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Abstract. The radioactive noble gas radon (222Rn) is a suitable tracer for atmospheric transport and mixing processes that 

can be used to evaluate and calibrate atmospheric transport models or to estimate greenhouse gas emissions using the so-15 

called Radon-Tracer method. However, the prerequisite for these applications is a reliable estimate of the 222Rn fluxes from 

the soil. In this study, we evaluate two process-based 222Rn flux maps for Europe based on two different soil moisture 

reanalysis products (GLDAS-Noah and ERA5-Land) using the flux results obtained from a one-year 222Rn inversion 

performed with the CarboScope-Regional inversion system and 222Rn observations from 17 European sites. We observe that, 

in particular, the ERA5-Land based 222Rn flux map underestimates the data-driven fluxes from the inversion in Central 20 

Europe in 2021. Our inversion results yield ca. 20% (GLDAS-Noah) to almost 100% (ERA5-Land) larger 222Rn fluxes than 

the respective process-based a priori fluxes within a domain covering Germany. Also, the temporal variability seems to be 

underestimated by the process-based 222Rn flux maps. We found a significant anti-correlation of -0.6 and -0.8 between the 

posterior flux estimate using a flat (uniform) prior inversion and the GLDAS-Noah and ERA5-Land soil moisture estimates, 

respectively, indicating that soil moisture is an important driver for the temporal variability of the 222Rn fluxes. To 25 

investigate the impact of the modelled atmospheric transport on the inversion results, we performed sensitivity runs using 

two other Lagrangian transport models. The respective annual mean a posteriori fluxes agree within ca. 10%.  
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1 Introduction 30 

Inverse modelling (e.g., Newsam and Enting, 1988) is a well-established method for constraining surface fluxes of 

greenhouse gases (GHGs) by minimising the mismatch between observed and simulated atmospheric dry air mole fractions 

of the respective GHG. However, limitations in atmospheric transport models, such as inadequate description of vertical 

mixing within the planetary boundary layer (PBL), can lead to systematic biases in such top-down flux estimates (e.g., Schuh 

et al., 2019; Schuh et al., 2022; Munassar et al., 2023). Therefore, careful quantification of transport model uncertainties is 35 

essential for a reliable flux estimation. As this is far from straightforward, potential systematic biases in atmospheric 

transport models are often assessed by using an ensemble of different transport models in the inversion framework to 

investigate their impact on the flux estimates (e.g., Geels et al., 2007; Peylin et al., 2013; Monteil et al., 2020; Schuh et al., 

2022) or by employing computationally expensive ensemble methods (e.g., Steiner et al. 2024).  

 40 

A more direct way of quantifying transport model uncertainties is to compare modelled and measured atmospheric activity 

concentrations of the radioactive noble gas radon (222Rn), which is the first gaseous component in the decay chain of 

uranium that escapes from the soil into the atmosphere (Karstens et al., 2015). As its lifetime (3.8 days) is comparable to the 

ventilation time scale of the PBL, atmospheric 222Rn observations over land contain suitable information on vertical mixing 

(Jacob and Prather, 1990) and can be used to validate (and possibly even improve) the performance of atmospheric transport 45 

models in this respect (e.g., Jacob and Prather, 1990; Chevillard et al., 2002; Gupta et al., 2004; Zhang et al., 2008; Zhang et 

al., 2021). However, this requires accurate 222Rn flux maps that are suitable for modelling atmospheric 222Rn activity 

concentrations.  

 

There are various global and regional 222Rn flux maps available, which differ in the methods and the complexity used to 50 

describe the 222Rn exhalation from the soil (e.g., Rasch et al., 2000; Conen and Robertson, 2002; Zhou et al., 2008; Szegvary 

et al., 2009; Griffiths et al., 2010; López-Coto et al., 2013; Karstens et al., 2015; Karstens and Levin, 2024). In an extensive 

study, Karstens et al. (2015) developed two process-based 222Rn flux maps for Europe and compared them with existing 

222Rn flux maps from the literature. Their study revealed large spatio-temporal differences between the different 222Rn flux 

maps, which can be on the order of the 222Rn fluxes themselves, and illustrates the substantial uncertainty associated with 55 

222Rn flux maps.  

 

In principle, continuous 222Rn flux measurements can be used to validate (and calibrate) the 222Rn flux maps (Griffiths et al., 

2010; Manohar et al., 2013; Karstens et al., 2015). However, such measurements are sparse and typically only representative 

for very local spatial scales and often contradict large-scale flux estimates due to the high degree of the soil parameter 60 
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inhomogeneities. It has therefore proved difficult to validate the 222Rn flux map of an entire continent with such a sparse set 

of flux measurements (Karstens and Levin, 2024). For this reason, Karstens and Levin (2024) recommended performing a 

222Rn inversion to evaluate the 222Rn flux maps, which is a more representative approach as the atmosphere integrates fluxes 

from larger areas. In our study, we implemented their suggestion and investigated whether we could evaluate the quality of 

222Rn flux maps using inverse modelling. 65 

 

However, there is a conflict in performing a 222Rn inversion, since it intrinsically assumes that atmospheric transport is well 

known and without systematic biases (Schuh et al., 2019). As this is not the case (see above), there is a risk that the inversion 

will adjust the 222Rn fluxes to compensate for unknown biases in the transport model (especially if the transport model 

uncertainties are not correctly described in the inversion framework). For example, if the vertical mixing in the transport 70 

model were too strong, the model would underestimate the 222Rn activity concentrations, even if the 222Rn fluxes are correct. 

As a consequence, the inversion would falsely increase the 222Rn fluxes. Thus, such incorrectly adjusted 222Rn fluxes are 

useless for modelling 222Rn concentrations and validating other transport models.  

 

Therefore, we use an ensemble of transport models and an ensemble of a priori flux maps in our inversion system to 75 

carefully quantify the impact of potential biases in the transport model and in the prior fluxes on the 222Rn inversion results. 

These transport models differ, for example, in the parameterization of turbulent motion and convection, and in the 

underlying meteorological data (see Sect. 2.3). Thus, by analyzing the influence of the transport models on the 222Rn flux 

estimates, we can assess the robustness of our inversion results. Furthermore, we only use afternoon observations (or 

nighttime observations for mountain sites), when the atmosphere is typically well-mixed and the models are expected to 80 

perform best (Gerbig et al., 2008). By doing so, we aim to obtain reliable 222Rn flux estimates that can be used to evaluate 

process-based 222Rn flux maps.   

 

In our study, we evaluate the two process-based 222Rn flux maps from Karstens and Levin (2022a,b), that are based on two 

different soil moisture products used to describe the 222Rn transport through the soil (see Sect. 2.1). We investigate if we can 85 

use our 222Rn inversion results to assess which of the two 222Rn flux maps is best suited for a domain in central Europe well 

covered by 222Rn observations, and if we can derive realistic estimates of their uncertainties (Sect. 3.2). Furthermore, we 

want to investigate whether we can learn something about the 222Rn exhalation process from the inversion results, e.g. what 

information about soil moisture variability is contained in the 222Rn observations (Sect. 3.3). In this context, we will also try 

to improve the process-based 222Rn flux maps by using different soil moisture data (Sect. 3.4).  90 
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2 Methods 

2.1 Process-based 222Rn flux maps 

In this study, we investigate different process-based 222Rn flux maps, all of which are based on the 222Rn flux model 95 

developed by Karstens et al. (2015) for an “infinitely deep unsaturated homogeneous soil”. We will mainly focus on the 

222Rn flux maps from Karstens and Levin (2022a,b), which are based on GLDAS-Noah and ERA5-Land soil moisture and 

porosity data to describe the 222Rn transport through soil. However, we also want to analyze a third, alternative 222Rn flux 

map that we have prepared for this study using high-resolution soil moisture and porosity data from the German Weather 

Service (DWD, see Tab. 1). In the following, we briefly describe this 222Rn flux model, but the reader is referred to Karstens 100 

et al. (2015) and Karstens and Levin (2024) for more comprehensive details.  

