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Abstract  An important control on long-term soil 
organic carbon (SOC) storage is the adsorption of 
SOC by short-range-ordered (SRO) minerals. SRO 
are commonly quantified by measuring oxalate-
extractable metals (Mox = Alox + ½ Feox), which many 
studies have shown to be positively correlated with 
SOC. It remains uncertain if this organo-mineral 
relationship is robust at the global scale, or if cap-
turing regional differences is needed to maximize 

model accuracy. We used a global synthesis of Alox 
and Feox data to test their role in controlling SOC 
abundance across regions. We compiled 37,344 indi-
vidual soil horizon measurements, with soil depth 
ranging between 0 and 200  cm, from 11,122 pro-
files. We used the Holdridge Life Zones, which are 
characterized by biotemperature, precipitation, and 
potential evapotranspiration, to group the soil pro-
files by their climatic conditions that also correlate 
with other important soil-forming factors. Based on 
linear mixed-effects models, we found a positive rela-
tionship between Mox and SOC across regions and 
depths, accounting for 49% of the SOC variation. 
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This relationship is strongest in wetter regions and at 
depths between 20 and 100  cm. Across all environ-
mental conditions, Alox is a stronger predictor of SOC 
than Feox. Our analysis suggests oxalate-extractable 
metals are good proxies for mineral-induced SOC 
protection at the global scale. However, our findings 
also indicate that the importance of organo-mineral 
interactions at the global scale varies with climatic 
conditions and depth. The underlying mechanisms 
need to be considered when incorporating these rela-
tionships as proxies for mineral sorption capacity into 
soil C models.

Keywords  Soil organic carbon dynamics · Organo-
mineral interaction · Poorly-crystalline minerals · 
Large-scale analysis · Holdridge Life Zones · Soil 
carbon modeling

Introduction

Soil carbon–climate feedbacks are a major source 
of uncertainty in predicting how the terrestrial bio-
sphere will respond to climate change (Todd-Brown 
et al. 2013). Our understanding of soils suggests that 
the accuracy of soil organic carbon (SOC) predictions 
depends on environmental conditions and their inter-
action with other soil properties. In this context, the 
classical soil-forming factors—climate, organisms, 
relief, parent material and time (Dokuchaev 1883; 
Jenny 1941)—influence how different soil processes 
and their interactions control the abundance and per-
sistence of SOC (Cotrufo & Lavallee 2022). Thus, 
to improve soil carbon–climate feedback models, 
we need to incorporate mechanistic soil understand-
ing rather than relying solely on universal global 
relationships.

Many biogeochemical models rely on soil texture 
to modify rates of SOC turnover and CO2 fluxes to 
the atmosphere (Wieder et al. 2018), without consid-
ering the dependence of soil texture on soil-forming 
factors. In fact, many large-scale studies have shown 
that other soil properties predict SOC abundance bet-
ter than texture under many environmental conditions 
(e.g., Quesada et  al. 2020; Rasmussen et  al. 2018; 
von Fromm et al. 2021; Yu et al. 2021). In particular, 
aluminum (Al) and iron (Fe) species—ranging from 
monomeric metals to short-range ordered (SRO) and 
crystalline mineral phases—can play an important 

role in SOC protection by sorption or formation of 
insoluble organo-metal coprecipitates, or by promot-
ing subsequent aggregate formation (Oades 1988; 
Parfitt & Childs 1988; Tisdall & Oades 1982; Wagai 
& Mayer 2007). These organo-mineral interactions 
are likely governed by a hierarchy of soil-forming 
factors that influence SOC persistence and turnover.

Strong positive relationships between SOC abun-
dance and oxalate-extractable forms of Al (Alox) and 
Fe (Feox) have been found at spatial scales ranging from 
pedons to continents (Hall & Thompson 2022; Kaiser 
et al. 2002; Kleber et al. 2005; Masiello et al. 2004; Per-
cival et al. 2000; Powers & Schlesinger 2002; Rasmus-
sen et  al. 2018; von Fromm et  al. 2021, 2025; Wagai 
et  al. 2020; Yu et  al. 2017). These relationships are 
particularly strong under wet and acidic soil conditions, 
with acidity and moisture serving as proxies for weath-
ering. This suggests that climate and time are dominant 
drivers of organo-mineral interactions at the global 
scale, as they govern weathering processes and influence 
vegetation patterns (i.e., C inputs and quality). While 
parent material and relief also contribute, their impact is 
more challenging to quantify at the global scale, as SRO 
minerals and aggregates can form from a wide range 
of parent materials (Slessarev et al. 2022), and relief is 
often related to time or climate through processes like 
erosion and elevation changes. In addition, proxies for 
these soil-forming factors are generally of lower quality 
than climate at the global scale, which precludes their 
use in large-scale meta-analyses.

Despite the influence of soil-forming factors, there 
is additional complexity in the relationships between 
SOC and Alox or Feox. Various studies have found that 
Alox is a stronger predictor of SOC than Feox (Hall & 
Thompson 2022; Rasmussen et al. 2018; Souza et al. 
2017; von Fromm et  al. 2021; Yu et  al. 2021). This 
may be due to differences in how Al and Fe phases 
extracted by the oxalate-ammonium method interact 
with SOC under different environmental conditions 
(Hall & Thompson 2022; Rennert 2018). In some 
cases, Feox is weakly correlated or even negatively 
associated with SOC (Hall et  al. 2015; Kahle et  al. 
2002; Percival et  al. 2000; Powers & Schlesinger 
2002). The complex interplay between monomeric 
organic complexes, SRO minerals, and environmental 
variables complicates our understanding of these rela-
tionships (Lawrence et al. 2015; Masiello et al. 2004; 
Wagai et al. 2020). It remains unclear whether Al and 
Fe phases directly drive SOC retention, or whether 
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their correlation with SOC reflects enhanced weath-
ering driven by biological activities, such as organic 
acid production by roots and microbes (Chorover 
2022; Wagai et  al. 2023). This raises the possibility 
that SOC inputs, primarily influenced by climate, 
may play a larger role than soil mineral composi-
tion in controlling SOC abundance (Hall & Thomp-
son 2022). To test this, it is important to investigate 
the changes in organo-mineral interactions with soil 
depth across regions. Globally, the proportion of 
C associated with soil minerals increases with soil 
depth, while the influence of microbial and root bio-
mass decreases with depth (Hicks Pries et  al. 2023; 
Jackson et al. 1996; Xu et al. 2013). This suggests that 
the importance of Alox and Feox should also increase 
with soil depth. In contrast, von Fromm et  al. 2021 
and Yu et al. 2021 observed a more or less constant 
importance of Alox and Feox with depth.

