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Abstract 25 

Groundwater health is increasingly threatened by climate change, which alters precipitation patterns, 26 

leading to groundwater recharge shifts. These shifts impact subsurface microbial communities, crucial 27 

for maintaining ecosystem functions. In this decade-long study of carbonate aquifers, we analyzed 815 28 

bacterial 16S rRNA gene datasets, 226 dissolved organic matter (DOM) profiles, 387 metabolomic 29 

datasets, and 174 seepage microbiome sequences. Our findings reveal distinct short- and long-term 30 

temporal patterns of groundwater microbiomes driven by environmental fluctuations. Microbiomes of 31 

hydrologically connected aquifers exhibit lower temporal stability due to stochastic processes and 32 

greater susceptibility to surface disturbances, yet they demonstrate remarkable resilience. Conversely, 33 

isolated aquifer microbiomes show resistance to short-term changes, governed by deterministic 34 

processes, but exhibit reduced stability under prolonged stress. Variability in seepage-associated 35 

microorganisms, DOM, and metabolic diversity further drive microbiome dynamics. These findings 36 

highlight the dual vulnerability of groundwater systems to acute and chronic pressures, emphasizing 37 

the critical need for sustainable management strategies to mitigate the impacts of hydroclimatic 38 

extremes.   39 
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Introduction  40 

Groundwater, the largest global reservoir of accessible freshwater, is increasingly jeopardized by the 41 

dual pressures of anthropogenic activities and climate change, with widespread implications for water 42 

availability, quality, and ecosystem health1,2,3. Future climate scenarios predict profound shifts in 43 

groundwater recharge, driven predominantly by changing precipitation patterns and the intensification 44 

of hydroclimatic extremes2,3. These shifts threaten groundwater sustainability, particularly in vulnerable 45 

carbonate aquifers where water storage and flow dynamics are intricately linked to lithology and 46 

hydrological connectivity4,5. Understanding the resilience of groundwater ecosystems and their ability 47 

to maintain ecological functions under such pressures is critical for sustainable management strategies3,6. 48 

Microbial communities are central to groundwater ecosystem health, playing pivotal roles in 49 

biogeochemical cycling, contaminant degradation, and ecosystem resilience7,8,9. Traditionally 50 

considered static due to the relatively constant conditions of subsurface environments, this view has 51 

persisted largely due to the lack of long-term observational studies. More recent studies challenge this 52 

notion by demonstrating that groundwater microbiomes exhibit a dynamic nature, driven by both short-53 

term recharge events10,11,12 and longer-term environmental changes13. For instance, microbial 54 

immigration during recharge can trigger compositional shifts12,13, while prolonged droughts may alter 55 

microbial activity through changes in water chemistry14. Additionally, rain infiltration can mobilize soil 56 

microorganisms, transporting them to the groundwater via seepage15,16,17,18. These findings underscore 57 

the importance of hydrological connectivity as a key factor influencing microbial dispersal, assembly, 58 

and ecosystem resilience15,19,20,21. 59 

Hydrological connectivity, shaped by aquifer permeability, flow dynamics, and recharge 60 

patterns, governs the flux of surface-derived inputs into groundwater and mediates microbial 61 

dispersal5,15,19,22. Hydrologically connected aquifers, often characterized by karstification and higher 62 

permeability, are particularly susceptible to surface-derived disturbances such as nutrient influxes, 63 

organic contaminants, and pathogens4,22,23. In contrast, hydrologically isolated systems may exhibit 64 

greater stability11 but face significant stress under conditions of prolonged environmental change, such 65 
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as reduced recharge during droughts14,. These contrasting dynamics necessitate a framework for 66 

quantifying temporal stability (consistency), resistance (insensitivity to disturbance), and resilience 67 

(ability to recovery) of groundwater microbiomes across gradients of hydrological connectivity9,21. 68 

While previous studies have focused on microbiome compositional stability across ecosystems, 69 

functional stability is also a key indicator of ecosystem health13,24,25,26. To this end, we applied 70 

metabolomics techniques to probe system activity in our long-term study27. Untargeted liquid 71 

chromatography–high-resolution mass spectrometry (LC-HRMS) can profile environmental meta-72 

metabolomes, comprising metabolites released by microorganisms and anthropogenic activity. This 73 

approach is complemented by direct infusion–high-resolution mass spectrometry (DI-HRMS) resolving 74 

the full complexity of DOM without chromatographic bias28,29,30,31. This integrated information from 75 

both approaches together with microbiome function analysis using PICRUSt2 resolves quantitatively 76 

the impact of the organic chemical landscape on microbiome diversity32,33. This allowed us to explore 77 

groundwater microbiome stability, variability, and overall ecosystem health.  78 

Our work expands directly on discussions highlighting not only the impacts of climate change 79 

on groundwater recharge2, but also on groundwater quality14. Building on these foundations, we 80 

investigate the critical links between hydrological connectivity and groundwater microbiome stability 81 

in carbonate aquifers. Here, we conducted a groundwater study along a hillslope well transect in the 82 

Hainich Critical Zone Exploratory (CZE)34,35, a geological setting characterized by alternating 83 

limestone and mudstone strata, resulting in varying hydrological connectivity within the carbonate-rock 84 

aquifers. Two footslope wells, located in thinner and less connected fractured mudstone-dominated 85 

aquifers, are more hydrologically isolated and contain old carbon sources (e.g., > 4,500 years), while 86 

other wells in limestone-dominated aquifers having wider fractures exhibit greater hydrological 87 

connectivity due to minor karstification and higher permeabilities5,36,37.  Previous studies have indicated 88 

the importance of connectivity through seepage transport of soil microorganisms into 89 

groundwater15,16,17,18. Consequently, the Hainich CZE well network enables comparisons of microbiome 90 

variability and stability across aquifers of different levels of hydrological connectivity. 91 
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Capitalizing on a decade-long groundwater survey comprising 815 bacterial 16S rRNA gene-92 

sequence datasets and accompanying hydrochemical analyses, 226 DOM analyses, and 387 93 

metabolomic analyses combined with 174 seepage microbiome sequencing datasets, this study provides 94 

the most comprehensive assessment of groundwater microbiome variability and stability, and their 95 

potential drivers to date. To better assess the responses of precious groundwater resources to 96 

disturbances caused by increasing hydroclimatic extremes, this investigation addresses four key 97 

unknowns: (i) the extent to which microbiomes of hydrologically connected vs. more isolated 98 

groundwater exhibit similar temporal dynamics and stability, (ii) the means by which assembly 99 

mechanisms explain microbiome variability, (iii) the extent to which seepage-associated 100 

microorganisms contribute to microbiome variability, and (iv) the means by which alterations in 101 

groundwater metabolome/DOM explain microbiome variability. By integrating microbial, 102 

hydrochemical, and metabolomic datasets, this study reveals critical insights into the responses of 103 

groundwater ecosystems to environmental disturbances and hydroclimatic extremes. These findings 104 

have broad implications for predicting groundwater resilience and informing sustainable management 105 

strategies under future climate scenarios. 106 

Results  107 

Hydrological seasonality and long-term variability of groundwater microbiomes 108 

