# 1 Supplementary Materials for

| 2        | Significant impact of a daytime halogen oxidant on coastal air quality                                                                                                                    |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3        | Jianing Dai <sup>1</sup> , Tao Wang <sup>1</sup> *, Hengqing Shen <sup>1</sup> , Men Xia <sup>4,5</sup> , Weihang Sun <sup>1</sup> , Guy P. Brasseur <sup>1,2,3</sup>                     |
| 4<br>5   | <sup>1</sup> Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University,<br>Hong Kong SAR 999077, China                                                      |
| 6<br>7   | <sup>2</sup> Environmental Modelling Group, Max Planck Institute for Meteorology, Hamburg, 20146, Germany                                                                                 |
| 8        | <sup>3</sup> NSF-National Center for Atmospheric Research, Boulder, Colorado, 80307, USA                                                                                                  |
| 9<br>10  | <sup>4</sup> Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland                                             |
| 11<br>12 | <sup>5</sup> Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science<br>and Engineering, Beijing University of Chemical Technology, Beijing 100029, China |
| 13       |                                                                                                                                                                                           |
| 14       | * Correspondence to: Tao Wang ( <u>tao.wang@polyu.edu.hk</u> )                                                                                                                            |
| 15       |                                                                                                                                                                                           |
| 16       |                                                                                                                                                                                           |
| 17       | Contents:                                                                                                                                                                                 |
| 18       |                                                                                                                                                                                           |
| 19       | Supplementary Text S1 to S3                                                                                                                                                               |
| 20       | S1. ISORROPIA model                                                                                                                                                                       |
| 21       | S2. Model performance.                                                                                                                                                                    |
| 22       | S3. The Atmospheric Oxidative Capacity.                                                                                                                                                   |
| 23       | Supplementary Figures S1 to S15                                                                                                                                                           |
| 24       | Supplementary Tables S1 to S4                                                                                                                                                             |
| 25       | Supplementary References                                                                                                                                                                  |
| 26       |                                                                                                                                                                                           |
| 27       |                                                                                                                                                                                           |
| 28       |                                                                                                                                                                                           |
| 29       |                                                                                                                                                                                           |
|          |                                                                                                                                                                                           |

#### 31 Supplementary Text

32

S1. ISORROPIA model. The aqueous-phase concentration of aerosol H<sup>+</sup> ([H<sup>+</sup>], unit: mol L<sup>-1</sup>)
was calculated using the ISORROPIA-II model.<sup>1,2</sup> The model inputs are hourly measurements
of ambient relative humidity, molar concentrations (unit: mol m<sup>-3</sup>) of fine aerosol of particulate
Cl<sup>-</sup>, NO<sub>3</sub><sup>-</sup>, SO<sub>4</sub><sup>2-,</sup> Na<sup>+</sup>, and NH<sub>4</sub><sup>+</sup>, measured by an ion chromatography (MARGA), and gasphase ammonia. Aerosol pH was calculated as -log<sub>10</sub> ([H<sup>+</sup>]).

38

S2. Model Performance. Table S3 shows the statistics evaluation of our model performance 39 40 for meteorological parameters (surface temperature, wind speed, and relative humidity) and air pollutants (NO<sub>2</sub>, SO<sub>2</sub>, CO, O<sub>3</sub>, and PM<sub>2.5</sub>) at regular monitoring sites in South China. Based on 41 the statistics, our simulated meteorological parameters match well with the observations, with 42 relatively low mean bias (< 2%) and high correlation coefficient (> 90%). For air pollutants, a 43 44 slight underestimation in surface ozone concentration is simulated in South China (Figure 5a), 45 with the mean bias of -5.5 ppbv (or 12%) on average, mainly located in the non-urban areas. This underestimated ozone concentration is relevant to the underestimated NO2 and CO 46 concentrations in low-NO<sub>x</sub> areas (Figure S6c-d), as the precursors to ozone production. Other 47 reasons for the model discrepancies can be the uncertainties lies in land-used data,<sup>3</sup> natural and 48 anthropogenic emissions,<sup>4,5</sup> and NO<sub>2</sub>-related parameterizations used in the model.<sup>6</sup> For the 49 concentration of PM<sub>2.5</sub>, a slight underestimation is calculated in southern and western part of 50 South China (Figure 5d), with the mean bias of 6.5  $\mu$ g m<sup>-3</sup> (or 13%) on average in entire domain. 51 A slight overestimation of PM<sub>2.5</sub> is distributed on the western coast of South China (Figure 5d), 52 which may be attributable to the uncertainties of sea-salt aerosol deposition in models.<sup>7</sup> 53

54 In summary, our model performance of meteorological conditions and the air pollutants are in 55 generally good agreement with the observations in South China. Our results are reliable to 56 conduct further analysis on the impacts of reactive chlorine species on air quality.