We propose a hierarchical, mechanistic framework 
to predict soil-climate feedbacks, emphasizing the 
role of climate and time in shaping organo-mineral 
interactions. To refine global predictions, we intro-
duce the Holdridge Life Zones as a valuable grouping 
variable. These zones, which are determined solely 
by temperature and water availability, effectively 
capture SOC distribution and persistence across cli-
matic conditions (Jungkunst et  al. 2021; Post et  al. 
1982). Therefore, there is no bias toward other soil-
forming factors that might be useful in representing 
climate, as is commonly done to highlight mountain 
ranges. Within the Holdridge Life Zones, mountains 
are specific regions, representing only the change in 
temperature and precipitation with altitude. However, 
this framework does not fully account for the role of 
time, particularly the age of soils, which is difficult to 
estimate globally. Distinguishing between glacial and 
loess influenced soils (~ 12,000 years old) and older 
soils unaffected by the last ice age may help to over-
come this limitation.

Here, we investigate the relationship between SOC 
abundance and Alox and Feox as a function of soil 
depth and climatic regions at the global scale. We 
propose ideas about why these relationships may dif-
fer between regions, and we discuss the applicability 
of Alox and Feox as a driver for SOC turnover rates in 
biogeochemical models. In this work we address the 
following research questions (RQ):

RQ1: What is the relationship between SOC and 
Alox and Feox at the global scale?

We hypothesize that Alox and Feox are positively 
correlated with SOC, with Alox being the more 
important predictor, while Feox will show a non-linear 
relationship with SOC.

RQ2: Are the Holdridge Life Zones a good disag-
gregation approach at the global scale to better under-
stand the role of organo-mineral interactions?

We hypothesize that a disaggregation at the global 
scale will improve the prediction of SOC abundance 
by integrating important soil-forming factors that in 
turn influence soil mineral phases.

RQ3: Are there regional-specific differences in the 
relationship between SOC and Alox and Feox with soil 
depth?

We hypothesize that the importance of Alox and 
Feox in predicting SOC abundance is:

•	 highest under warm and wet conditions.
•	 smallest under cold and arid conditions.
•	 increasing with soil depth.

Methods

For this study, we analyzed 37,344 individual soil 
samples from 11,122 profiles, ranging in depth from 
0 to 200  cm. We used the Holdridge Life Zones to 
group the soil profiles according to climatic condi-
tions (Jungkunst et al. 2021; Post et al. 1982). Linear 
mixed-effects models followed by a post-hoc analysis 
provide statistical support for the investigated rela-
tionships between SOC abundance and Alox and Feox 
across soil depth and regions. Non-linear relation-
ships between Alox, Feox and SOC were further tested 
with a random forest model.

Data compilation

We compiled globally distributed soil samples that 
had measurements of SOC, Alox and Feox, as well as 
sampling depth and location. We included publicly 
available datasets, such as from the U.S. Depart-
ment of Agriculture’s National Cooperative Soil Sur-
vey (NCSS) Soil Characterization Database (http://​
ncssl​abdat​amart.​sc.​egov.​usda.​gov/, Rasmussen et  al. 
2018), National Ecological Observatory Network 
(NEON 2023), Land Use and Coverage Area frame 
Survey (LUCAS, Fernandez-Ugalde et  al. 2022), 
African Soil Information Service (AfSIS, Vågen 

http://ncsslabdatamart.sc.egov.usda.gov/
http://ncsslabdatamart.sc.egov.usda.gov/
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et  al. 2021), International Soil Radiocarbon Data-
base (ISRaD, Lawrence et al. 2020) and from various 
unpublished and published studies (for a complete list 
of included studies, see von Fromm 2025). Histosols 
and all organic horizons were excluded, as well as 
samples with SOC content > 20 wt %. This was done 
to focus on mineral soils where we expect to find the 
strongest relationship between SOC, Alox and Feox. 
In addition, we limited the bottom sampling depth to 
200 cm, and grouped the samples into depth bins of 
0–20, 20–50, 50–100, and 100–200 cm.

Soil data were paired with the current version of 
the Holdridge Life Zones, which is provided by the 
International Institute for Applied Systems Analyses 
(IIASA) in Laxenburg, Austria, and were retrieved 
from the FAO GeoNetwork (last updated 2008). If 
no Holdridge Life Zone could be extracted, the cor-
responding zone was assigned based on climate data 
that was either reported in the study or extracted from 
the WorldClim dataset (Fick & Hijmans 2017). The 
Holdridge Life Zones are defined by biotempera-
ture, precipitation, and potential evapotranspiration. 
Biotemperature is based on growing season length 
and temperature. It is measured as the mean of all 
annual temperatures, with all temperatures below 
freezing and above 30  °C adjusted to 0  °C, as most 
plants are dormant at these temperatures (Lugo et al. 
1999). We grouped the Holdridge Life Zones into 
moisture groups (based on precipitation and potential 
evapotranspiration): arid (including superarid, perarid 
and arid), semiarid, subhumid, humid and perhumid 
(including perhumid and superhumid), and tempera-
ture groups (based on biotemperature): (sub-)polar, 
boreal, cool temperate, warm temperate, subtropical 
and tropical (Table A1). Note that the original nam-
ing of the Holdridge Life Zones includes the domi-
nant vegetation (Jungkunst et  al. 2021; Post et  al. 
1982). However, in some areas this can be mislead-
ing, and we use names that are directly related to the 
predominant climate. For example, polar deserts have 
neither much evapotranspiration nor precipitation, but 
because of their relatively low ratio of evapotranspira-
tion to precipitation, they fall into the humid category 
despite having ‘desert’ in the name.

