Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Forschungspapier

MMS Approximations Under Additive Leveled Valuations

MPG-Autoren
/persons/resource/persons45021

Mehlhorn,  Kurt       
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

arXiv:2410.02274.pdf
(Preprint), 9KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Afshinmehr, M., Kazemi, M., & Mehlhorn, K. (2024). MMS Approximations Under Additive Leveled Valuations. Retrieved from https://arxiv.org/abs/2410.02274.


Zitierlink: https://hdl.handle.net/21.11116/0000-0010-B6EC-7
Zusammenfassung
We study the problem of fairly allocating indivisible goods to a set of
agents with additive leveled valuations. A valuation function is called leveled
if and only if bundles of larger size have larger value than bundles of smaller
size. The economics literature has well studied such valuations.
We use the maximin-share (MMS) and EFX as standard notions of fairness. We
show that an algorithm introduced by Christodoulou et al. ([11]) constructs an
allocation that is EFX and $\frac{\lfloor \frac{m}{n} \rfloor}{\lfloor
\frac{m}{n} \rfloor + 1}\text{-MMS}$. In the paper, it was claimed that the
allocation is EFX and $\frac{2}{3}\text{-MMS}$. However, the proof of the
MMS-bound is incorrect. We give a counter-example to their proof and then prove
a stronger approximation of MMS.