Our 10-year time series revealed distinct and persistent regular patterns of variation with alternating 109 

greater and lesser similarity over a 12-month period. While these variations are on a 12-month cycle, 110 

we use the descriptive term ‘sinusoidal’ because groundwater systems can integrate a number of 111 

potentially seasonally varying signals and lag times. These sinusoidal patterns in the similarity of 112 

shallow groundwater (< 100 m depth) microbial communities over time across all wells, despite 113 

differences in groundwater hydrochemical parameters and microbiome composition among wells (Fig. 114 

1, Supplementary Fig. 1a, b). These patterns demonstrated consistent periodicity, with distinct peaks in 115 

similarities approximately every 12 months and minima roughly 6 months after each peak. This 116 

behavior was not confined to a single bacterial phylum, as approximately half of the bacterial phyla 117 
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detected displayed sinusoidal patterns (Supplementary Tab. 1). Similar sinusoidal patterns were 118 

observed for hydrochemical properties of the groundwater (Supplementary Fig. 1c).  119 

Sinusoidal amplitudes of microbiome community similarities varied among wells. Distance-120 

based redundancy analysis (dbRDA) indicated that hydrological seasons (i.e., early summer, later 121 

summer, early winter, and later winter) accounted for one to six percent of the microbiome variation (P 122 

< 0.05; Supplementary Fig. 2), except in well H53. In contrast, the phylogenetic structure of 123 

groundwater microbiomes exhibited weaker or no sinusoidal patterns (Supplementary Fig. 3). Only one 124 

to three percent of the variation in phylogenetic structure at four wells (H32, H41, H43, and H52) was 125 

influenced by hydrological seasons (dbRDA, P < 0.05). These findings suggest that various responses 126 

to changing hydrological seasons elicited by phylogenetically closely related microorganisms may 127 

offset seasonal effects. 128 

Beyond sinusoidal patterns, all groundwater microbiomes showed long-term variability, as 129 

indicated by Mantel tests (P < 0.05; Fig. 1a). Microbial community similarity declined over time across 130 

all wells, with temporal turnover rates (i.e., the rate of community similarity change) ranging from 1.8% 131 

to 5.6% per year (Fig. 1a). While the phylogenetic structures of the microbiome compositions also 132 

exhibited long-term variability (Mantel tests, P < 0.05), their temporal turnover rates were lower (0.8-133 

2.6% per year, Supplementary Fig. 3). These results suggest that roughly half of the turnover in 134 

groundwater microbiomes may be directed towards phylogenetically closely related microorganisms. 135 

Contrasting temporal patterns of groundwater microbiomes 136 

Groundwater microbiomes exhibited contrasting short-term variations, with mean Bray-Curtis 137 

distances between samples at one-month intervals ranging from 68% at well H14 to 25% at well H52, 138 

reflecting the strength of community composition fluctuations over time (Fig. 1b and 2a). In contrast, 139 

groundwater hydrochemical parameters, indicators of environmental changes, showed more consistent 140 

short-term variations, with mean Euclidean distances ranging from 14% to 26% (Supplementary Fig. 141 

4). This disparity in short-term variations between hydrochemical parameters and microbiome 142 
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compositions suggests varying levels of microbiome resistance to environmental changes, with greater 143 

short-term microbiome variation corresponding to lower resistance.  144 

Pronounced short-term (1 month) variability was observed in microbiomes at wells in 145 

hydrologically connected aquifers (H14, H43, H41, and H51), while pronounced long-term (10 years) 146 

variability was detected in wells representing more hydrologically isolated groundwater (H52 and H53; 147 

Fig. 2b). Microbiomes with pronounced short-term variability yielded greater mean Shannon index 148 

values (5.2-5.9) and smaller fractions of core microorganisms (9-29%), compared to those with 149 

pronounced long-term variability, which exhibited lower Shannon indices (4.5-4.7) and larger core 150 

bacterial fractions (55-65%; Fig. 2c, d). Microbiomes at well H32 exhibited equally elevated short-term 151 

and long-term variability, with intermediate characteristics between hydrologically connected and 152 

isolated groundwaters, which may reflect fluctuating hydrological connectivity at this site (Fig. 2). 153 

Microbiomes in hydrologically connected groundwater exhibited lower resistance but higher 154 

resilience, as indicated by their lower temporal turnover rates (1.8-3.9% year-1) compared to 155 

hydrologically isolated groundwater (5.2-5.6% year-1; Fig. 1a). Here, resilience refers to the ability of 156 

groundwater microbiomes to maintain community composition over time despite ongoing 157 

environmental change (as suggested by temporal variations in groundwater hydrochemical parameters 158 

across all wells; supplementary Fig. 1c). A low resilience is indicated by a high microbial community 159 

turnover rate. Temporal stability, measured by mean pairwise Bray-Curtis similarities, was significantly 160 

lower in microbiomes of more hydrologically connected groundwater (16-31%) than their 161 

hydrologically isolated counterparts (44-48%; Fig. 3a).  162 

Impact of seepage-associated microorganisms on groundwater microbiome variations 163 

To appraise the extent of variability in groundwater microbiomes driven by soil-borne microorganisms 164 

transported with the seepage into the groundwater, we compared 16S rRNA gene datasets16 from soil 165 

seepage (23-60 cm depth) in local recharge areas with those from groundwater microbiomes. Seepage 166 

microbial diversity, dominated by Gammaproteobacteria (32%), Alphaproteobacteria (24%), and 167 
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Parcubacteria (10%), differed significantly from that of groundwaters (Permutation tests, P =0.001; 168 