 

The main assumption of the 222Rn model is that 222Rn exhalation from the soil occurs mainly by diffusive transport 

(Nazaroff, 1992). This assumption is justified because the 222Rn activity concentration in the air in the soil is several orders 

of magnitude higher than in the ambient air above the soil (Čeliković et al., 2022). Assuming steady state conditions and a 105 

222Rn source Q that is constant with depth, the following equation can be derived for the 222Rn flux j at the soil surface (z = 0) 

𝑗(𝑧 = 0) = −𝑄√
𝐷𝑒

𝜆
tanh (𝑧𝐺√

𝜆

𝐷𝑒
) =  −𝑄 𝑧 tanh (

𝑧𝐺

𝑧
).       (1) 

Hence, the flux j (in Bq m-2 s-1) depends on the 222Rn source Q (in Bq m-3 s-1), the effective diffusion coefficient De (in m2 s-

1), the 222Rn decay constant  (in s-1) and the water-table depth zG (in m). The 222Rn relaxation depth 𝑧 (in m) is given by 𝑧 =

√𝐷𝑒 𝜆⁄ . The 222Rn source Q can be described as a product of the concentration of radium (226Ra, i.e. the precursor of 222Rn) 110 

in the soil, the 222Rn decay constant, the dry bulk density of the soil, as well as the emanation coefficient, which describes the 

probability that the 222Rn atoms can escape from the soil grains, in which they were formed, into the soil air. According to 

the parameterization from Zhou et al. (2008), this emanation coefficient depends on the soil texture, soil moisture, soil 

porosity and soil temperature. The 226Ra concentration was calculated using a map of the uranium (238U) content in the soil 

from the European Atlas for Natural Radiation (EANR; Cinelli et al., 2019) and assuming secular equilibrium between 238U 115 

and its daughter 226Ra (see Karstens and Levin, 2024).  

  

The effective diffusion coefficient De is described with the parameterization from Millington and Quirk (1960), which 

depends on soil porosity and soil moisture. Karstens and Levin (2024) used the average soil moisture and porosity data from 

the upper 40 cm of the soil to calculate the diffusion coefficient (and the emanation coefficient). Hence, they assumed that 120 

the 222Rn released from the soil surface originates mainly from the top 40 cm of the soil. In Sect. 3.3, we revisit this 

assumption. A temperature dependence of the diffusion coefficient is also taken into account according to the 

parameterization from Schery and Wasiolek (1998).  
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Furthermore, the 222Rn flux from the soil is reduced in regions with shallow water-table depths as the soil water hinders the 125 

222Rn exhalation. It is described by the factor tanh (
𝑧𝐺

𝑧
) in Eq. 1. For water-table depths zG that are large compared to the 

222Rn relaxation depth 𝑧 (i.e., zG >> 𝑧), this factor becomes 1. All three 222Rn flux maps used in this study were calculated 

using Eq. 1 but with different soil moisture data products as listed in Tab. 1. The two 222Rn flux maps from Karstens and 

Levin (2022a,b), based on GLDAS-Noah and ERA5-Land soil moisture respectively, cover a slightly smaller area compared 

to our model domain. Therefore, we have spatially extended these 222Rn flux maps by filling the extended (land) areas with 130 

the respective daily mean land fluxes of the whole domain (see Fig. 1 a,b). In the following, we refer to these two 222Rn flux 

maps as “GLDAS” and “ERA5”, respectively.  

 

For the third 222Rn flux map, we make use of the high-resolution soil moisture data from the AMBAV 

(AgrarMeteorologische Berechnung der Aktuellen Verdunstung, Herbst et al., 2021) model, which is a water balance model 135 

operated by the German Weather Service (DWD) for agricultural purposes that provides 1 km resolution soil moisture data 

for Germany. Thereby, information on regional soils from detailed geological maps (Hartmann et al., 2024) is incorporated 

into the model. The AMBAV model calculates soil moisture data for crop and grass-covered soil types. Whilst the GLDAS-

Noah and ERA5-Land models assume that the soil porosity is constant over the entire soil column, AMBAV uses vertically 

resolved soil porosity data (from Hartmann et al., 2024). We combined the AMBAV soil moisture product with soil moisture 140 

data for forests simulated with the forest hydrological model LWF-Brook90 (Hammel and Kennel, 2001), to obtain a high-

resolution soil moisture map for the dominant land cover types in Germany, which we refer to as “DWD” soil moisture 

hereinafter. The basis for the classification of the pixels into arable land, grassland and forest is the land cover data from 

CORINE Landcover (2018), the classification of the forest pixels into the main tree species (beech, oak, spruce and pine) 

was carried out using the tree species map by Blickensdörfer et al. (2022). To be consistent with Karstens and Levin (2024), 145 

we initially use the average DWD soil moisture (and porosity) of the top 40 cm of the soil. However, in Sect. 3.4, we further 

investigate how the vertical averaging of the soil moisture impacts the 222Rn fluxes. Since the DWD soil moisture is only 

available for Germany, we fill the area outside Germany (and the few gaps over German cities) with the GLDAS-Noah soil 

moisture data so that we can calculate a complete 222Rn flux map for Europe. To be consistent, we also apply the porosity 

data used by the GLDAS-Noah model for areas outside Germany. We call this third 222Rn flux map “DWD/GLDAS”. All 150 

three 222Rn flux maps are re-gridded to a horizontal resolution of 0.05° x 0.05°.  

 

Table 1: Overview of soil moisture data used to calculate the 222Rn flux maps. 

Soil moisture  Resolution References 

GLDAS-Noah 0.25° x 0.25° Rodell et al., 2004; 

Beauding and Rodell, 2020 

ERA5-Land 0.1° x 0.1° Muñoz-Sabater et al., 2021; 
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Muñoz-Sabater, 2019 

DWD 1km x 1km Löpmeier, 1994; Herbst et al., 2021; 

Hammel and Kennel, 2001 

 

2.2 Process-based 222Rn flux maps 155 

We use hourly 222Rn activity concentration observations from 17 European sites in 2021. The 222Rn measurements have been 

performed with several detector types, which are based on different measurement principles and assumptions. Figure 1 and 

Tab. 2 give an overview of the different observation sites and the detectors used. The main characteristics of the used 

detector types are compiled in Schmithüsen et al. (2017) and Grossi et al. (2020). For example, the radon detectors 

developed by the Australian Nuclear Science and Technology Organisation (ANSTO) are based on the so-called dual-flow-160 

loop two-filter approach, which provides a direct measure of the 222Rn activity concentration (Griffiths et al., 2016). In this 

method, the sampled air passes through an initial filter that removes all ambient aerosols and 222Rn progenies. The filtered air 

is then directed into a large delay volume (typically >1000 L) in which new 222Rn progenies (218Po and 214Po) are formed. A 

second flow loop within the delay volume frequently circulates the sample of air through a second filter to ensure that all 

222Rn progenies are collected on this filter (e.g., 218Po has a half-life of only 3 min) and their -decay can be counted. 165 

Finally, the 222Rn activity concentration is calculated from the -decay of the 222Rn progenies and the flow rate. Due to the 

large delay volume, ANSTO detectors have a slow response time of about 45 min, which can partially be remedied by 

applying a deconvolution (Griffiths et al., 2016; Kikaj et al., 2025).  

 

In contrast, the Heidelberg Radon Monitor (HRM, Levin et al., 2002; Gachkivskyi and Levin, 2022) detectors installed at the 170 

German sites measure the 222Rn activity concentrations indirectly. In the atmosphere, the 222Rn progenies get attached to 

aerosols. The HRM detectors collect these atmospheric aerosols on a filter and measure the -decay of the 222Rn progenies. 

