting information).

It is important to highlight that the aggregated species-
level Baraloto’s dataset is almost complete (significantly less 

Figure 4. Relationship between the computed position of each spe-
cies in the species-level Baraloto’s dataset onto a pre-defined pheno-
tipic space. (a) position onto the principal component 1 computed 
with the actual value of each trait versus the imputed values by the 
Rphilopars (red) and BHPMF method (blue). (b) position onto the 
principal component 2 computed with the actual value of each trait 
versus the imputed values by the Rphilopars (red) and BHPMF 
method (blue). The dashed line represents the identity line (inter-
cept = 0; slope = 1). The continuous and dotted lines represent the 
fitted ordinary least-squares linear regression line and its 95% con-
fidence interval.
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Page 9 of 12

sparse than what most people use for their imputation work 
in recent macroecological studies). As a consequence, the per-
formance of the imputation is not the result of a particularly 
sparse matrix.

Final remarks

When combining datasets from incomplete sources, imputa-
tion helps to increase the number of species and traits to be 
considered when testing ecological and biogeographical ques-
tions. However, no imputation method produces new infor-
mation; they all work with the information already implicit in 
the empirical matrix. Our study illustrates how the lower the 
redundancy in the empirical trait matrix, the less reliable the 

imputed values will be, and what consequences may derive 
from an out-of-context use of such imputed values. The accu-
racy and precision of the imputed values will be high only 
if the dataset is highly redundant in information, and the 
chosen method is able to take advantage of this redundancy. 
Providing external information (i.e. data from additional 
entities belonging to the same hierarchical groups, or infor-
mation on other traits correlated with those of interest) may 
improve the quality of the imputation (Joswig et al. 2023).

Rather than undermining or supporting a particular 
method of imputation, our procedure provides a useful test 
of the quality of the imputation achieved in specific cases 
(Fig. 5). In line with this, we offer a practical procedure to 
check the precision and accuracy of imputed values in con-
texts in which the use of imputation goes beyond the scope 

Figure 5. Decision tree. Some criteria to decide when we should be more cautious about imputing data in an entity by traits matrix.
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Page 10 of 12

for which it was initially designed (i.e. ‘extension’ applica-
tions). We suggest this is a key tool for researchers to decide, 
in the light of their specific objectives, whether such imputa-
tion meets the standards needed and thus can be used as a 
basis for further analysis. For example, if the whole matrix is 
the main focus of interest, as when performing multivariate 
analyses to detect trait syndromes on their own or to correlate 
the main axes of such space with environmental or ecosys-
tem-level variables, it would be better to use imputation than 
work only with complete cases. This is because a properly 
specified imputation method, even if biased or imprecise in 
some specific values, will prevent the large loss of information 
involved in excluding all incomplete cases and will lead to 
less biased conclusions (Madley-Dowd et al. 2019). However, 
much more caution is in order when using imputation in 
cases where the focus is on individual elements of those 
matrices, as in the examples we provided above (i.e. using an 
imputation method to predict specific values).

Finally, we argue that, in order to prevent the uncritical 
use of imputed values and their propagation and potential 
misuse in the scientific literature, it would be good practice 
to avoid publishing gap-filled datasets. Much better would be 
to provide only the empirical data, together with the imputa-
tion method applied and the corresponding script to repro-
duce the imputation. In this way, any user should be able to 
reproduce the analyses but in full knowledge of which data 
were actually measured, and which ones imputed. Crucially, 
such practice would avoid the spread of imputed data, whose 
accuracy or precision might be poor or in any case difficult to 
assess, into the public domain.
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