Supplementary Fig. 5).  169 

SourceTracker analyses revealed that hydrologically connected groundwater harbored 170 

significantly higher fractions of seepage-associated microorganisms (2.4-8.9% of the total community) 171 

than did hydrologically isolated groundwaters (0.2-1.7%; Wilcoxon tests, P < 0.001; Fig. 4b). Despite 172 

these variations across wells, however, seepage-associated microorganisms consistently accounted for 173 

a mere four percent of groundwater microbiome variation (dbRDA; supplementary Fig. 2). These results 174 

suggest that low survival rates of seepage-associated microorganisms limit their contribution in shaping 175 

groundwater microbiome composition.    176 

A significant correlation was observed between the proportion of seepage-associated 177 

microorganisms and groundwater level fluctuations at wells H14 and H41 (Fig. 4), while a significant 178 

correlation between precipitation and groundwater levels was observed only at the shallowest well H14 179 

(PPearson = 0.03; rPearson = 0.04; Supplementary Fig. 6). The fractions of seepage-associated 180 

microorganisms at wells H41 and H43 were significantly greater during groundwater recharge (rising 181 

water levels; 3.9% and 3.1%, respectively) than groundwater recession (falling water levels; 1.4% and 182 

2%, respectively; Wilcoxon test, P < 0.01). Seepage-associated microbial diversity in groundwater was 183 

dominated by Alphaproteobacteria (mainly Caulobacter, Sphingobium), Gammaproteobacteria (mainly 184 

Polaromonas, Rhodoferax), and Parcubacteria (mainly Candidatus Adlerbacteria, Candidatus 185 

Nomurabacteria).  186 

Contrasting assembly processes in groundwater microbiomes 187 

Microbiome composition was driven primarily by stochastic processes (stochasticity: 67-82%) in 188 

hydrologically connected groundwaters and deterministic processes in more hydrologically isolated 189 

groundwaters (stochasticity: 38-42%; Fig. 2e). Temporal dispersal limitation (dispersal limitation over 190 

time at one site) ranged from 18% to 32% in hydrologically connected groundwaters and 14% to 15% 191 

in more hydrologically isolated groundwaters (Fig. 2e), indicative of more dynamic population 192 

structures in the former. This was supported by higher Shannon indices, smaller fractions of core 193 
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community members, and increased seepage-associated microbial inputs in hydrologically connected 194 

groundwaters (Figs. 2c, d; 4b). Correlations between elevated temporal dispersal limitations and lower 195 

temporal stabilities in groundwater microbiomes were confirmed by a linear regression model (Fig. 2f). 196 

Results of dbRDA analyses highlighted the importance of environmental selection, particularly 197 

homogeneous selection, in driving microbiome assembly in hydrologically isolated groundwaters 198 

(Supplementary Tab. 2). Hydrochemical parameters accounted for 45-46% and 12-30% of microbiome 199 

variation in hydrologically isolated groundwaters and connected groundwaters, respectively. 200 

Groundwater level fluctuations yielded the greatest impacts, accounting for 14-21% and 25% of 201 

microbiome variation in hydrologically isolated and connected groundwaters, respectively (dbRDA, 202 

Supplementary Fig. 2). Regression analyses yielded significant long-term groundwater table declines 203 

across all wells, despite periodic recharge, with rates ranging from 7 cm year-1 at well H14 to 126 cm 204 

year-1 at well H41 (Supplementary Fig. 6). Other hydrochemical parameters (e.g., temperature) also 205 

varied significantly with groundwater levels, leading to significant changes in groundwater 206 

environments over time (Mantel test, P < 0.05; Supplementary Fig. 1, 7). 207 

Collectively, hydrochemical parameters, hydrological seasons and seepage-associated 208 

microbial input accounted for 15-33% and 47-50% of microbiome variation in hydrologically connected 209 

and isolated groundwaters, respectively (Supplementary Tab. 2).  210 

Functional potentials of groundwater microbiomes 211 

PICRUSt2 identified 390 distinct MetaCyc metabolic pathways from 16S rRNA gene-sequence datasets. 212 

Much like the case for groundwater microbiome diversity, the potential metabolic pathway 213 

compositions exhibited both sinusoidal patterns and long-term variability (except well H41 which 214 

exhibited only sinusoidal patterns; Fig. 5a). Compared to microbiome diversity metrics, the potential 215 

metabolic pathway compositions exhibited higher temporal stability (mean Bray-Curtis similarity = 90-216 

95%) and resilience (temporal turnover rates = 0.08-0.9% year-1; Fig. 2b and 5a).  217 

Temporal patterns of groundwater metabolome compositions 218 
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LC-HRMS-derived metabolomics revealed both long-term variability and, albeit weak, sinusoidal 219 

patterns in the organic landscape (Fig. 5b). Significant correlations were observed between variations 220 

in microbiome and metabolic compositions across all wells (Mantel test; Fig. 5b). Variations in 221 

metabolomes, indicated by Shannon indices and primary axes of Principal Coordinates Analyses 222 

(PCoA), accounted for 11-16% and 39% of microbiome variation in hydrologically connected and 223 

isolated groundwaters, respectively (dbRDA; Supplementary Fig. 2).  224 

Metabolome variation, together with hydrochemical parameters, hydrological seasons, and 225 

seepage-associated microbial input accounted for 31-59% of microbiome variation, roughly 10% more 226 

than when metabolome variation was excluded (dbRDA; Supplementary Tab. 2). In addition, the 227 

temporal stability of metabolomes (34-45%) was more consistent across wells than that of groundwater 228 

microbiomes (per mean Bray-Curtis similarity; Fig. 3).  229 

Temporal patterns of groundwater DOM concentration and compositions 230 

Dissolved organic carbon (DOC) concentrations ranged from below detection limit (< 0.5 mg L-1) to 231 

2.8 mg L-1, with higher concentrations detected in shallow wells H14, H43, and H32 (Supplementary 232 