Statistical analysis

We used three approaches to test for differences in 
the concentrations of oxalate-extractable metals and 

SOC, and their relationships with each other across 
climate regions and soil depth: i) Kruskal–Wallis test, 
ii) linear mixed-effects models, and iii) random forest 
models. Depth and climate were treated as categorical 
variables with 0–20, 20–50, 50–100, and 100–200 cm 
as levels for depth and either i)  all Holdridge Life 
Zones (n = 34), ii) Holdridge Life Zones grouped by 
moisture (n = 5), or iii) Holdridge Life Zones grouped 
by temperature (n = 6) as levels for climate. For oxa-
late-extractable metals, we either used Alox and Feox 
as individual variables/predictors or summed them 
up to Mox = Alox + ½ Feox. The latter one was espe-
cially necessary for the linear mixed-effects models 
because Alox and Feox are highly correlated in our 
data (ρ = 0.7, p-value < 0.0001) and thus, cannot be 
used together as predictors in the same model.

Kruskal–Wallis tests allowed us to test for dif-
ferences in SOC, Alox, Feox, or Mox across climate 
groups and soil depth, followed by a post-hoc Dunn 
test with Bonferroni corrections for the p-values. 
The Bonferroni correction was made for each indi-
vidual test performed based on the number of unique 
pairs compared. Both tests were performed using 
the ‘kruskal_test’ and ‘dunn_test’ function from 
the ‘rstatix’ R package, respectively (Kassambara 
2023b).

Linear mixed-effects models allowed us to test 
whether the slope between SOC abundance and 
oxalate-extractable metals (Alox, Feox, or Mox) dif-
fered significantly among depth and climate groups. 
To account for interactions, we included two two-way 
interactions between oxalate-extractable metals (Alox, 
Feox, or Mox) by depth groups and by climate groups, 
and one three-way interaction between all three pre-
dictors, respectively. In total, we built seven linear 
mixed-effects models, three focusing on the role of 
moisture groups as a climate predictor, each with 
Alox, Feox, of Mox as a predictor, three focusing on 
the role of temperature groups as a climate predictor, 
each with Alox, Feox or Mox as a predictor, and one 
using all Holdridge Life Zones as a predictor with 
only Mox as a predictor. Note that for the model with 
all Holdridge Life Zones, we excluded any Holdridge 
Life Zone that had less than 10 profiles at any given 
depth interval (n = 9). All linear mixed-effects mode-
ling was performed using the ‘lme’ function from the 
‘nlme’ package (Pinheiro et al. 2023).

We fit an initial model with un-transformed vari-
ables, but because residuals showed clear deviation 
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from normality, we log-transformed our continuous 
response variable (SOC) and predictors (Alox, Feox, 
and Mox) for all subsequent models. Besides fitting a 
linear model, the relationship between SOC and the 
predictors in the original data may not be linear. For 
each linear mixed-effects model, the random effects 
were set to allow a random slope and intercept for 
soil depth (continuous) within each soil profile. Thus, 
the models allowed for the relationship between SOC 
and depth to vary by soil core or pit. No spatial auto-
correlation was observed in the final model (Online 
Appendix Fig. A1 and A2). The variation explained 
by each model was obtained by calculating the mar-
ginal R2 (excluding the variation explained by the 
random effects) using the ‘r.squaredGLMM’ function 
from the ‘MuMIn’ package (Bartoń, 2024). In addi-
tion, we used the Akaike Information Criterion (AIC) 
to test which model performed best within each cli-
mate group to identify whether Alox, Feox, or Mox is 
the most important predictor. Following the linear 
mixed-effects modeling, we performed a post-hoc 
analysis to explore statistically significant interactions 
between any of the oxalate-extractable metals (Alox, 
Feox or Mox), depth and climate groups (all Holdridge 
Life Zones, moisture groups or temperature groups) 
of the estimated marginal means using the ‘emmeans’ 
package (Lenth 2024).

Random forest model was used to further explore 
potential non-linear relationships between SOC and 
Alox and Feox, using the ‘mlr3’ and ‘ranger’ pack-
ages (Lang et al. 2019; Wright & Ziegler 2017). We 
included the untransformed continuous values of 
Alox and Feox as well as depth and all the Holdridge 
Life Zones as categorical values as predictors. For 
the validation of the resulting model, we performed 
a tenfold cross-validation, ensuring that each soil pro-
file was either fully in the training (70%) or the test 
(30%) dataset. Based on the cross-validation, we cal-
culated the R2 and root mean squared error. To fur-
ther explore the model, we calculated the permuta-
tion feature importance and partial dependence plots, 
using the ‘iml’ package (Molnar & Bischl 2018). The 
partial dependence plots show the marginal effects of 
a predictor variable on the predicted outcome of the 
random forest model (Friedman 2001).

All statistical analyses were performed in the R 
environment (v4.4.1, R Core Team 2024). In addi-
tion to R packages mentioned above, the following 
R packages were used: ‘tidyverse’ (Wickham et  al. 

2019), ‘RColorBrewer’ (Neuwirth 2022), ‘ggpubr’ 
(Kassambara 2023a), ‘scales’ (Wickham et al. 2023). 
The R code to reproduce all analysis can be found in 
von Fromm 2025.

