Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Forschungspapier

Maximizing Nash Social Welfare in 2-Value Instances: A Simpler Proof for the Half-Integer Case

MPG-Autoren
/persons/resource/persons45021

Mehlhorn,  Kurt       
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

arXiv:2411.06924.pdf
(Preprint), 9KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Mehlhorn, K. (2024). Maximizing Nash Social Welfare in 2-Value Instances: A Simpler Proof for the Half-Integer Case. Retrieved from https://arxiv.org/abs/2411.06924.


Zitierlink: https://hdl.handle.net/21.11116/0000-0010-9C60-2
Zusammenfassung
A set of $m$ indivisible goods is to be allocated to a set of $n$ agents.
Each agent $i$ has an additive valuation function $v_i$ over goods. The value
of a good $g$ for agent $i$ is either $1$ or $s$, where $s$ is a fixed rational
number greater than one, and the value of a bundle of goods is the sum of the
values of the goods in the bundle. An \emph{allocation} $X$ is a partition of
the goods into bundles $X_1$, \ldots, $X_n$, one for each agent. The \emph{Nash
Social Welfare} ($\NSW$) of an allocation $X$ is defined as \[ \NSW(X) = \left(
\prod_i v_i(X_i) \right)^{\sfrac{1}{n}}.\] The \emph{$\NSW$-allocation}
maximizes the Nash Social Welfare. In~\cite{NSW-twovalues-halfinteger} it was
shown that the $\NSW$-allocation can be computed in polynomial time, if $s$ is
an integer or a half-integer, and that the problem is NP-complete otherwise.
The proof for the half-integer case is quite involved. In this note we give a
simpler and shorter proof