Fig. 8). Variations in DOC accounted for one to six percent of the microbiome variation in wells H41 233 

and H43, which were most affected by hydrological seasons (dbRDA; Supplementary Fig. 2). While 234 

bulk DOM compositions elucidated via DI-HRMS lacked significant correlation with microbiome 235 

variations (Mantel test; Fig. 5c), they exhibited greater resilience (lower turnover rates) and temporal 236 

stability (greater mean Bray-Curtis similarity: 79-84%; Fig. 3, 5c) than microbiomes.  237 

To link DOM composition to microbial functions, we compared the compound classes inferred 238 

from DI-HRMS data to the potential degradation pathways inferred from 16S rRNA gene-sequences 239 

(Supplementary Tab. 3). The relative abundances of most degradation pathways were significantly 240 

greater in microbiomes in hydrologically connected than their hydrologically isolated counterparts 241 

(Wilcoxon test, P < 0.001), except for C1 compound utilization and polymeric compound degradation.  242 

The relative abundances of two of the six DOM compound classes identified differed 243 

significantly between hydrologically connected and isolated groundwaters (Fig. 6; Supplementary Fig. 244 
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9). Condensed aromatic structures, likely derived from Muschelkalk sediments and underlying 245 

Permian/Jurassic formations, terrestrial plant material, or microbial necromass38,39,40, were more 246 

abundant in hydrologically connected groundwaters (0.15-0.4% vs. 0.04-0.08%; Wilcoxon test, P < 0.01; 247 

Fig. 5). This suggests that higher levels of condensed aromatics corresponded to an increased 248 

degradation potential for these compounds (Fig. 5). Conversely, relative abundances of peptide-like 249 

DOM, potentially sourced from extracellular enzymes and microbial necromass39, were significantly 250 

lower in hydrologically connected groundwaters (0.12-0.2% vs. 0.22-0.36%; Fig. 6). Yet, microbiomes 251 

in hydrologically connected groundwaters exhibited greater degradation potential for amino acids, even 252 

though their potential ability to synthesize them was not consistently lower (Fig. 6; Supplementary Fig. 253 

10). This suggests that these communities recycle environmental proteins to a greater extent than their 254 

counterparts in more hydrologically isolated groundwater.  255 

Between May 2020 and October 2021, condensed aromatic structures and unsaturated 256 

hydrocarbons significantly increased at shallow wells H14 and H32 (and others). Mean relative 257 

abundances of condensed aromatics rose from 0.27% to 0.44% and from 0.19% to 0.39% (Wilcoxon 258 

test, P <0.01), while unsaturated hydrocarbons increased from 2.4% to 3.7% and from 2% to 3.8% at 259 

wells H14 and H32, respectively (Wilcoxon test, P <0.01). Following these increases, the degradation 260 

potential for aromatics and carboxylic acids at H14 and H32 rose significantly, beginning in March and 261 

April 2021, respectively. Aromatic degradation potential increased from 0.4% to 1.4% and from 0.06% 262 

to 1% (Wilcoxon test, P <0.001; Supplementary Fig. 11), while carboxylic acid degradation potential 263 

increased from 0.3% to 0.6% and from 0.07% to 0.3% at wells H14 and H32, respectively (Wilcoxon 264 

test, P <0.001; Supplementary Fig. 11). The relative abundance of Gammaproteobacteria rose 265 

significantly at H14 (30.4% to 69.6%) and H32 (15.7% to 34.7%; Wilcoxon test, P <0.001; Fig. 1b). 266 

These results suggest delayed changes in microbial composition and function in response to changes in 267 

DOM in shallow groundwater wells.  268 

 269 

 270 
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Discussion  271 

Our decade-long study of groundwater microbiomes unveiled hydrological seasonality and long-term 272 

variability, challenging the traditional view of groundwater microbiomes as static enteties7,36,41. Trends 273 

of continuous change in groundwater microbiomes were previously reported by Yan et al.13 from the 274 

same study sites, but sinusoidal patterns emerged only with this 10-year analysis. These patterns follow 275 

local seasonal hydrological changes, with hydrochemical parameters exhibiting annual sinusoidal 276 

patterns corresponding to groundwater level variations driven by meteoric recharge5 (Supplementary 277 

Fig. 1, 6, 7). Similar periodic groundwater level fluctuations have been observed in other shallow 278 

aquifers (< 100 m depth), especially in karst systems10,11,12. Sinusoidal patterns in microbiomes were 279 

never reported, however, even though shifts resulting from environmental changes were reported12,22,42, 280 

perhaps owing to shorter study periods and/or lower observation frequencies. Annual sinusoidal patterns, 281 

driven by seasonal factors (e.g., day length, temperature, nutrient availability), are common in long-282 

term studies of marine and lake environments, particularly marine surface layers25,26,43,44. 283 

Sinusoidal patterns in subsurface microbiome diversity may arise from specific microorganisms 284 

being periodically favored by fluctuating environmental conditions, such as redox potential and/or 285 

groundwater levels11,13. Microorganisms benefitting from high groundwater levels include those 286 

remobilized from rock surfaces in the vadose zone, as local carbonate rocks and planktonic groundwater 287 

communities share up to 40% species diversity45. This fraction might be even higher in porous aquifers46, 288 

rendering them important seeding banks for groundwater microbiomes21. In addition to enhancing 289 

microbiome stability by increasing homogeneous selection (e.g., well H41; Fig. 2e), the sinusoidal 290 

patterns characterized in this study drastically improve predictions of microbiome change47,48. 291 

The Hainich CZE provides an ideal setting to study microbiome stability in carbonate-rock 292 

aquifers of varying hydrological connectivity. Our extended in-depth characterization of seven selected 293 

wells considered several distinct microbiomes along the groundwater monitoring transect49, revealing 294 

contrasting temporal patterns and stability in groundwater microbiomes over a mere 6 km. The 295 

microbiomes of more isolated groundwaters with high temporal stability (e.g., wells H52 and H53) are 296 
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influenced largely by deterministic processes, while those in hydrologically connected groundwaters 297 

are shaped by stochastic processes (and as such exhibit lower temporal stability). In well H32, an 298 

intermediate aquifer system, groundwater microbiomes exhibited both elevated short- and long-term 299 

variability, reflecting sporadic hydrological connectivity likely resulting from complex flows in 300 

fractured sedimentary bedrock aquifers5.  301 

Our results corroborate the findings of recent groundwater studies in other geological 302 

settings11,50,51, suggesting that hydrological connectivity reduces the temporal stability of groundwater 303 

microbiomes by increasing the role of temporal dispersal limitation via microbial immigration. Thus, 304 

hydrological connectivity lowers the resistance of the groundwater microbiome while increasing its 305 

resilience. Furthermore, microbial immigration during recurrent groundwater recharge events 306 

represents intermittent disturbances that promote resilience and create opportunities for coexistence by 307 

preventing competitive exclusion, thereby promoting diversity52. 308 

In near-surface aquifers, seepage-associated microbial input is a key contributor of microbial 309 

immigration, increasing the importance of temporal dispersal limitation in microbiome assembly20,22. 310 