In order to determine the 222Rn activity concentration from those measurements, assumptions must be made about the 

radioactive disequilibrium between 222Rn and its progenies (Schmithüsen et al., 2017). This disequilibrium depends on the 

height above ground (Jacobi and André, 1963). Inter-comparison studies between ANSTO and HRM detectors revealed that 175 

radioactive equilibrium between 222Rn and its daughter products is reached between ca. 50 - 100 m above ground 

(Schmithüsen et al., 2017; Grossi et al., 2020). We therefore applied equilibrium correction factors for observation sites with 

an air intake height below 90 m above ground. Furthermore, wet deposition of atmospheric aerosols as well as aerosol loss in 

long sampling lines can lead to artefacts in the HRM-based 222Rn activity concentrations (Xia et al., 2010; Levin et al., 

2017). To account for this, we (1) flagged the HRM data during situations with high air humidity >98% (>95% for the 180 

mountain sites HPB, SSL and TOH) as suggested by Gachkivskyi et al. (2025) and (2) applied for sites with sampling tubing 

lengths >15 m an aerosol loss correction as described in Levin et al. (2017). Finally, we averaged the half-hourly HRM 222Rn 
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data to obtain hourly 222Rn observations. The corrected and moisture-selected HRM 222Rn observations are compiled in 

Fischer et al. (2024).  

 185 

The radon detector installed at the Mace Head (MHD) observation site is another type of a one-filter radon monitor, again 

based on an indirect method of determining 222Rn activity concentration. It was developed at the Laboratoire des Sciences du 

Climat et de l’Environnement (LSCE) in France (Biraud, 2000) and uses a moving filter band system to collect and measure 

the 222Rn progenies 218Po and 214Po. Since Schmithüsen et al. (2017) found a 214Po/222Rn disequilibrium factor of 1.0 for this 

coastal site, we did not apply a disequilibrium correction to the MHD measurements. However, we again applied a humidity 190 

flag to account for the wet deposition of atmospheric aerosols. Note that the MHD 222Rn observations have a temporal 

resolution of only 2 hours.  

 

Finally, we converted all 222Rn observations to the HRM detector scale in order to obtain a harmonized data set. Note that the 

ANSTO detector scale would result in approximately 11% larger 222Rn activity concentrations compared to the HRM 195 

detector scale (Schmithüsen et al., 2017). The LSCE measurements from MHD must be divided by 0.95 to convert them to 

the HRM scale (Schmithüsen et al., 2017). We assume an uncertainty of 0.5 Bq/m3 for the hourly 222Rn observations used in 

the inversion to account for instrumental uncertainties, uncertainties associated with the required calibrations and corrections 

(Grossi et al., 2020), as well as uncertainties in the background contributions from outside Europe, which we subtract from 

the 222Rn observations (see Sect. 2.3). As mentioned above, we only use observations from PBL sites during well-mixed 200 

situations in the afternoon (11-16 UTC), when the transport model is expected to show the best performance. In contrast, 

nighttime (23-04 UTC) observations are used for mountain sites when the impact of local (thermally induced) wind systems 

are expected to be negligible.   

 

Note that there was a leak in the 222Rn inlet line at the Cabauw (CBW) site in 2021, which may have contaminated the 222Rn 205 

measurements at this site. However, as we found no obvious anomalies when comparing the observation-model differences 

at CBW with those at the nearby Lutjewad (LUT) site, we decided to use the CBW data in our study. Nevertheless, we 

investigated the impact of the CBW observations on the inversion results, which turned out to be small (see Appendix C).    

 

 210 
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Figure 1: European sites with 222Rn observations used in the inversion. The colors indicate the different radon detectors described 

in the text. 

 

Table 2: Overview of the 222Rn observation sites. The coordinates, the STILT and FLEXPART/NAME particle release heights, the 215 
site classes with assumed transport model uncertainties, and the radon detector types used are given. The site classes are: T – 

tower, S – coastal, M – mountain, and U – urban. For some high-altitude sites, marked with (*), a correction height was used to 

account for the steep terrain, which is hard to represent in the models. Furthermore, there are two sites, marked with (**), where 

the FLEXPART/NAME particle release height is >20m different from the STILT particle release height.   

Site 

code 

Site name Coordinates (lat, 

lon, a.g.l.) 

STILT 

release 

height 

(m a.g.l.) 

FLEXPART/NAME 

release height (m 

a.g.l.) 

Site 

class 

Model 

uncertainty 

(Bq m-3) 

Radon 

detector 

type 

CBW Cabauw 51.97°, 4.93°, 

200m 

200 200 T 0.9 ANSTO 

GAT Gartow 53.07°, 11.44°, 

132m 

132 (**) 341 (**) T 0.9 HRM 

HEI Heidelberg 49.42°, 8.67°, 

30m 

30 30 U 1.5 HRM 

HPB Hohenpeißenberg 47.80°, 11.02°, 

93m 

300 (*) 250 (*)/130 T 0.9 HRM 

JFJ Jungfraujoch 46.55°, 7.99°, 

6m 

720 (*) 530 (*)/1000 (*) M 0.45 ANSTO 

KIT Karlsruhe 49.09°, 8.42°, 

200m 

200 200 T 0.9 HRM 
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LIN Lindenberg 52.17°, 14.12°, 

98m 

98 98 T 0.9 HRM 

 

LUT 

Lutjewad 53.40°, 6.35°, 

60m 

60 60 T 0.9 ANSTO 

MHD Mace Head 53.33°, -9.90°, 

24m 

24 10 S 0.45 LSCE 

OPE Observatoire 

Pérenne de 

l’Environnement 

48.56°, 5.50°, 

120m 

120 120 T 0.9 ANSTO 

RGL Ridge Hill 52.00°, -2.54°, 

85m 

90 90 T 0.9 ANSTO 

SAC Saclay 48.72°, 2.14°, 

100m 

100 100 T 0.9 ANSTO 

SSL Schauinsland 47.92°, 7.92°, 

12m 

450 (*) 250 (*)/10 M 0.45 HRM 

TAC Tacolneston 52.52°, 1.14°, 

175m 

185 185 T 0.9 ANSTO 

TOH Torfhaus 51.81°, 10.54°, 

110m 

110 (**) 240 (*)/147 (**) T 0.9 HRM 

TRN Trainou 47.96°, 2.11°, 

180m 

180 180 T 0.9 ANSTO 

WAO Weybourne 52.95°, 1.12°, 

10m 

10 20 S 0.45 ANSTO 

 220 

2.3 Transport models 

In order to assess the influence of the transport models on the inversion results, we use the following three different 

Lagrangian transport models in this study to simulate the 222Rn activity concentrations at the different observation sites: the 

Stochastic Time-Inverted Lagrangian Transport model (STILT, Lin et al., 2003), the FLEXible PARTicle dispersion model 

(FLEXPART, Stohl et al., 2005; Pisso et al., 2019), and the Numerical Atmospheric-dispersion Modelling Environment 225 

(NAME, Jones et al., 2007). In Lagrangian transport models, an ensemble of numerical particles is released from each site 

every time step (here every hour), and their back-trajectories are computed by confronting the particles with the underlying 

meteorological fields and a stochastic representation of turbulent motions. From the distribution of the back-trajectories, so-
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called footprints are deduced, which describe the sensitivity of the observation site to surface fluxes at the individual pixels 

in the catchment area of the site. The 222Rn activity concentrations at the observation sites can then be calculated by 230 

convolving the 222Rn fluxes with the footprints and taking into account the radioactive decay of 222Rn.  

 

STILT is driven with meteorological fields from the Integrated Forecasting System of the European Centre for Medium-

Range Weather Forecasts (ECMWF-IFS), extracted at a spatial resolution of 0.25° x 0.25 ° (lat x lon) and a temporal 

resolution of 3 hours. Every hour, 100 particles are released from the observation sites and their back-trajectories are 235 

calculated for 10 days or until they leave the STILT model domain shown in Fig. 1. The footprints are mapped on a grid with 

a horizontal resolution of 0.25° x 0.25°. Similar to STILT, FLEXPART is also driven by meteorological analysis and 

forecasts from the operational ECMWF-IFS high-resolution (HRES) runs, available hourly at 0.1° x 0.1° resolution for the 

European domain and 3-hourly at 0.5° x 0.5° for the rest of the globe. With FLEXPART, 20’000 particles are released every 

hour and the back-trajectories are calculated for 30 days or when leaving a domain encompassing parts of North America, 240 

the North Atlantic and Europe. The resulting footprints are mapped on a grid with a horizontal resolution of 0.234° x 0.352° 

(lat x lon). NAME utilises meteorological data from the UK Met Office Unified Model (UM; Cullen, 1993). As with 

FLEXPART, 20’000 particles are released every hour and the back-trajectories are calculated for 30 days. The NAME 

footprints also have a horizontal resolution of 0.234° x 0.352°. 