Results

The compiled dataset covered the entire range of 
global environmental conditions, ranging from super-
arid to superhumid and from polar to tropical (Fig. 1 
and Online Appendix Table  A1). We calculated the 
global coverage of each climate region based on the 
land area they covered and compared this to the cov-
erage based on the number of unique profiles within 
each climate region used in this study (Fig.  1a). 
When grouped by the dominant moisture condition, 
our dataset profile distribution underrepresented 
arid (only 9% of the fractional distribution of arid 
regions) and semiarid (70% coverage), and overrep-
resented subhumid (112%), humid (133%), and per-
humid (130%) regions. Grouped by temperature, our 
data covered 34% of (sub-)polar, 77% of boreal, 296% 
of cool temperate, 185% of warm temperate, 55% of 
subtropical and 33% of tropical regions, highlighting 
the underrepresentation of very cold and hot environ-
ments in contrast to the strong overrepresentation of 
cool and warm temperate environments. Geographi-
cally, there is an apparent sampling bias toward the 
United States of America and Western Europe. Inter-
estingly, humid and perhumid regions were domi-
nated by colder environments globally and in our 
dataset, while all other moisture groups were domi-
nated by warmer temperatures (Fig. 1b).

Globally, we generally found higher concen-
trations of SOC and oxalate-extractable met-
als (Mox = Alox + ½ Feox) under wetter conditions 
irrespective of soil depth and temperature based 
on Kruskal–Wallis pairwise comparison (df = 33, 
p-value ≤ 0.0001) followed by Dunn test (Fig.  2, 
Online Appendix Figs. A3 and A4). A similar pat-
tern occurred for Alox and Feox individually (Online 
Appendix Figure A5). Note that (sub-)polar sub-
humid, boreal semiarid, warm temperate perarid, 
warm temperate superhumid, subtropical arid, and 
tropical perhumid had less than ten profiles, and their 
data distribution should be interpreted with caution 
(Table A1). Overall, Mox tended to vary more among 
Holdridge Life Zones than SOC, as indicated by 
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the lower number of significant differences between 
Holdridge Life Zones for SOC (n = 326; based on 
pairwise comparison) than for Mox (n = 369; Fig.  2, 
Online Appendix Figs. A3 and A4).

Differences in SOC and Mox were greater across 
moisture groups than across temperature groups 
(Online Appendix Fig. A6–9). All moisture groups 
were significantly different in Mox concentrations, 
except for arid and semiarid (Kruskal–Wallis test: 

df = 4, p-value ≤ 0.0001 followed by Dunn test; 
Online Appendix  Fig.  A6). Within each mois-
ture group, Mox concentrations decreased with soil 
depth, with the smallest differences in arid regions. 
Concentrations in SOC were only significantly dif-
ferent across all moisture groups at the surface, 
while at 100–200 cm, only subhumid and perhumid 
were significantly different from the other mois-
ture groups. Within each moisture group, SOC 
concentrations significantly decreased with soil 

Fig. 1   (a) Sampling locations (lighter color within the same 
temperature regime refers to drier conditions) and (b) Rela-
tive distributions of all Holdridge Life Zones based on their 

global coverage (lighter colors of bars) and based on number 
of unique profiles used in this synthesis (darker colors of bars). 
Note that the y axis in panel b is on a pseudo-logarithmic scale
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depth, except for arid regions between 20–50 and 
50–100 cm (Online Appendix Fig. A7).

Importance of oxalate‑extractable metals across 
moisture groups

We found that Mox was positively correlated with 
SOC across moisture groups and depth layers 
based on the linear mixed-effects models (Fig.  3, 
Online Appendix Fig. A10 and Online Appen-
dix Table  A2). The differences between the linear 
mixed-effects models with Mox, Alox, or Feox as a 
predictor were marginal, yet the model with Mox 
as a predictor performed the best, followed by the 
model with Alox as a predictor according to their 
AIC and F-values (Online Appendix Figs.  A11 
and A12, Tables  A3-4). The Mox model explained 
about 49% of the variation in SOC with a root 
mean squared error (RMSE) of 0.42  wt-%. Based 
on F-values within the model, Mox was the most 

important predictor, followed by depth, moisture, 
the interaction between moisture and depth, the 
interaction between Mox and depth, the interaction 
between Mox and moisture, and the three-way inter-
action between Mox, moisture and depth (Online 
Appendix Table A2). Although the three-way inter-
action was the least important predictor, we found 
significant differences in the slopes between Mox 
and SOC across moisture groups and depth (Fig. 3 
and Table 1).

Differences in slopes between Mox and SOC 
across moisture groups increased with soil depth 
(Fig. 3 and Table 1). In the surface layer (0–20 cm), 
semiarid and subhumid regions had the steep-
est slopes (0.47 and 0.43, respectively), but the 
second lowest median concentrations of Mox 
(1.46 and 1.85  g/kg, respectively) and SOC (1.17 
and 1.51  wt-%, respectively) after arid regions 
(Table 1). Perhumid regions had the steepest slope 
for all other depth layers, with the steepest slope 

Fig. 2   Concentration of (a) oxalate-extractable metals (Mox = Alox + ½ Feox) and (b) soil organic carbon (SOC) for each Holdridge 
Life Zone based on individual measurements across all sampling depths
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Fig. 3   Relative predicted soil organic carbon (SOC) content 
based on estimated marginal means for the interaction term 
Mox (= Alox + ½ Feox) * moisture * depth. Shaded areas indi-

cate 95th confidence intervals. Note that all variables were log-
transformed prior analysis

Table 1   Linear mixed-effects model summary statistics for the 
moisture model.  Number of samples, linear predicted slopes, 
lower and upper confidence intervals (CI; 95th) based on the 
interaction term Mox (= Alox + ½ Feox) * moisture * depth, and 

range of Mox (g/kg) and SOC (wt-%) with the median value in 
parentheses for each moisture group and depth interval, respec-
tively