Our findings suggest that 0.2-8.9% of the total groundwater microbiome is seepage-borne, likely 311 

derived during periodic groundwater recharge or single hydrological extreme events (particularly 312 

relevant in karst systems). Recurrent immigration events over thousands of years may have enhanced 313 

the persistence of these invaders in the groundwater microbiome, as up to 12.5% of groundwater core 314 

ASVs have been identified as being seepage-associated. As these invasive taxa survive and partake in 315 

community coalescence, they compete with resident taxa for resources, and closely related species 316 

compete for similar resources53. Such competition between species oftentimes results in divergence in 317 

niches, including increased host specificity of episymbiotic microorgansisms (e.g., Patescibacteria), to 318 

reduce competition costs54.  319 

The effects of hydrological connectivity on microbiome stability extends beyond groundwater, 320 

with similar patterns reported in oceans and other aquatic ecosystems55,56,57,58,59,60. Deep ocean 321 

microbiomes (890 m depth) are more temporally stable, with mean Bray-Curtis similarities around 64%, 322 

compared to 40% in the more hydrologically connected surface layers (5-20 m depth) where currents 323 
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and nutrient mixing enhance microbial exchange55,60. Somewhat surprisingly, surface/shallow ocean 324 

microbiomes are more stable than those of hydrologically connected groundwaters, and show reduced 325 

long-term community turnover43,55,60. Compared to groundwaters, marine microbiomes exhibit higher 326 

resilience (i.e., lower turnover rates) throughout all depths/layers43,55,60. This suggests that groundwater 327 

systems are more vulnerable and less resilient than marine systems61.  328 

The functional potentials of all seven groundwater microbiomes exhibited remarkable temporal 329 

stability and resilience despite notable variations in community composition. This aligns with previous 330 

groundwater studies that report high functional redundancy in these ecosystems11. Functional 331 

redundancy, i.e., multiple microbial taxa performing overlapping ecological roles, ensures ecosystem 332 

stability amid species turnover62. The observed resiliencies in functional potential suggests that, despite 333 

environmental fluctuations, these microbial communities retain the capacity to adapt while maintaining 334 

their functional integrity8,21. Significant correlations were observed between microbiome and 335 

metabolome changes, pointing to a form of functional redundancy achieved through metabolic diversity. 336 

Such a mechanism enables different microbial taxa to produce varied metabolites that fulfill similar 337 

ecological functions63. Metabolome compositions exhibited greater temporal consistency across wells 338 

than microbiomes. This stands to reason as not all detected metabolites are microorganism-related, 339 

which in and of itself highlights the influence of additional controlling factors28,30. The lower temporal 340 

stability of groundwater metabolomes compared to corresponding microbiomes’ elevated functional 341 

potentials corroborates earlier findings which reported substantial metabolome variability at the same 342 

site29. 343 

Distinct temporal patterns were observed in groundwater metabolome and DOM compositions, 344 

largely attributable to differences in analytical methods that preferentially target different compound 345 

classes14,29,. The high temporal stability of DOM across wells may result from its composition, which 346 

consists of lignin-degradation products and polyphenolic leachates from plant matter in topsoil36,64,65 347 

(Supplementary Fig. 9). These compounds resist microbial degradation, contributing to their persistence 348 

in the environment36,64,65. Despite comprising less than 5% of total DOM, the microorganism-associated 349 

DOM fraction likely plays a significant role in subsurface organic matter cycling. Its influence on spatial 350 
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and temporal variation in microbiome composition and function36,66,67 was particularly evident in the 351 

shallowest well (e.g., H14, H32). The contrasting dynamics observed between DOM and metabolomes 352 

emphasize the value of integrating diverse analytical approaches28,32.  353 

This long-tern study shows that contrasting hydrogeological conditions render the Hainich CZE 354 

an ideal setting to elucidate the various mechanisms driving groundwater microbiome stability and 355 

vulnerability in carbonate-rock aquifers. Highly karstified regions, rich with extensive fractures and 356 

conduits, are globally crucial for drinking water as they facilitate rapid groundwater flow and abundant 357 

water storage (in contrast to less permeable, dense carbonate rocks)4. Karst aquifer microbiomes are 358 

typically influenced most largely by stochastic processes and are more susceptible to disturbances from 359 

surface-derived inputs (e.g., organic contaminants, pathogens)22,67,68,69. As such, improper surface 360 

management can rapidly increase their vulnerability and threaten groundwater health. Extensive source 361 

control to limit surface contaminant ingress to aquifers is crucial for maintaining the health of these 362 

ecosystems23. Moreover, hydroclimatic extremes, such as heavy precipitation and drought, evidently 363 

exacerbate groundwater vulnerability. These extremes facilitate the high ingression of surface-derived 364 

organic molecules (e.g., xenobiotic substances) into groundwater by evading microbial processing14. 365 

The high ingression of surface-associated bacteria during recharge and heavy precipitation events raises 366 

concerns about pathogen contamination, threatening groundwater quality. These findings underscore 367 

the vulnerability of highly hydrologically connected aquifers, such as karst aquifers, under 368 

hydroclimatic extremes.  369 

In contrast, microbiomes in more hydrologically isolated groundwaters (e.g., dense limestone 370 

formations) tend to be governed by deterministic processes and often resist disturbances70,71. However, 371 

this study demonstrates that continuous environmental changes result in decreasing temporal stability 372 

in microbiomes in hydrologically isolated groundwater over time, even in the absence of contamination. 373 

Such changes may be driven by prolonged droughts affecting groundwater recharge. While these 374 

systems may exhibit low short-term variability and greater resistance to contamination, their recovery 375 

following severe contamination is likely prolonged, as a new ecological balance emerges. 376 