 245 

In the case of the FLEXPART and NAME model, we use 222Rn-decay-corrected footprint products, which are already 

aggregated over the duration of the back-trajectories (i.e., over 30 days or until the particles have left the model domain). 

This means that we have no temporal information about the particle distributions. However, since the 222Rn flux maps have a 

daily resolution, we need to know for which time period the time-aggregated footprints are mainly representative. To 

investigate this, we make use of the time-resolved STILT footprints. First, we modelled 222Rn concentrations by mapping the 250 

time-resolved STILT footprints with the daily 222Rn fluxes. Then, we aggregated the STILT footprints over time to mimic 

the FLEXPART and NAME footprint products and mapped them with 222Rn fluxes, which were averaged over different time 

intervals ranging from 1 to 10 days (see Fig. A1). The comparison between the results of the time-aggregated and time-

resolved STILT runs reveals that the time-aggregated footprints are mainly representative for the average 222Rn fluxes of the 

first 3 days before particle release. Therefore, we average the 222Rn fluxes over 3 days when mapping them with the 255 

FLEXPART and NAME footprints. In this study, we use the time-resolved STILT footprints to perform our main analyses 

and apply the time-aggregated FLEXPART and NAME footprints to investigate the impact of different transport models on 

the inversion results, by which means we assess the robustness of our results.  

 

The back-trajectories of the numerical particles are only calculated whilst the particles remain within the European model 260 

domain. For particles that leave the model domain, lateral boundary conditions are needed. For this purpose, we have 

constructed a simple global 222Rn flux map, assuming a constant 222Rn flux of 1 atom cm-2 s-1 (21 mBq m-2 s-1) over land 
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surfaces south of 60°N, a halved 222Rn flux of 0.5 atoms cm-2 s-1 (10.5 mBq m-2 s-1) over land in the higher latitudes >60°N, 

and a vanishing 222Rn flux in permafrost regions. The much smaller 222Rn fluxes from the ocean were neglected. We use the 

Eulerian global atmospheric Tracer Model (TM3, Heimann and Körner, 2003) and this global 222Rn flux map to simulate 265 

hourly 222Rn activity concentrations for each European grid cell. A 222Rn background concentration is then determined for 

each site and hour by averaging the modeled 222Rn activity concentrations in the respective grid cells of the endpoints of the 

STILT back-trajectories after taking radioactive decay into account. Due to the relatively short 222Rn atmospheric lifetime, 

these background 222Rn activity concentrations are typically quite low (the median of the mean background contribution 

across all sites is <15%). We subtract this modelled 222Rn background from the 222Rn observations and use the resulting 270 

222Rn excess concentrations to constrain the 222Rn fluxes in Europe. Note that we use the same 222Rn excess concentrations 

when we apply the time-aggregated FLEXPART and NAME footprints in the inversion.  

2.4 Inversion system 

In this study, we use the CarboScope-Regional (CSR) inversion system described in Rödenbeck et al. (2003, 2009) to 

constrain the process-based 222Rn fluxes with the atmospheric 222Rn observations. In the following, we provide a brief 275 

overview of the CSR inversion system, with a specific focus on the aspects that are particularly relevant to the 222Rn 

inversion. For more technical details about the inversion algorithm and how the iterative solution is found, we refer the 

reader to Rödenbeck (2005).  

 

In the CSR system, a quadratic Bayesian cost function is minimized by applying a conjugate gradient algorithm that allows 280 

large state vectors. The cost function includes a model-data mismatch vector that contains the hourly differences between the 

observed and modelled 222Rn activity concentrations from all 17 sites. The model-data mismatch vector is weighted with a 

covariance matrix containing the uncertainties of the 222Rn observations and the transport model. As already mentioned, we 

assumed an uncertainty of 0.5 Bq m-3 for the hourly 222Rn observations. The uncertainty of the transport model is chosen 

dependent on the type of observation site (Rödenbeck 2005). For example, continental tower sites can typically be better 285 

represented in the model than sites such as Heidelberg, which is located in a narrow river valley with complex local 

circulation. Depending on the site, we therefore assumed a transport model uncertainty of ca. 0.5 to 1.5 Bq m-3 (see Tab. 2). 

The total model-data mismatch uncertainty is obtained by adding the observation and transport model uncertainties 

quadratically. To account for temporal correlations between consecutive observations, we applied the so-called data density 

weighting proposed by Rödenbeck (2005). This inflates the uncertainty of the model-data mismatch by the square root of the 290 

number of observations within a week. One week is the typical timescale for synoptic events, in which the 222Rn 

observations are expected to be temporally correlated. As mentioned above, we only use afternoon observations (or 

nighttime observations for mountain sites), when the atmosphere is typically well mixed. In addition, we applied a 2-

filtering to these data (as described in Rödenbeck et al., 2018) to exclude the observations with the largest model-data 

mismatch, as these are considered to be inadequately represented by the transport model.  295 
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The Bayesian approach adds a priori information to stabilize the solution. We use the process-based 222Rn flux maps 

described in Sect. 2.1, as well as a map with spatially and temporally constant fluxes over the European continent (“flat 

prior”) as a priori estimates. Due to the large differences between the 222Rn flux maps, we assume an a priori uncertainty of 

100% for the European 222Rn fluxes and for a time scale similar to the temporal correlation length. In the standard setting of 300 

our inversion system, we assume that the a priori flux errors are spatially correlated over a length scale of about 400 km, and 

we choose a temporal correlation length of 3.5 days (“Filt52T” in CarboScope notation). In Sect. 3.2.2, we investigate how 

changes to these settings affect the inversion results. The a priori uncertainties are described by the a priori covariance 

matrix, which determines the a priori constraint. The ratio between a priori and data constraint determines how strongly the 

solution is regularized by the a priori information. The inversion system minimizes the model-data mismatch by scaling the 305 

222Rn fluxes, taking into account the model-data mismatch and the a priori uncertainties. Overall, we use the CSR system to 

determine daily 222Rn fluxes for the whole year 2021 at a spatial resolution of 0.25°.  

2.4 Temporal correlation between soil moisture and 222Rn flux variability 

As soil moisture controls temporal changes of the diffusion coefficient within the soil and is therefore expected to be the 

main driver of the temporal variability of the 222Rn flux, we want to investigate what information about soil moisture is 310 

contained in the 222Rn observations. For this purpose, we use the results of the flat-prior inversion run, for which no a priori 

information on soil moisture variability has been used. This means that the a posteriori flux variability is only caused by the 

signals in the 222Rn observations (possibly with spurious contributions from variations in the transport model error). To 

investigate the extent to which variations in the 222Rn flux are caused by changes in soil moisture, we calculated the temporal 

correlation between the daily a posteriori flux of a domain covering Germany and the daily GLDAS-Noah and ERA5-Land, 315 

respectively, soil moisture average of the same domain (see Sect. 3.3).  

3 Results 

3.1 Comparison of the process-based 222Rn flux maps 

Figure 2 shows a comparison between the three process-based 222Rn flux maps. The GLDAS and ERA5 222Rn flux maps 

show similar 222Rn hotspot regions, e.g. on the Iberian Peninsula and in Italy, which can be explained by the high uranium 320 

activity concentrations there (see Fig. 2a,b). Note that these 222Rn flux maps differ only in the soil moisture and porosity 

data, but not in the underlying uranium map. Compared to the ERA5-Land soil moisture, the GLDAS-Noah soil moisture 

leads to larger annual mean 222Rn fluxes in central Europe but to smaller 222Rn fluxes in Scandinavia (Fig. 2c). Overall, the 

annual mean flux differences between both maps can be as large as the fluxes themselves. The DWD/GLDAS 222Rn flux 

map has a higher spatial resolution for Germany (Fig. 2e). The DWD soil moisture and porosity leads to lower annual mean 325 
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222Rn fluxes in the southern part of Germany and to slightly higher 222Rn fluxes in northern Germany than the 222Rn fluxes 

based on GLDAS-Noah soil moisture and porosity data (Fig. 2f).  