Depth n Slope lower CI upper CI Range of Mox Range of SOC

Arid 0–20 cm 226 0.33 0.22 0.45 0.16–25.41 (1.18) 0.05–6.86 (0.40)
20–50 cm 175 0.17 0.04 0.30 0.16–28.41 (1.15) 0.01–2.65 (0.33)
50–100 cm 103 0.01 -0.15 0.17 0.16–18.21 (0.86) 0.04–4.18 (0.31)

100–200 cm 75 0.12 0.10 0.33 0.16–19.9 (0.80) 0.01–0.97 (0.21)
Semiarid 0–20 cm 824 0.47 0.42 0.53 0.09–38.26 (1.46) 0.01–19.9 (1.17)

20–50 cm 533 0.40 0.35 0.46 0.01–35.8 (1.45) 0.01–14.26 (0.63)
50–100 cm 292 0.17 0.09 0.25 0.01–35.71 (1.16) 0.01–13.38 (0.41)

100–200 cm 192 0.10 -0.02 0.23 0.06–22.45 (0.90) 0.01–1.85 (0.28)
Subhumid 0–20 cm 2794 0.43 0.40 0.46 0.01–77.07 (1.85) 0.01–19.16 (1.51)

20–50 cm 1788 0.43 0.40 0.46 0.01–87.89 (2.16) 0.01–18.00 (0.83)
50–100 cm 1528 0.41 0.38 0.45 0.01–96.08 (1.71) 0.01–17.40 (0.53)

100–200 cm 1215 0.38 0.32 0.43 0.01–99.89 (1.41) 0.01–16.30 (0.33)
Humid 0–20 cm 6920 0.39 0.37 0.40 0.01–92.3 (3.05) 0.01–19.98 (2.10)

20–50 cm 5093 0.51 0.49 0.53 0.01–115.21 (3.75) 0.01–19.78 (0.85)
50–100 cm 5022 0.51 0.48 0.53 0.01–128.91 (2.76) 0.01–20.00 (0.37)

100–200 cm 3232 0.43 0.40 0.47 0.01–160.35 (2.11) 0.01–19.20 (0.26)
Perhumid 0–20 cm 2209 0.42 0.40 0.45 0.13–133.51 (7.01) 0.04–19.97 (3.35)

20–50 cm 2034 0.60 0.57 0.63 0.10–141.91 (8.02) 0.03–19.18 (1.64)
50–100 cm 1777 0.62 0.58 0.65 0.16–127.55 (5.86) 0.01–18.64 (0.58)

100–200 cm 1057 0.51 0.45 0.56 0.16–126.16 (4.52) 0.01–9.18 (0.31)
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(0.62) between 50 and 100  cm, which also corre-
sponded to the highest median Mox (5.86 g/kg) and 
SOC concentration (0.58 wt-%) in this depth layer. 
Below 50 cm, the slope of arid regions was not sig-
nificantly different from 0, and the same was true 
for semiarid regions at 100 to 200 cm.

The random forest model and its partial depend-
ence plots revealed that for the range of Alox and 
Feox where we had most of the data (0 to 100  g/
kg), the relationship between the oxalate-extracta-
ble metals (Alox and Feox) and predicted SOC con-
tent was nearly linear (Online Appendix Fig. A13). 
The performance of the random forest model 
(R2 = 0.36 ± 0.05 and RMSE = 1.97 ± 0.05  wt-%) 
was comparable to that of the linear mixed-effects 
models. Variable importance also agreed with the 
linear mixed-effects models, with Alox being most 
important, followed by depth, Feox and Holdridge 
Life Zones (Online Appendix  Fig. A14). How-
ever, direct comparison of model performance and 
variable importance should be done with caution 
because the variables were not transformed for the 
random forest model as they were for the linear 
mixed-effects models.

Importance of oxalate‑extractable metals across 
temperature groups

We found a positive relationship between SOC and 
oxalate-extractable metals across all temperature 
groups and depth layers (Fig. 4 and Online Appen-
dix Fig. A15). Differences between the models with 
Mox, Alox or Feox as a predictor were again mar-
ginal, and the model with Mox as a predictor per-
formed best, followed by the model with Alox as 
a predictor (Online Appendix Figs.  A16 and A17, 
Tables  A5-A7). Like the moisture model, the tem-
perature model with Mox as a predictor explained 
49% of the variance in SOC and had an RMSE of 
0.43  wt-%. Based on F-values, Mox was the most 
important predictor, followed by depth, tempera-
ture, the interaction between Mox and depth, the 
interaction between temperature and depth, the 
three-way interaction between Mox, temperature and 
depth, and the interaction between Mox and temper-
ature (Online Appendix Table A5).

We found less consistent patterns across tem-
perature groups and soil depth based on the slopes 
between SOC and Mox (Fig.  4 and Table  2). Inter-
estingly, although model performance was similar 
between the moisture and temperature groups, the 

Fig. 4   Relative predicted soil organic carbon (SOC) content 
based on estimated marginal means for the interaction term 
Mox (= Alox + ½ Feox) * temperature * depth. Shaded areas 

indicate 95th confidence intervals. Note that all variables were 
log-transformed prior analysis
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relative number of significant differences between 
slopes was smaller for the temperature model 
(43%) than for to the moisture model (64%; Figs. 3 
and 4 and Tables  1 and 2). In addition, the range 
of observed slopes was smaller for the temperature 
model (0.31–0.65) compared to the moisture model 
(0.01–0.62; Tables 1 and 2). Among the slopes that 
differed significantly from each other in the tem-
perature model, (sub-)polar regions always had 
the steepest slope, with the highest value at 50 to 
100  cm (0.65), except in the topsoil where warm 
temperate and tropical regions had the steepest 
slope (0.49 and 0.48, respectively).