 377 
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Conclusion  378 

Overall, the results of this study show that both hydrologically connected and isolated groundwater 379 

ecosystems in carbonate aquifers are increasingly at risk under scenarios with more frequent 380 

hydrological extremes that alter the connections between surface water and groundwater. As 381 

hydroclimatic extremes intensify, the persistence of core microbial functions becomes increasingly 382 

important to maintaining ecosystem stability. The findings discussed here underscore the importance of 383 

innovative integrated management strategies (e.g., robust surface control measures, long-term 384 

monitoring of aquifer health) to safeguard Europe’s groundwater resources from the stresses of 385 

contamination and climate change. 386 

Figures 387 
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 388 

Fig.  1 Sinusoidal and long-term variability in groundwater microbiomes. a) Temporal patterns in 389 

groundwater microbial community similarity: blue points represent the raw Bray-Curtis similarity 390 

between all samples against their sampling time intervals while red points represent the monthly average 391 

Bray-Curtis similarity between all samples. Regression lines and smoothing lines are applied to better 392 

envision temporal patterns. The turnover rate (%/year) is calculated as the slope of the regression lines.  393 

b) Temporal patterns in groundwater microbial community diversity at different wells: colors represent 394 
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bacterial classes with relative abundances greater than 1%. The first six years of microbiome data at 395 

wells of H41, H43, and H52 were published in Yan et al13. 396 

            397 

 398 
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Fig.  2 Distinct temporal patterns of groundwater microbiomes. a) Short-term variations in 399 

groundwater microbiome diversity based on Bray-Curtis distances between samples collected one 400 

month apart (short red horizontal lines denote corresponding mean values). b) Variation in groundwater 401 

microbiomes assigned to short-term (1 month in blue bar) and long-term (10 years in green bar) time 402 

scales. c) Shannon indices of groundwater microbiomes (short red horizontal lines denote 403 

corresponding mean values). d) Fraction of core microorganisms (ASVs present ≥ 80% of collected 404 

well samples; colors represent different bacterial classes). e) Relative importance of groundwater 405 

microbiome assembly processes: green hues represent deterministic processes (heterogeneous selection 406 

and homogeneous selection), while red hues represent stochastic processes (dispersal limitation, 407 

horizontal dispersal, and drift and others). Since these analyses were conducted on a single site over 408 

time, the dispersal here was related to time rather than space. f) Significant linear model between the 409 

relative abundance of (temporal) dispersal limitation and temporal stability of groundwater microbiome 410 

diversity (using mean Bray-Curtis similarity).   411 

 412 

 413 

Fig. 3 Temporal stability of a) groundwater microbiome compositions, b) metabolic potential of 414 

groundwater microbiomes, c) metabolome compositions, and d) bulk DOM compositions across 415 

wells per Bray-Curtis similarity. The metabolic potential of groundwater microbiomes in figure c) 416 

was inferred from 16S rRNA gene-sequences. Red horizontal lines denote mean values. 417 

 418 

 419 
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 420 

Fig. 4 Fraction of seepage-associated microorganisms in groundwater as assessed by 421 

SourceTracker. a) Temporal patterns of seepage-associated microbial diversity: colors indicate 422 

microbial classes; black lines delineate groundwater level fluctuations; Spearman correlation assessed 423 

the relationships between seepage-associated microbe fractions and groundwater level fluctuations. b) 424 

Fraction of seepage-associated microorganisms across wells: red horizontal lines denote mean values. 425 
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 426 

Fig.  5 Temporal patterns of metabolic potential of microbiomes, metabolomes, and DOM 427 

compositions. a) Temporal patterns of metabolic pathways predicted by PICRUSt2 using 16S 428 

rRNA gene-sequences; b) Temporal patterns of groundwater metabolomes alongside a subset 429 

of concurrently sampled groundwater microbiomes; c) Temporal patterns of groundwater DOM 430 

compositions alongside a subset of concurrently sampled groundwater microbiomes. Mantel 431 

tests were conducted to assess correlations a) between changes in predicted pathway and time; 432 

b) between changes in microbiomes and metabolomes; c) between changes in microbiomes and 433 

DOM. 434 
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 435 

Fig.  6 Boxplot of selected a) predicted degradation pathways and b) DOM compound classes. The 436 

predicted degradation pathways were inferred from 16S rRNA gene-sequences, while DOM compound 437 

classes were inferred from DI-HRMS derived bulk DOM. Red horizontal lines denote mean values. 438 

 439 

Methods 440 

Study sites and sampling 441 

The study site is located in the Hainich CZE in central Germany. Detailed site information and sampling 442 

procedures can be found in Kohlhepp et al.34, Küsel et al.35, and Lehmann and Totsche5. Briefly, the 443 

CZE features alternating thin–bedded limestone–mudstone in hillslope terrains, which is a common and 444 

widely distributed geological setting. The bedrock of the low–mountain hillslope in the eastern Hainich 445 

CZE consists primarily of Upper Muschelkalk of marine origin (Germanic Triassic), parts of which 446 

harbor abundant groundwater resources. Along this hillslope, our seven monitoring wells are embedded 447 
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in a transect spanning 5.4 km (Supplementary Fig. 1A), encompassing various relief positions, aquifers, 448 

and depths35. Aquifer compartments at Hainich CZE differ significantly in oxygen availability. Wells 449 

H14, H32, H41, and H51 are oxic, H43 is suboxic (< 1 mg/L dissolved oxygen), and H52 and H53 are 450 

anoxic (< 0.1 mg/L dissolved oxygen). Redox potentials range around 400 mV for wells H14, H32, 451 

H41, and H51, and around 200 mV for wells H43, H52, and H53. The wells are situated in areas of 452 

extensive land management, including forest, pasture, and cropland. The shallowest well (H14), located 453 

on the upper hillslope, is the only well located in the preferential groundwater recharge area. 454 

Groundwater samples were collected monthly to monitor standard hydrochemical parameters, 455 

microbial communities, and untargeted metabolomics. DOM was measured every three months. From 456 

February 2013 to February 2023, we collected 815 groundwater samples from seven groundwater wells 457 

for microbial analysis and hydrochemical parameters, 226 groundwater samples for DOM, and 387 458 

samples for metabolomic analyses (Supplementary Fig. 12). Once the physico–chemical parameters of 459 

pumped groundwater stabilized, groundwater was collected from each well using a submersible pump 460 