 

Figure 2: Annual mean 222Rn fluxes in 2021 for the European model domain (a-b) and for the Germany domain (d-e) based on 

GLDAS-Noah (a, d), ERA5-Land (b), and DWD/GLDAS (e) soil moisture data. The DWD/GLDAS 222Rn flux map (e) is based on 330 
DWD soil moisture and porosity data for Germany and GLDAS-Noah soil moisture and porosity data for outside Germany. 

Panels (c) and (f) show the annual mean differences between the GLDAS-Noah and ERA5-Land based 222Rn fluxes and the 

GLDAS-Noah and DWD/GLDAS based 222Rn fluxes, respectively. 

 

3.2 Top-down evaluation of the GLDAS and ERA5 222Rn flux maps 335 

3.2.1 Comparison between a posteriori and process-based 222Rn fluxes 

We start by evaluating the existing 222Rn flux maps from Karstens and Levin (2022a,b), which are based on the GLDAS-

Noah and ERA5-Land soil moisture data.  The inversion increases the process-based a priori 222Rn fluxes in central Europe 

and decreases them over the British Isles (see Fig. 3a,b). This corresponds to the negative model-data mismatches caused by 

the a priori fluxes at most of the observation sites in central Europe and the positive model-data mismatches at the Irish site 340 

Mace Head (MHD) and the British site Weybourne (WAO; see Fig. B1). The negative flux adjustments over the British Isles 

could be due to boundary effects, as the British Isles are most affected by potential biases in the 222Rn background due to the 

prevailing westerly winds in Europe. The ERA5 a priori fluxes lead to more negative model-data mismatches at most of the 

continental sites than the GLDAS a priori fluxes (Fig. B1). Consequently, the ERA5 fluxes in central Europe are increased 
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much more by the inversion than the GLDAS 222Rn fluxes, bringing the posterior fluxes closer to each other than the priors 345 

(Fig. 3c). However, the posterior flux estimate of the flat-prior inversion shows some substantial differences of up to roughly 

50% for individual months compared to the posterior estimates based on the GLDAS and ERA5 prior fluxes (compare grey 

curve with red and blue curve in Fig. 3c). In particular, the flat-prior inversion results do not show the pronounced seasonal 

cycle that is present in the posterior flux estimates of the inversion runs using the process-based priors. This indicates that 

the 222Rn flux estimates for the whole European domain are strongly influenced by the prior information, which can be 350 

explained by the sparse 222Rn data coverage in Europe. In the following we will therefore focus our analysis on a central 

European domain around Germany, which is covered well by the 222Rn observations.  

 

 

Figure 3: Results of the CSR-STILT inversion runs with GLDAS (red), ERA5 (blue), and flat (grey) a priori 222Rn fluxes. Panels 355 
(a) and (b) show the annual mean innovation (a posteriori minus a priori 222Rn flux differences) for the inversion runs based on the 

prior fluxes from GLDAS and ERA5, respectively. Panels (c) and (d) show the time series for the full year of the a priori (dotted 

line) and the a posteriori (solid line) 222Rn fluxes in the entire EU domain and in the Germany domain, respectively, for 2021. The 

Germany domain is depicted by the magenta rectangle in the maps in panels (a) and (b). 

 360 

In this Germany domain, the flat-prior inversion yields very similar flux estimates than the inversions based on the GLDAS 

and ERA5 a priori fluxes (Fig. 3d). The annual means of the three different posterior fluxes agree within 10%, which is 

rather small considering the two process-based a priori fluxes in the Germany domain differ by more than 60% on average in 

2021. Also, the temporal variability of the posterior fluxes is comparable; the normalized standard deviations of the three 

different posterior fluxes agree within 10%. This illustrates that the flux estimates in the Germany domain are indeed well 365 
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constrained by the observations and less affected by the prior information. Therefore, in the following, we will use the flat-

prior inversion results, which are not based on additional information about temporal and spatial flux variability (and are 

thus based on the least a priori information), to evaluate the performance of the process-based 222Rn flux maps.  

 

In the Germany domain, the annual mean a posteriori 222Rn flux (of the flat-prior inversion) is about 20% and almost 100% 370 

larger than the GLDAS and ERA5 process-based 222Rn fluxes, respectively, indicating that, in particular, the ERA5 222Rn 

fluxes might be too low in central Europe. In addition, the a posteriori flux shows a higher temporal variability than the 

bottom-up fluxes. The normalized standard deviation of the daily a posteriori 222Rn flux is about 10% (ERA5) and 35% 

(GLDAS) higher than the normalized standard deviation of the process-based fluxes in the Germany domain. In Sect. 3.4, we 

investigate if we can increase the process-based 222Rn fluxes and their temporal variability by using higher resolution soil 375 

moisture and porosity data for Germany. Overall, the inversion reduces the annual mean and the standard deviation of the 

model-data mismatch at almost all sites (Fig. B1).  

3.2.2 How robust are the inversion results? 

After having shown that the different a priori fluxes (GLDAS, ERA5, flat) lead to only small changes in the a posteriori 

fluxes in the Germany domain, we want to investigate how robust these inversion results are. For this, we conduct several 380 

inversion runs using different settings, to assess sensitivity (see Tab. 3).  

 

The various inversion runs performed with CSR-STILT lead to very similar a posteriori 222Rn fluxes in Germany (see Fig. 

4). Most of these sensitivity tests yield a posteriori fluxes with an annual mean difference well below 10% compared to the a 

posteriori flux of the flat-prior inversion run based on the standard setting (described in the first row of Tab. 3). This shows 385 

that we indeed get robust results for the Germany domain, which is well covered by 222Rn observation sites. There is one 

exception to this result however, inversion run ‘flat_ANSTO’, which yields an a posteriori flux that has an almost constant 

offset of 13% compared to the respective inversion run with the standard setting (magenta curve in Fig. 4). For this run we 

have applied a different 222Rn observation scale (ANSTO scale instead of HRM scale, see Sect. 2.2; note that the simulated 

background 222Rn concentration is the same as for the inversions with the HRM scale). Since this ANSTO scale leads to 11% 390 

higher 222Rn activity concentrations than the HRM scale, such an offset in the 222Rn fluxes is to be expected. This illustrates 

the urgent need for well-calibrated and SI-traceable 222Rn observation data sets.  
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Figure 4: (a) Daily a posterior 222Rn fluxes in the Germany domain for different inversion runs performed with CSR-STILT. Panel 

(b) shows the relative difference between the respective a posteriori fluxes and the flat-prior inversion run (grey curve in (a)) with 395 
the standard parameter settings described in Sect. 2.4. The different inversion runs are described in Tab. 3. 

 

Table 3: Parameter settings for the different sensitivity runs shown in Fig. 4. 

Sensitivity runs Transport 

model 

Prior 

fluxes 

Prior 

uncertainty 

Temporal 

correlation 

length 

Spatial 

correlation 

length 

222Rn 

observation 

scale 

flat STILT flat prior 100% 3.5 days ca. 400 km HRM 

GLDAS STILT GLDAS 100% 3.5 days ca. 400 km HRM 

ERA5 STILT ERA5 100% 3.5 days ca. 400 km HRM 

flat_50 STILT flat prior 50% 3.5 days ca. 400 km HRM 

flat_7days STILT flat prior 100% 7 days ca. 400 km HRM 

flat_200km STILT flat prior 100% 3.5 days ca. 200 km HRM 

flat_ANSTO STILT flat prior 100% 3.5 days ca. 400 km ANSTO 

CSR-FLEX FLEXPART flat prior 100% 3.5 days ca. 400 km  HRM 

CSR-NAME NAME flat prior 100% 3.5 days ca. 400 km  HRM 

 

 400 
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Next, we analyse the results of the CSR-FLEX and CSR-NAME inversions, for which FLEXPART and NAME footprints 

are used instead of the STILT footprints. The NAME forward simulations based on the prior 222Rn fluxes strongly 

overestimate the observations from the mountain site Schauinsland (SSL) by ca. 2.7 Bq m-3 for the annual average for the 

GLDAS prior (see Fig. B1). Such large overestimations are not observed at other sites and in the STILT and FLEXPART 

simulations. This could be due to the fact that the NAME model, unlike STILT and FLEXPART, did not use an elevated 405 

release height for the SSL site (see Tab. 2) and therefore has difficulty in correctly representing the steep terrain there. 