Importance of oxalate‑extractable metals across all 
climate regions

The linear mixed-effects model that included all indi-
vidual Holdridge Life Zones explained the most vari-
ance in SOC (R2 = 0.55, RMSE = 0.42 wt %; Online 
Appendix  Table  A8). In comparison, the linear 
mixed-effects model that did not include any climate 
predictor (i.e., one global slope) explained 46% in the 
variance of SOC (RMSE = 0.42 wt %; Online Appen-
dix Table A9). We compared the slopes between Mox 
and SOC across individual Holdridge Life Zones 
within each depth layer (Fig. 5). The more the slope 
deviates from the estimated marginal means from the 
model without climate variables, the more important 

Table 2   Linear mixed-effects model summary statistics for the 
temperature model.  Number of samples  (n), linear predicted 
slopes, lower and upper confidence intervals (CI; 95th) based 
on the interaction term Mox (= Alox + ½ Feox) * temperature 

* depth, and range of Mox (g/kg) and SOC (wt-%) with the 
median value in brackets for each temperature group and depth 
interval, respectively

Depth n Slope lower CI upper CI Range of Mox Range of SOC

(Sub-)polar 0–20 cm 602 0.37 0.31 0.44 0.28–111.16 (3.81) 0.09–19.97 (3.43)
20–50 cm 615 0.58 0.52 0.64 0.36–97.06 (4.66) 0.03–19.78 (1.98)
50–100 cm 459 0.65 0.57 0.72 0.16–110.36 (3.95) 0.01–18.64 (1.04)

100–200 cm 97 0.51 0.35 0.66 0.21–58.9 (2.50) 0.03–17.06 (0.46)
Boreal 0–20 cm 1409 0.43 0.40 0.47 0.16–64.1 (4.30) 0.04–18.63 (2.58)

20–50 cm 1220 0.57 0.54 0.61 0.16–72.05 (5.38) 0.03–18.85 (1.17)
50–100 cm 1106 0.57 0.53 0.61 0.15–100.21 (3.30) 0.01–18.64 (0.47)

100–200 cm 545 0.48 0.41 0.55 0.16–62.25 (2.21) 0.01–9.11 (0.26)
Cool temperate 0–20 cm 6360 0.47 0.45 0.48 0.12–77.2 (2.86) 0.01–19.93 (1.98)

20–50 cm 4250 0.51 0.49 0.53 0.09–93.65 (3.91) 0.01–18.28 (0.95)
50–100 cm 4347 0.41 0.39 0.43 0.01–102.76 (2.76) 0.01–12.03 (0.42)

100–200 cm 2869 0.31 0.28 0.35 0.15–84.55 (2.11) 0.01–10.68 (0.28)
Warm temperate 0–20 cm 2134 0.49 0.46 0.52 0.01–133.51 (2.37) 0.04–19.98 (1.64)

20–50 cm 1491 0.52 0.49 0.55 0.06–141.91 (2.70) 0.01–19.38 (0.62)
50–100 cm 1536 0.49 0.46 0.52 0.08–127.55 (2.51) 0.01–20.00 (0.32)

100–200 cm 1154 0.45 0.40 0.50 0.06–126.16 (2.06) 0.01–19.20 (0.21)
Subtropical 0–20 cm 1800 0.38 0.35 0.41 0.01–92.30 (2.76) 0.01–19.52 (1.86)

20–50 cm 1545 0.47 0.45 0.50 0.01–118.26 (2.83) 0.01–14.86 (0.94)
50–100 cm 977 0.49 0.45 0.52 0.01–128.91 (2.20) 0.01–14.11 (0.46)

100–200 cm 881 0.49 0.43 0.55 0.01–160.35 (1.75) 0.01–13.98 (0.32)
Tropical 0–20 cm 668 0.48 0.43 0.53 0.21–81.06 (3.30) 0.12–19.90 (1.86)

20–50 cm 502 0.41 0.36 0.46 0.01–73.4 (2.92) 0.08–18.00 (0.81)
50–100 cm 297 0.34 0.26 0.41 0.01–71.01 (3.61) 0.03–13.38 (0.63)

100–200 cm 225 0.35 0.23 0.47 0.26–72.5 (3.16) 0.01–7.56 (0.38)
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it is to include climate-specific information in that 
region.

On average, the slopes at the surface (0–20  cm) 
and at the maximum depth (100–200 cm) deviated the 
least from the estimated marginal mean without any 
climate variable (Fig. 5). This observation agrees well 
with the model results by moisture and temperature. 
Below 20 cm, the Holdridge Life Zones that differed 
most from the marginal mean without any climate 
variable were typically very dry or very wet from 
boreal, cold, or warm temperate regions, with wetter 
regions usually having a larger estimated marginal 
mean and drier regions having a smaller estimated 
marginal mean. For (sub-)polar, subtropical and 
tropical regions, the distance to the estimated mar-
ginal mean without any climate variable was usually 
smaller and less distinguishable by moisture; except 
for polar humid which showed the largest slope (0.82; 
Fig. 5).

Discussion

What is the relationship between SOC and Alox 
and Feox at the global scale?

Our results highlight that Mox, Alox and Feox are 
promising proxies for organo-mineral interactions 
(i.e., sorption capacity) at the global scale, albeit 
with notable differences between environmental 
conditions. This agrees well with previous large-
scale studies (e.g., Hall & Thompson 2022; Que-
sada et al. 2020; Rasmussen et al. 2018; von Fromm 
et al. 2021; Yu et al. 2021). Similar to these studies, 
we found that Alox is a better predictor than Feox. 
Reasons for this may include differences in their 
chemical characteristics, such as Al-bearing min-
erals typically dissolving at higher pH values than 
Fe phases, higher total Al abundance in the par-
ent material, and biogeochemical reduction of FeIII 
phases to FeII in anoxic microsites of unsaturated 

Fig. 5   Linear predicted slopes based on estimated marginal 
means for the interaction term Mox (= Alox + ½ Feox) * Hold-
ridge Life Zone * depth. Error bars indicate 95th confidence 
intervals. Note that all variables were log-transformed prior 
analysis. Solid horizontal line refers to the estimated marginal 

means without the Holdridge Life Zones as a predictor and the 
dashed horizontal lines refer to the upper and lower 95th con-
fidence interval, respectively. Solid vertical lines separate the 
Holdridge Life Zones by temperature. Within each temperature 
group, zones are ordered from driest (light) to wettest (dark)
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soils—a more detailed discussion of these differ-
ences is provided in Hall & Thompson (2022). Fur-
thermore, we also found a curvilinear relationship 
between SOC and Mox meaning that the response 
of SOC to Mox becomes weaker at higher levels of 
Mox—which is also reflected in the partial depend-
ence plots of our random forest model (Online 
Appendix Fig. A13; Hall and Thompson 2022; von 
Fromm et al. 2021; Yu et al. 2021).