(MPI, Grundfos) and placed into sterilized bottles. These samples included 5–10 L for microbiological 461 

analysis, duplicate 10 L samples for DOM analysis, triplicate 5 L samples for metabolomics, and 100 462 

mL for DOC concentration measurements. Groundwaters from which to isolate genomic DNA was 463 

processed through 0.2 µm filters (PES or polycarbonate from Supor, Pall Corporation and Merck–464 

Millipore, respectively) via vacuum pumping, and filters were stored at –80°C prior to DNA extraction. 465 

Acidified filtered groundwaters (0.7 µm filters, pH = 2 with HCl) were stored at 4°C in the dark until 466 

further DOM processing, while raw groundwaters were stored in the dark and chilled until further 467 

metabolomics analyses. Other groundwaters were filtered through 0.7 µm filters and stored at 4°C in 468 

the dark until further DOC quantification. 469 

Groundwater hydrochemical parameters including groundwater levels, temperature, pH, 470 

specific electrical conductivity (EC25; reference T: 25°C), dissolved oxygen content, redox potential 471 

(ORP), acidity (neutralizing capacity), alkalinity (neutralizing capacity), total inorganic carbon (TIC), 472 

and ion concentrations were measured as described by Lehmann and Totsche5 and Kohlhepp et al.34. 473 

Element concentration including Ca, K, Mg, Na, and S were measured with ICP-MS (inductively 474 
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coupled plasma mass spectrometry; 8900 Triple Quadrupole ICP-MS, Agilent, Germany), while major 475 

anions Cl- was measured by IC (ion chromatography; Dionex IC20, Thermo Fisher Scientific, USA). 476 

DOC concentration was quantified as non-purgeable organic carbon on a vario TOC cube (Elementar 477 

Analysensysteme, Germany) with a detection limit of 0.5 mg L-1. 478 

The sampling details for the 174 seepage samples collected in this study can be found in 479 

Hermann et al.16 and Lehmann et al.72 (Supplementary Fig. 1; Supplementary Tab. 4). Seepage sites 480 

were sampled regularly (biweekly) and on an event-basis (weekly). Seepage volumes ranging from 100 481 

to 500 mL were filtered through 0.2 µm filters (PES; Supor, Pall Corporation) using a vacuum pump, 482 

and filters were stored at –80°C prior to DNA extraction. 483 

DNA extraction and amplicon sequencing 484 

Groundwater and seepage genomic DNA were extracted using the DNeasy PowerSoil Pro Kit (Qiagen, 485 

Hilden, Germany) per manufacturer’s instructions, and extractions were stored at –20°C prior to PCR 486 

amplification. PCR amplification of bacterial 16S rRNA gene (V3–V4 region) was performed on an 487 

Illumina Miseq platform using v3 chemistry with primers Bakt_0341F and Bakt_0785R73. Most 488 

samples (see list in Supplementary Tab. 5) were sequenced in–house following the two–step PCR 489 

library preparation procedures described by Krüger et al.17. Amplicon libraries for some samples were 490 

generated using the NEBNext Ultra DNA Library Prep Kit for Illumina (New England Biolabs, MA), 491 

following methods detailed by Kumar et al.74 All remaining samples were processed at LGC Genomics 492 

(Berlin, Germany), as previously described75. 493 

Molecular composition of DOM  494 

A detailed description of the methods used to elucidate the molecular compositions of DOM is given in 495 

Schroeter et al.14. Briefly, DOM was extracted from acidified filtered groundwater via solid phase 496 

extraction with PPL (styrene–divinylbenzene polymer) Bond Elut cartridges (Agilent Technologies) 497 

following the protocols of Dittmar et al.76. PPL extracts were kept at -80°C prior to DI-HRMS analyses. 498 

DI-HRMS analyses were conducted on an Orbitrap Elite mass spectrometer (Thermo Fisher Scientific, 499 

USA) with a mass resolution of 555,000 ± 9,000 at m/z = 251. The electrospray ionization (ESI) was 500 
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run in negative mode with an ESI needle voltage of 2.65 kV. For each sample, 100 scans of m/z 100-501 

1000 were acquired and averaged. Quality controls and molecular formula assignments were processed 502 

using DOMAssignR (https://github.com/simonschroeter/DOMAssignR). Spectra were further 503 

normalized to sum all peak intensities. We focused on DOM compound classes most likely to serve as 504 

substrates for microorganisms, including carbohydrates, condensed aromatic structures, lignins, lipids, 505 

peptide-like compounds, and unsaturated hydrocarbons. Identification of DOM clusters was based on 506 

their elemental N content and hydrogen/carbon and/or oxygen/carbon elemental ratios (Supplementary 507 

Tab. 6)77. 508 

Untargeted metabolomics  509 

Sample extraction and analyses are described in detail in Zerfaß et al.29. Briefly, 5 L of filtered (GF/C, 510 

1.5 µm, VWR) groundwater was subjected to solid phase extraction (SPE) in Strata–X 33 µm polymeric 511 

reversed phase cartridges (Phenomenex). Eluates (1:1 methanol:acetonitril) were dried (vacuum, 512 

nitrogen stream), and the organic residue was re-dissolved in 100 µl of 1:1 THF:methanol. Extracts (1 513 

µl) were then analyzed by LC–HRMS (liquid chromatography–high-resolution mass spectrometry) on 514 

a Dionex UltiMate 3000 chromatography system coupled to a Q–Exactive Plus orbitrap mass 515 

spectrometer (Thermo Fisher Scientific), m/z-range 100-1,500, alternating acquisition in positive and 516 

negative mode. For this study, only positive-mode data was extracted.  517 

To assure system suitability in the long-term sampling experiment, the LC-HRMS system was 518 

maintained with a weekly MS source cleaning, mass calibration, and consistency-check by injection of 519 

a standard (containing Fluorophenylalanine, P-Fluorobenzoic acid, Decanoic acid D-19) for which 520 

retention times and peak apex intensities were recorded. All samples were taken in environmental 521 

replicates and injected in triplicate analytical replicates, and each set of analytical replicates was 522 

processed in randomized sequence. Data processing for peak picking and feature assignment was 523 

carried out in XCMS as described in the stated reference. For Bray-Curtis similarity tests (details in 524 

succeeding section), replicate means were calculated and peak areas were normalized by the sum of all 525 

feature peak areas.   526 
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 527 