Therefore, we excluded the observations from SSL in the case of the CSR-NAME inversion to avoid unrealistic flux 

adjustments in southwest Germany.  

 

For most of the continental sites, FLEXPART and NAME show higher surface influences, and thus larger prior 222Rn 410 

concentrations and smaller model-data mismatches than STILT (Fig. B1). Averaged over all sites in the Germany domain, 

the FLEXPART simulations lead to 46 and 18% (for GLDAS and ERA5 222Rn flux, respectively) and the NAME 

simulations lead to 47 and 32% smaller model-data mismatches than STILT (average of NAME model-data mismatch 

without SSL). Consequently, the CSR-FLEX and CSR-NAME inversions lead to smaller 222Rn flux adjustments in central 

Europe than STILT. On an annual average, the posterior 222Rn flux based on the flat prior is 5% and 12% smaller for the 415 

CSR-FLEX and CSR-NAME inversions, respectively, than for the CSR-STILT inversions in the Germany domain. 

However, there seems to be a slight seasonal cycle in the difference. In the winter half-year the FLEXPART and NAME 

based a posteriori 222Rn fluxes are within 3% of the STILT based fluxes, whereas during summer the FLEXPART and 

NAME based a posteriori 222Rn fluxes are 12% and 23% lower than the STILT based flux, respectively.  

 420 

Overall, these results show that changing the transport model leads to some deviations in the a posteriori fluxes, but these are 

comparable to the deviations caused by varying the inversion parameter settings, as shown in Fig. 4. Moreover, these 

transport model-based deviations are not larger than the annual flux differences caused by the choice of the 222Rn 

observation scale. 
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 425 

Figure 5: Comparison between the CSR-STILT (grey), CSR-FLEX (green), and CSR-NAME (pink) inversion results for the 

Germany domain. All inversions were performed with the flat a priori flux (grey dotted line in (a)). In the case of the CSR-NAME 

inversion, the observations from SSL weren’t used (“w/o SSL”) due to unexpectedly large prior model-data mismatches at that site 

(see text). Panel (a) shows the daily 222Rn fluxes and panel (b) shows the relative difference between the different a posteriori fluxes 

and the flat-prior inversion run performed with CSR-STILT (solid grey curve in (a)). 430 

 

3.3 What soil moisture information is in the 222Rn observations? 

Figure 6 shows the temporal correlation between the daily a posteriori 222Rn flux and soil moisture data, both averaged over 

the Germany domain. For both soil moisture products, we obtain quite strong anti-correlations between about -0.6 for 

GLDAS-Noah and even -0.8 for ERA5-Land. This anti-correlation means that we get high 222Rn fluxes when soil moisture is 435 

low, which makes sense as soil pores are less filled with water in dry conditions and the diffusion coefficient of 222Rn is 

higher in air than in water. In addition, the stronger anti-correlation in the case of ERA5-Land might indicate that this 

reanalysis product describes the temporal variability of the soil moisture better than GLDAS-Noah. We interpret the 

existence of meaningful correlations also as a confirmation that the inversion is indeed picking up real flux variations (even 

though spurious correlations due to the relationships of soil moisture and atmospheric mixing cannot be excluded either).  440 
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Figure 6: (a) Flat prior (in grey, dotted) and associated a posteriori flux (in grey, solid) for the Germany domain, together with the 

ERA5 and GLDAS a posteriori fluxes for comparison. (b) ERA5-Land (blue) and GLDAS-Noah (red) soil moisture within the 

Germany domain for the upper 0-10 cm (solid), 0-40 cm (dashed), and 0-100 cm (dotted) of the soil column. (c) Correlation 

between the posterior flux curve of the flat-prior inversion shown in (a) and the different soil moisture curves shown in (b), 445 
calculated for different time lags of the soil moisture curves. 

 

3.4 Alternative 222Rn flux maps 

An open question is why the process-based flux maps driven by soil moisture fields show less variations than the flux 

estimates from the inversion. Karstens et al. (2015) estimated that the soil parameters of the top 100 cm of soil are most 450 

important for 222Rn flux at the surface, and Karstens and Levin (2024) used the average soil moisture of the top 40 cm of soil 

in their 222Rn flux model. To investigate systematically over which soil depth interval the soil moisture data should be 

averaged, we calculated the average soil moisture of the top 100 cm, top 40 cm, and top 10 cm of soil for both reanalysis 

products GLDAS-Noah and ERA5-Land, and calculated time-lagged correlations with the a posteriori flux of the flat-prior 

inversion (Fig. 6c). If we average the soil moisture data of the top 40 cm of soil, as done in Karstens and Levin (2024), the 455 

maximum anti-correlation is reached when the soil moisture curve is shifted by one day, which means that the soil moisture 

lags the 222Rn flux by one day. This time lag even increases to 2-3 days if the soil moisture of the top 100 cm of the soil is 

averaged. So, the 222Rn flux responds faster to rain or drought events than the average soil moisture of the top 40 or 100 cm 
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of soil, suggesting that the average soil moisture responds in a delayed way. However, if only the soil moisture of the top 10 

cm is averaged, the time lag between soil moisture and 222Rn flux disappears. This could indicate that the variability of the 460 

222Rn flux is mainly caused by the soil moisture variability in the top 10 cm of the soil. This leads to the question: Does the 

222Rn flux model produce larger temporal variations if driven by average soil moisture data from the top 10 cm of soil only?  

 

 

Figure 7: Soil moisture (a), air-filled pore space (b) and process-based 222Rn fluxes (c) based on the ERA5-Land (blue), GLDAS-465 
Noah (red), and DWD/GLDAS (orange) soil moisture and porosity data averaged over the top 10 cm (solid) and the top 40 cm 

(dashed) of the soil column. The a posteriori flux (grey) based on the flat prior is shown in (c) for comparison. 

Indeed, the average soil moisture in the top 10 cm of the soil shows a higher temporal variability than the average soil 

moisture in the top 40 cm, leading to an increased temporal variability of the 222Rn flux (see Fig. 7). The normalized standard 

deviation of the 222Rn fluxes based on the top 10 cm soil moisture data is 22% (ERA5) and 24% (GLDAS) higher compared 470 

to the respective fluxes based on the top 40 cm soil moisture data. Consequently, the bottom-up 222Rn fluxes based on the top 

10 cm soil moisture data show a similar temporal variability as the flux estimate of the flat-prior inversion (the normalized 

standard deviations of the bottom-up fluxes and the inversion result agree within about 10%). Nevertheless, using the top 10 

cm soil moisture data instead of 40 cm has, for both reanalysis products, only a very minor impact on the annual mean 222Rn 

fluxes (in fact the soil moisture data from the top 10 cm of soil lead to ca. 2-3% lower annual mean 222Rn fluxes). It should 475 
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be noted that both reanalysis products use the same porosity values for all soil layers, so they assume that porosity does not 

change with soil depth. 

 

Next, we evaluated if we could further improve the process-based 222Rn fluxes by using a high-resolution soil moisture data 

product from the DWD model for Germany, which is based on vertically resolved porosity data (see Sect. 2). The average 480 

DWD soil moisture in the top 10 cm lies between the ERA5-Land and GLDAS-Noah soil moisture and is on average even 

0.02 m3/m3 higher than in the top 40 cm. However, the porosity in the top 10 cm is also higher than in the top 40 cm, which 

could be explained by a layer of humus below the soil surface. Thus, the air-filled pore space, which results from the 

porosity minus the soil moisture, is on an annual average very similar in the top 10 cm and in the top 40 cm of the soil. 