Are the Holdridge Life Zones a good climate 
disaggregation approach at the global scale to 
better understand the role of organo-mineral 
interactions?

Grouping soil data by Holdridge Life Zones 
improved overall model accuracy at the global scale. 
This highlights that the role—and mechanisms—of 
oxalate-extractable metals in governing SOC abun-
dance differ between climatic conditions. Our data 
suggest that the Holdridge Life Zones are an effec-
tive hierarchical grouping variable at the global 
scale, reflecting not only geographic patterns in SOC 
abundance (Jungkunst et  al. 2021), but also in soil 
mineralogy and geochemistry. This has been shown 
previously at the continental scale and with differ-
ent grouping variables (e.g., Rasmussen et  al. 2018; 
von Fromm et al. 2021, 2024; Yu et al. 2021). How-
ever, we recognize that other soil-forming factors, 
particularly time (i.e., soil age), may also modu-
late the relationship between SOC and Mox within a 
given climatic region. For example, cool temperate 
zones may be dominated by either "younger" soils 
(< 12,000  years) or "older" soils unaffected by gla-
ciers or loess deposits (see Online Appendix  and 
Fig. A18). Indeed, when we included soil age in the 
model for cool temperate regions (data not shown), 
it explained the same variation in SOC as the model 
that included only moisture as a grouping variable, 
but the overall importance of moisture as a predic-
tor decreased. This suggests that the model includ-
ing soil age provides different information, meaning 
that refining models for specific climatic regions by 
further disaggregation could be valuable. However, 
which soil formation factor to use will be different 
for different climatic regions. Thus, we argue that 
the Holdridge Life Zones are the first hierarchical 
grouping variable to be considered at the global scale, 
and for many climatic regions more data are needed 
to further disaggregate them within each climatic 
region.

Most of the slopes between SOC abundance and 
oxalate-extractable metals and their intercepts dif-
fered significantly among climatic regions and with 
soil depth; the explained variance of SOC increased 
by about 10% when Holdridge Life Zones were 
included. The intercept likely reflects the ratio of 
mineral-associated carbon (MAOC) to particulate-
organic carbon (POC). In other words, if MAOC is 
close to zero when there are no or only small amounts 
of SRO minerals, then the intercept should be equal 
to POC (Kirschbaum et  al. 2020). In our case, dry 
regions usually had the highest intercept (except for 
0–20 cm), which is consistent with other studies that 
found higher POC under dry conditions (Cotrufo & 
Lavallee 2022; Haddix et al. 2020). The slopes them-
selves can be related to the SOC load on the SRO 
minerals (i.e., g  C  /  kg  mineral; or the achievable/
effective capacity based on current environmental 
conditions). Again, we usually found the smallest 
slopes under dry conditions, which is consistent with 
the idea that at higher pH values, less SOC can be 
adsorbed on minerals, and that under drier conditions, 
less dissolved organic matter is produced, which is 
usually associated with higher MAOC (Cotrufo and 
Lavalle 2022). However, it is also important to note 
that under drier conditions there can be other impor-
tant mechanisms, such as cation (Ca) bridging that 
can result in higher SOC abundance (Rasmussen 
et  al. 2018; Rowley et  al. 2018; von Fromm et  al. 
2021). All of this highlights the importance of cap-
turing regional-specific differences at the global scale 
that are related to climate, soil mineralogy and devel-
opment, independent of overall model performance. It 
is particularly important to correctly capture regional-
specific relationships if we are interested in improving 
model predictions of soil change at the global scale. 
Our data showed that rather than making a universal 
global prediction with a set of defined relationships, it 
may be more useful from a mechanistic point of view 
to identify regions controlled by similar factors and 
make area-specific predictions. This is something that 
should be relatively easy to implement in global soil 
C models, as it does not necessarily require changing 
the model structure, but rather defining under which 
climatic conditions which factors are most important 
in predicting SOC abundance.

Interestingly, moisture was a more important driver 
of the observed patterns between SOC and oxalate-
extractable metals than temperature. This underscores 
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the importance of moisture for soil formation in gen-
eral and its fundamental role in mediating organo-
mineral interactions that promote SOC protection. 
However, it also highlights the challenge of separat-
ing organo-metal complexation from the influence of 
SRO minerals on SOC abundance, as SOC content 
is generally higher in humid regions due to higher C 
inputs. Nevertheless, our data also showed that SOC 
abundance and oxalate-extractable metals do not 
always vary in the same way across Holdridge Life 
Zones and soil depth. Thus, differences in soil depth 
across distinct climatic regions may help to better dis-
entangle whether oxalate-extractable metals drive, 
respond to, or covary with SOC abundance.

Are there region-specific differences in the rela‑
tionship between SOC and Alox and Feox with soil 
depth?