Bioinformatics and statistical analyses 528 

Most bioinformatics and/or statistical analyses were conducted in R version 4.2.278 at a significance 529 

level of α = 0.05. After correcting the orientation of mixed-orientation reads and removing primers with 530 

Cutadapt79 (v 4.1), R package “dada2”80 (v1.26) was employed for quality filtering, denoising, inferring 531 

amplicon sequence variants (ASVs), and removing chimeras. Reads were truncated to 265 bp (forward 532 

reads) or 235 bp (reverse reads), excluding those with more than two expected errors and those truncated 533 

when the quality score was equal to or less than two. ASVs were generated by applying the DADA2 534 

core algorithm and combining forward and reverse reads, and those that could not be aligned to the 535 

SILVA reference database81 (v138.1) using Mothur (v1.46.1) were removed. After removing chimeric 536 

sequences, taxonomy was assigned to the remaining ASVs based on the SILVA taxonomy reference 537 

database v138.1. Further downstream sequence analysis was conducted using the R package “phyloseq” 538 

82 (v1.42), and a phylogenetic tree was constructed using FastTree83 (v2.1) after aligning genes with 539 

Muscle84 (v5)  and trimming the alignment with trimAl85 (v1.4).  540 

Recharge and recession phases (Supplementary Fig. 6 and Tab. 5) were defined by observed 541 

changes in groundwater levels. The recession phase was characterized by a sustained decline in 542 

groundwater levels for more than five consecutive days, ending in a minimum level or (for well H14) a 543 

significant rise to or above the maximum level for that phase. The recharge phase was defined in an 544 

opposite manner. We considered one hydrological year (between 1 May and 30 Apr) comprising four 545 

seasons: hydrological early summer (May to Jul), late summer (Aug to Oct), early winter (Nov to Jan), 546 

and late winter (Feb to Apr). To visualize the heterogeneity of groundwater environments, principal 547 

component analysis (PCA) was conducted with 15 hydrochemical parameters, including water level, 548 

water temperature, specific electrical conductivity, dissolved oxygen concentration, redox potential, 549 

acidity, alkalinity, total inorganic carbon, element and ion concentration (Cl–, S, Ca, K, Na, and Mg). 550 

Pearson and Spearman correlations from Hmisc (Rpackage v5.1-1) were used to determine significant 551 

correlations.  552 
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We used mean pairwise Bray-Curtis similarity to evaluate the temporal stability of groundwater 553 

microbiome composition and function, while short-term variabilities was assessed using Bray-Curtis 554 

distances for sample pairs from the same well (sampling intervals of 15 to 44 days). To explore temporal 555 

patterns, we first plotted raw pairwise Bray-Curtis similarity against sampling time intervals. To 556 

illustrate community similarity decay rates (resilience), we modeled the regression line of the raw 557 

pairwise Bray-Curtis similarity. To identify periodic patterns, we divided the pairwise Bray-Curtis 558 

similarity into monthly intervals (e.g., a time interval of 1 month: 15-44 days; a time interval of 2 559 

months: 45-74 days), and applied a smoothing line based on a moving average filter. The same 560 

technique was applied to groundwater DOM and metabolomes using Bray-Curtis similarity, 561 

groundwater microbiome compositions at the phylogenetic level using UniFrac similarity, and 562 

environmental parameters using Euclidean similarity. The Bray-Curtis similarity (distances) and 563 

UniFrac similarity (distance) mentioned in this manuscript were based on relative abundance, while the 564 

Euclidean similarity (distance) was calculated after normalizing the aforementioned 15 hydrochemical 565 

parameters to exclude the effect(s) of absolute abundance (values) differences. Variation assigned to 566 

short-term or long-term variability is represented as the proportion of the respective variability in one-567 

decade variability. We first evaluated the 10-year variability of microbiome compositions using the 568 

regression model of raw pairwise Bray-Curtis similarity, at which time long-term variability is then 569 

calculated by subtracting the aforementioned short-term variability from the 10-year variability. 570 

To elucidate the impact of surface-subsurface connectivity in the temporal stability of 571 

groundwater microbial communities, we tracked changes in contribution of seepage-associated 572 

microorganisms to the groundwater microbiome via SourceTracker86 (Rpackage v1.0.1 under R version 573 

4.0.0). During these analyses, we applied all seepage samples as the source and the groundwater samples 574 

as the sink. Analyses were performed on rarefied ASV (rarefaction depth of 1,000 reads) abundances 575 

using default settings (α = 0.001, β1 and β2: 0.01). 576 

In this study, we define core species as bacterial ASVs present in > 80% of the groundwater 577 

samples collected in every well. Distance-based redundancy analysis (dbRDA) based on Bray-Curtis 578 

dissimilarity was carried out to assess and validate whether selected environmental parameters (e.g., 579 
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hydrological seasons, incidence of seepage-associated microorganisms) significantly impact 580 

groundwater microbiome composition (Rpackage vegan; adjusted R2 was used). The significance of 581 

dbRDA tests was reported by permutation tests of “anova.cca”. The metabolic functions of groundwater 582 

microbial communities were predicted by PICRUSt2 software based on taxonomy annotations from 583 

16S rRNA gene sequences33. We employed inferred community assembly mechanisms using a 584 

phylogenetic bin-based null model (iCAMP, Rpackage v1.6.5) to evaluate the contribution of ecological 585 

processes on groundwater microbiome assembly87. All analyses were performed using recommended 586 

default settings with 48 bins and confidence for null model significant tests. 587 

Data and code availability 588 

Raw amplicon sequencing data reads for all studied samples have been deposited in the European 589 

Nucleotide Archive (details in the Supplementary Material). Raw DOM data from DI-HRMS were 590 

deposited under https://doi.org/10.17617/3.2TZM6C, while raw metabolome data from LC-HRMS 591 

were deposited via the Metabolights repository88 under MTBLS3450, MTBLS8433, and MTBLS11375. 592 

Groundwater hydrochemical parameters are provided as Supplementary Material.  593 

Raw amplicon sequencing data and codes will be released upon publication of the manuscript. 594 

  595 
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