Moreover, the air-filled pore space is not larger for the DWD data product than for GLDAS-Noah and ERA5-Land. 485 

Therefore, even with the high-resolution soil moisture and the vertically resolved porosity data from the DWD model, the 

222Rn fluxes are still roughly 25% smaller compared to the a posteriori flux in the Germany domain. However, also the 

bottom-up 222Rn fluxes based on the DWD data show a higher (15%) temporal variability for the 0-10 cm soil moisture 

average than for the 0-40 cm average. Hence, the normalized standard deviation of the DWD-based 222Rn flux based on the 

top 10 cm soil moisture data is again similar to the normalized standard deviation of the a posteriori 222Rn flux.  490 

4 Discussion  

4.1 Does the 222Rn data coverage allow robust flux estimates in central Europe? 

So far, inverse modelling has only rarely been used to estimate 222Rn fluxes. We are aware of a study by Hirao et al. (2010), 

who estimated the Asian 222Rn fluxes with a Bayesian inversion using atmospheric 222Rn observations from seven sites in 

East Asia and an Eulerian transport model. Their results indicate a higher 222Rn flux in East Asia than suggested by an a 495 

priori estimate from a 222Rn exhalation model. However, to our knowledge, a 222Rn inversion has not yet been performed 

over Europe. Therefore, we first investigated whether the current coverage of atmospheric 222Rn observations is sufficient to 

estimate robust 222Rn fluxes over Europe. We found that the annual mean and the temporal variability of the 222Rn flux 

estimates for the whole European model domain strongly depend on the prior information used. This can be explained by the 

poor coverage of available 222Rn observations in large parts of Europe. Currently, the ICOS atmospheric station network is 500 

planning to release hourly resolved 222Rn activity concentration measurements from several tower sites on a regular basis. 

Provided the number of ICOS sites carrying out 222Rn measurements increases in the future as was suggested previously 

(ICOS RI, 2020) this will improve the availability of 222Rn data in Europe.  

 

Our inversion results are much less affected by the prior information if we restrict the domain to a region around Germany, a 505 

region well covered by 222Rn observations. For this region, the differences between the annual mean 222Rn flux estimates of 

various inversion configurations are much smaller (on the order of 10 %) compared to the annual mean differences between 
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the process-based 222Rn fluxes (> 60 %). This indicates that the current data coverage in central Europe enables robust 

inversion results that are mainly determined by the observational data and that are relatively independent of the choice of the 

a priori fluxes. This is a prerequisite for reliably evaluating process-based 222Rn fluxes with an atmospheric transport 510 

inversion. However, differences in the scale of the 222Rn observations directly translate into the inversion results and 

determine the extent to which absolute 222Rn fluxes can be estimated with a 222Rn inversion (see Fig. 8). This illustrates the 

need for further intercomparison projects between the 222Rn instruments as well as a well-calibrated and SI-traceable 222Rn 

data set. A proposed standardized protocol for the harmonization of 222Rn measurements has recently been published by 

Kikaj et al. (2025).  515 

4.2 What is the performance of process-based European 222Rn flux maps? 

Our inversion leads to ca. 20% (GLDAS) and almost 100% (ERA5) larger annual mean 222Rn fluxes than the process-based 

222Rn fluxes in the Germany domain, and the temporal variability is also higher in the posterior flux. Estimating correct 

absolute 222Rn fluxes with a 222Rn inversion is challenging due to the aforementioned differences in the scale of the 222Rn 

observations as well as general uncertainties of atmospheric transport inversions, such as the representation of vertical 520 

mixing or lateral boundary conditions. In fact, we found that the FLEXPART and NAME transport models lead to up to 12% 

lower annual mean 222Rn fluxes. In contrast, using the ANSTO scale instead of the HRM scale would lead to even higher 

222Rn flux estimates, and thus further increase the bias compared to the process-based fluxes. From that we conclude that 

especially the ERA5 222Rn fluxes might be underestimated in central Europe, and that the bias compared to the posterior flux 

is unlikely to be fully explained by deficits in the inversion. This is consistent with other studies, which found that the ERA5 525 

soil moisture might be too high in central Europe (Li et al., 2020; Karstens and Levin, 2024).  

 

The significant (anti-) correlation between the posterior flux of the flat-prior inversion and the soil moisture data indicates 

that the temporal variability in the inversion signals are reliable and not only caused by inversion noise. Compared to 

GLDAS-Noah, the ERA5-Land soil moisture leads to a larger anti-correlation, indicating that it may better describe the 530 

temporal variability of the soil moisture in central Europe. Overall, the differences between the a priori and the a posteriori 

222Rn fluxes might give a rough estimate for the uncertainty of the process-based 222Rn fluxes (see Fig. 8).  
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Figure 8: Annual mean 222Rn fluxes in the Germany domain for 2021. Shown are the process-based GLDAS, ERA5, and 

DWD/GLDAS prior 222Rn fluxes, and the a posteriori fluxes based on the respective prior fluxes. The hatched range indicates the 535 
increase in the a posteriori fluxes when the ANSTO 222Rn observation scale is used instead of the HRM scale. 

 

4.3 What can we learn from the inversion results to improve the 222Rn flux maps? 

The comparison between the temporal variability of the posterior 222Rn flux estimate of the flat-prior inversion and the soil 

moisture variability shows that soil moisture is an important driver for the temporal variability of the 222Rn fluxes and that 540 

the 222Rn flux variability is mainly driven by soil moisture in the top soil layer. The latter could be explained by the 

following points: (1) 222Rn gas produced in deeper soil layers has to travel a longer distance in the soil before it reaches the 

atmosphere and may be more affected by radioactive decay than 222Rn gas produced in upper soil layers. The soil moisture in 

the upper soil layers would therefore have a greater effect on the 222Rn flux at the surface than soil moisture in the deeper soil 

layers. (2) Depending on the type of soil, precipitation may take days to reach the deeper layers of the soil. As a result, air 545 

from the soil layers closer to the surface will outgas first, and the outgassing of air from deeper layers will be delayed. Soil 

moisture averaging over several layers may dilute the expected correlation between soil moisture and 222Rn flux at the 

surface. (3) Similarly, if the upper layer is saturated after smaller amounts of precipitation, but there are still many air-filled 

pores underneath, the top saturated layers reduce the air-filled pore space and therefore diffusion potential. 222Rn from deeper 

soil layers will hardly reach the surface.    550 

 

The temporal variability of the process-based 222Rn fluxes increases for all three soil moisture products GLDAS, ERA5 and 

DWD when 222Rn fluxes are calculated using the soil moisture data from the top 10 cm instead of the top 40 cm of the soil 

column, resulting in 222Rn fluxes with similar temporal variability as our a posteriori flux. This finding could also open up 

the possibility of creating 222Rn flux maps using satellite-based soil moisture retrievals, which are only sensitive to the top 555 
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few centimeters of soil. Even though such satellite data can have large gaps, e.g., due to snow cover, frozen ground or strong 

vegetation cover, such an application for improved 222Rn flux maps might be possible. 

 

However, using the soil moisture and porosity data from the top 10 cm instead of the top 40 cm of soil has almost no effect 

on the absolute 222Rn fluxes. The absolute 222Rn fluxes are strongly dependent on the air-filled pore space, which determines 560 

the strength of the diffusion process. The comparison between GLDAS-Noah and ERA5-Land illustrates that an annual 

mean difference of 0.06 m3/m3 in the air-filled pore space already leads to a difference of more than 60 % in the annual mean 

222Rn fluxes in the Germany domain. Therefore, soil moisture impacts not only the temporal variability of the 222Rn fluxes, 

but together with porosity also the absolute 222Rn fluxes. Thus, an overestimation of the soil moisture and/or an 

underestimation of the porosity can easily change the absolute 222Rn fluxes. Overall, a reduction of the differences in the 565 

absolute values of different soil moisture and porosity products would further constrain process-based 222Rn fluxes. In this 

respect an expansion of soil moisture measurement networks such as the International Soil Moisture Network (ISMN), the 

Cosmic-ray soil moisture monitoring network (COSMOS) or similar would be desirable.  