The relationship (i.e., slope) between SOC 
and oxalate-extractable metals varied with soil 
depth across environmental conditions, highlight-
ing the importance of vertical soil processes. For a 
given environmental condition, the steepest slope 
(SOC ~ oxalate-extractable metals) was usually found 
between 20 and 100 cm, except for arid, semiarid, and 
tropical regions, which had the steepest slopes in the 
surface layers (0–50  cm). These results suggest soil 
depth is an important modulator of the soil processes 
that drive the relationship between SOC and oxalate-
extractable metals. For example, most surface soils 
are strongly influenced by C inputs, which also likely 
results in higher concentrations of oxalate-extractable 
metals due to organic acid-mediated weathering (Col-
lignon et  al. 2012; Yu et  al. 2017). Whereas, below 
the dominant rooting zone (~ 20–30 cm), C inputs are 
likely lower and thus, it is more likely that the posi-
tive slopes we observe are driven by oxalate-extract-
able metals that favor the sorption of SOC to short-
range ordered minerals. Interestingly, we observed 
a smaller slope below 100  cm under most environ-
mental conditions compared to 20 to 100 cm. Due to 
the overall low SOC abundance at this depth, little 
to no relationship between oxalate-extractable met-
als and SOC might be expected if available binding 
sites on mineral surfaces are not occupied (Schrumpf 
et  al. 2013). In addition, it has been shown that the 
proportion of crystalline mineral phases increases 
with depth, which would result in less SOC being 
adsorbed by minerals (Chen et  al. 2019). Excep-
tions to the observed depth pattern in our dataset are 

usually found in warmer regions (warm temperate, 
subtropical, and tropical), where we typically found 
steep slopes at 100 to 200  cm that were not signifi-
cantly different from the depth layers above. This may 
be related to deeper weathering of these soil profiles 
and deeper rooting depth (Jackson et al. 1996; Yang 
et al. 2016).

It is evident from our findings that the relation-
ship between SOC abundance and oxalate-extract-
able metals for certain environmental conditions 
deviates more from the global mean than for oth-
ers. This has implications for understanding where 
pedo-climatic interactions are most important, and 
underscores the need to incorporate these inter-
actions into models to improve predictions of soil 
change. For example, both dry and wet conditions 
in the boreal, cool and warm temperate regions 
tend to deviate most from the global mean below 
the surface layer, while (sub-)polar, subtropical, 
and tropical regions tend to be closer to the global 
mean regardless of moisture. Although the latter 
three show strong relationships between SOC and 
oxalate-extractable metals, the fact that they are 
either at the beginning of the weathering process 
(subpolar) or at the end of the weathering process 
(subtropical and tropical) suggests that soil weath-
ering and the time for soil development influence 
organo-mineral interactions in a non-linear fashion 
(Torn et al. 1997). This also highlights the fact that 
different processes can lead to a correlation between 
SOC abundance and oxalate-extractable metals that 
differ across pedo-climatic conditions. For exam-
ple, although weathering time is relatively short in 
(sub-)polar regions, we found a comparable impor-
tance of oxalate-extractable metals regarding SOC 
abundance to other regions. This may be related 
to the importance of these metals in arctic regions 
in forming mineral-organic complexes to protect 
SOC from decomposition (Monhonval et  al. 2023; 
Thomas et  al. 2023). However, it is also important 
to note that we do not have sufficient representa-
tion in our dataset for some of these Holdridge Life 
Zones to further disaggregate them based on other 
important soil-forming factors that would also allow 
us to better understand within-group variation. In 
contrast, in cool and warm temperate regions, min-
eral weathering has resulted in distinct soil char-
acteristics along moisture gradients, leading to 
distinct relationships between SOC abundance and 
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oxalate-extractable metals. Therefore, it is espe-
cially important in these regions to correctly capture 
these internal dynamics. In the future, the identified 
climate regions can be further disaggregated based 
on other important soil-forming factors to further 
improve the predictions of soil-climate feedbacks.

Conclusions and outlook

Our results underline the importance of oxalate-
extractable metals as predictors for organo-mineral 
interactions at the global scale, although there are sig-
nificant differences between environmental conditions 
and soil depth. Oxalate-extractable metals are usually 
most important between 20 and 100  cm under wet 
conditions. Temperature alone tends to be a smaller 
driver of organo-mineral interactions than moisture. 
At the surface it is likely that the positive relationship 
between SOC and oxalate-extractable metals is due to 
organic acid-mediated weathering. All these findings, 
and thus the underlying mechanisms are important to 
consider in global soil C models. Our synthesis shows 
that there is enough data worldwide available to try 
to implement the observed patterns into biogeochemi-
cal soil models. For example, a reasonable first step 
might be to include an empirical relationship between 
oxalate-extractable metal content and the decomposi-
tion rate of slower-cycling carbon pools, and to make 
this empirical constant vary predictably with climatic 
regions (i.e., based on the Holdridge Life Zones). This 
hierarchical framework, starting with a climatic dis-
aggregation, followed by further disaggregation based 
on other soil-forming factors within specific climatic 
groups, will help improve soil-climate feedbacks at 
the global scale. However, our data lacked the tem-
poral component of soils to changes and did not allow 
us to test for non-static relationships between oxalate-
extractable metals and SOC abundance–this should 
be the focus of future studies so that model predic-
tions can be tested against time series.

In addition to modeling implications, our synthe-
sized dataset also highlights geographic areas where 
we still lack data. These are usually arid regions, but 
the importance of oxalate-extractable metals in these 
regions is also limited. Thus, future sampling efforts 
should focus on boreal regions where we usually 
observed the largest discrepancy between the global 
coverage and our data, as well as low data coverage. 

Furthermore, subtropical and tropical regions should 
also be the focus of future sampling efforts due to 
their underrepresentation. Lastly, we showed that 
the grouping based on Holdridge Life Zones works 
well for oxalate-extractable metals and SOC abun-
dance, future studies may further test other important 
predictors of SOC content such as soil age or parent 
material. It is important to keep in mind that climate 
is much easier to quantify at the global scale than 
other factors such as parent material, soil age, organ-
isms, and relief. This may statistically assign a higher 
importance to climate than to other soil-forming fac-
tors. Future research should seek to improve global 
products that better represent soil mineralogy and 
age.
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