 

Of course, there may also be other parameters or processes that are not or only inadequately described in the 222Rn flux 570 

model and could explain a bias in the absolute fluxes: e.g., an underestimation of the 222Rn source due to too low radium 

concentrations or a too low emanation coefficient. In addition, advective fluxes, e.g. induced by a pressure gradient between 

the atmosphere and the soil, could lead to a 222Rn flux contribution. However, their overall contribution might be negligible 

compared to the diffusive flux because the permeability of the soil is several orders of magnitude smaller than the diffusion 

coefficient, and the hydrostatic pressure gradients are typically small (López-Coto et al., 2013; Nazaroff, 1992). 575 

Nevertheless, changes in atmospheric pressure e.g. due to weather fronts can induce short-term variability in the 222Rn flux: 

decreasing atmospheric pressure is expected to suck 222Rn-rich air from the soil into the atmosphere, whereas rising 

atmospheric pressure forces 222Rn-poor air from the atmosphere into the soil (Clements and Wilkening, 1974). However, due 

to the compensating effects of decreasing and rising atmospheric pressure, the overall effect of pressure is larger on 

instantaneous 222Rn flux variability than on absolute (time-averaged) 222Rn fluxes (Schery et al., 1984; Ishimori et al., 2013).  580 

 

Indeed, we found no significant temporal correlation (R2< 0.05) between the a posteriori 222Rn flux and the atmospheric 

pressure (and its first derivative) in the Germany domain and also for a smaller domain in south-west Germany. This may 

indicate that the 222Rn flux variability is much more influenced by soil moisture than by pressure changes on the time scale 

accessible to the inversion (i.e. daily resolution) and/or that the pressure effect is superimposed by other meteorological 585 

effects (e.g. wind, precipitation). 

 

Overall, further development of the 222Rn flux maps is needed. Our inversion results could already give some indications on 

how to further improve the maps. Finally, it would also be interesting to compare our inversion results with other 222Rn flux 
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maps that are based on different 222Rn flux models or even completely different methods such as 222Rn flux estimation using 590 

the terrestrial -dose rate (Szegvary et al., 2009).  

5 Conclusions 

The characteristics of 222Rn make it a powerful natural tracer for atmospheric transport that can be used to validate and 

calibrate atmospheric transport models or to estimate GHG fluxes, e.g., with the Radon-Tracer Method (RTM, e.g., Levin et 

al., 2021). However, all these applications require an accurate estimate of the 222Rn flux. So far, 222Rn fluxes have mainly 595 

been evaluated by local 222Rn flux measurements, which have a limited spatial representativeness. In this study, we 

investigated the potential of a top-down approach to evaluate process-based 222Rn fluxes, although we are well aware that 

such an approach is cyclic and assumes unbiased model transport, which of course may not be the case (otherwise the 

information from 222Rn observations would no longer be needed). We carefully assessed the impact of potential deficits in 

the transport models by performing several inversion runs with three different transport models. We found that the current 600 

coverage with 222Rn observations in Europe allows robust and data-driven 222Rn flux estimates within a region covering 

Germany, which also provide indications on how to improve the process-based 222Rn flux maps. 

 

We evaluated two process-based 222Rn flux maps for Europe, which are based on two different soil moisture reanalyses 

products (GLDAS-Noah versus ERA5-Land). Our a posteriori flux is ca. 20% (GLDAS) and almost 100% (ERA5) higher 605 

than the process-based 222Rn fluxes in a domain covering Germany in 2021. Furthermore, both 222Rn flux maps tend to 

underestimate the temporal variability of the 222Rn fluxes, although the variability of the ERA5-based 222Rn fluxes is in 

better agreement with the variability of our inversion results. 

 

We found a significant correlation of r=-0.6 and r=-0.8 between the posterior flux of a flat-prior inversion, which is 610 

independent of any prior information about spatial and temporal flux variations, and the GLDAS-Noah and ERA5-Land soil 

moisture, respectively. Moreover, the soil moisture time series lag a few days behind the 222Rn flux if the soil moisture is 

averaged over a too large depth (i.e. > 40 cm). In contrast, the time series of the soil moisture and the 222Rn flux are time-

synchronous if the soil moisture average of the top 10 cm of soil is used. This indicates that the temporal 222Rn flux 

variability is mainly caused by the soil moisture variability in the top 10 cm of soil. Indeed, we were able to increase the 615 

temporal variability of the process-based 222Rn fluxes by using soil moisture data from the top 10 cm only, resulting in a 

temporal variability similar to that of the posterior flux estimate.  

 

Finally, realistic uncertainty estimates for the 222Rn flux maps are required when 222Rn is used in joint inversions for a 

targeted tracer such as methane (CH4). Such a dual-tracer inversion directly incorporates the 222Rn information on the 620 

transport model performance by exploiting the fact that the transport model error (as part of the model-data mismatch error) 

https://doi.org/10.5194/egusphere-2025-477
Preprint. Discussion started: 20 February 2025
c© Author(s) 2025. CC BY 4.0 License.



26 

 

is correlated between the targeted tracer (e.g., CH4) and 222Rn. In a subsequent study, we will investigate whether this 

information can help to improve the top-down flux estimates of the targeted tracer (CH4). 

Appendix 

A How to average the 222Rn fluxes for the time-aggregated FLEXPART and NAME footprints? 625 

 

Figure A1: Modelled 222Rn concentration differences between the simulations based on time-aggregated and time-resolved STILT 

footprints. The time-resolved STILT footprints are mapped with daily 222Rn fluxes (based on GLDAS-Noah soil moisture). The 

time-aggregated STILT footprints are mapped with GLDAS 222Rn fluxes, which were averaged over 1 (grey), 2 (red), 3 (blue), 5 

(orange), and 10 days (magenta), respectively. This experiment has been performed to deduce the most appropriate time interval 630 
over which the daily 222Rn fluxes should be averaged when they are mapped with the time-aggregated FLEXPART and NAME 

footprints. The results are shown for a continental (KIT200), a coastal (WAO15), and a mountain (SSL450) site. From this study 

we found that averaging the 222Rn fluxes over 3 days might lead to a good compromise between low bias and low standard 

deviation between the time-aggregated and time-resolved STILT runs (see Sect. 2.3).  

 635 
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B Fits to observations 

 

Figure B1: Fits to the observations for the CSR-STILT, CSR-FLEXPART, and CSR-NAME setups, using the GLDAS and ERA5 

a priori fluxes. Shown are annual mean model-data mismatch (a) and its standard deviation (b) for the a priori (dotted) and the a 

posteriori fluxes (solid) for each observation site. 640 

 

C Impact of the observations from Cabauw (CBW)  

As a leak in the 222Rn inlet line at the CBW site may have contaminated the 222Rn measurements in 2021 at this site, we 

investigated the impact of the CBW observations on the inversion results. For this, we performed an additional (flat-prior) 

inversion run without using the observations from CBW. The resulting posterior 222Rn fluxes are a few percent lower in the 645 

surroundings of CBW if the CBW observations are not used. However, averaged over the Germany domain, the annual mean 

flux is only less than 1% lower.  
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Figure C1: Impact of the observations from Cabauw (CBW) on the inversion results. (a) Ratio between the 222Rn posterior flux of 

the inversion without CBW data and the standard inversion with CBW data. (b) Time series for the full year of both posterior 650 
222Rn fluxes in the Germany domain.  

Code and data availability 

The process-based 222Rn flux maps from Karstens and Levin (2022a,b) can be accessed from 

https://hdl.handle.net/11676/JoDR653JxQuqLvEwzqI2kdMw and https://hdl.handle.net/11676/NvC7D-

BVXlnHtFBdUSKpNVHT. The alternative 222Rn flux maps will be made available. The HRM 222Rn data from the sites of 655 

the German Weather Service (DWD) are compiled in Fischer et al. (2024) and are publicly available at 

https://doi.org/10.18160/Q2M8-B1HJ. The ANSTO 222Rn data from JFJ, OPE, SAC, TRN and WAO can be downloaded 

from the Data Portal of the ICOS Carbon Portal (https://data.icos-cp.eu/portal, Emmenegger et al. (2021), Ramonet et al. 

(2021a,b,c), Forster and Manning (2021)). The ANSTO 222Rn data from RGL and TAC are available through the Centre for 

Environmental Data Analysis (CEDA) at https://catalogue.ceda.ac.uk/uuid/bd7164851bcc491b912f9d650fcf7981 660 

(O’Doherty et al., 2024).  
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