57

**S3.** The Atmospheric Oxidative Capacity. The atmospheric oxidizing capacity (*AOC*; expressed in cm<sup>-3</sup> s<sup>-1</sup>), a parameter introduced by Geyer et al.<sup>8</sup> to account for the contribution of all oxidants, is derived here as the rate at which CO, CH<sub>4</sub>, and NMHCs (all species are noted here as  $Y_i$ ) are oxidized by the radicals of OH•, NO<sub>3</sub>•, and Cl• as well as O<sub>3</sub> (noted as  $X_j$ ).<sup>8,9</sup> Thus, when considering all combinations of the different primary pollutants and atmospheric oxidants. We write the calculation of *AOC* as below:

64 
$$AOC = \sum_{i}^{j} k_{i,j} [Y_i] [X_j].$$



### 67 Supplemental Figures

68



69

70

**Figure S1**. Spatial distribution of HCl (a, unit: mol km<sup>-2</sup> hr<sup>-1</sup>) and fine particulate chloride (b, unit:  $\mu g m^{-2} s^{-1}$ ) from anthropogenic activity. The hourly (c) and monthly (d) variations in the anthropogenic chloride emissions relative to the average hourly/monthly values in different sectors.



**Figure S2**. Relationship between the production rate of  $Cl_2$  [ $P(Cl_2)$ , unit: pptv s<sup>-1</sup>] and

influencing factors. (a) considering  $J(NO_2)$ ,  $[NO_3^-]$ ,  $S_a$ , and  $[H^+]$  and (b) with additional consideration of  $[Cl^-]$ .



82

**Figure S3.** Model performance of Cl<sub>2</sub> concentration at the Cape D'Aguilar site in the autumn

- of 2023 (unit: pptv) (a) Hourly variations in simulated and observed mixing ratios of Cl<sub>2</sub>. (b)
- 86 Campaign-averaged diurnal variations in observed and simulated mixing ratios of Cl<sub>2</sub>.
- 87



Figure S4. Meteorological conditions in field campaign period. (a) Trajectory of super typhoon
"Mangkhut". (b) Contour of surface pressure in continental air (from September 4 to September
14 and from September 22 to October 7). (c-d) Spatial distribution of simulated (in CL case)
surface temperature (c, unit: °C) and planetary boundary layer height (d, unit: meters) in
continental air. Panels (a-b) are obtained from the Hong Kong Observatory
(https://www.hko.gov.hk/tc/).



Figure S5. Hourly variations in simulated and observed mixing ratios of N<sub>2</sub>O<sub>5</sub> (unit: pptv) at
 Cape D' Aguilar site.





Figure S6. (a, b) Comparisons of simulated (in CL case) and observed value of (a) aerosol pH
and (b) aerosol surface at Cape D' Aguilar site in continental air. The observations of aerosol
pH and surface density are calculated by the off-line ISORROPIA model (see Text S1)
constrained by observations. (c-e) Spatial distribution of (c) aerosol surface areas density, (d)
NO<sub>2</sub> concentrations, and (e) CO concentrations in surface continental air in South China
overplotted with available observations in South China.



112

**Figure S7.** Spatial distribution of simulated (a) fine particulate nitrate concentration, (b)

aerosol pH value, (c) N<sub>2</sub>O<sub>5</sub> concentration, and (d) fine particulate chloride concentration (in CL
case) in continental surface air in South China.



120

121 Figure S8. Spatial distribution of simulated mixing ratio of (a) HOCl, (b) ClO, (c) ClNO<sub>3</sub>, and

122 (d) HCl (in CL case) in continental surface air in South China.



125

Figure S9. Changes in the mixing ratios of (a, d) daytime OH• (06:00 to 19:00 LST), (b, e)
daytime HO<sub>2</sub>•, and (c, f) RO<sub>2</sub>• radicals in continental air due to the Cl<sub>2</sub> production (a-c; wCl<sub>2</sub>

128 case-BASE case) and due to all chlorine-related reactions (d-f; CL case-BASE case).





133

Figure S10. Percentage changes in the levels of OH•, HO2•, and RO2• radicals due to the Cl2 132 productions (wCl<sub>2</sub> case-BASE case) at the monitoring sites in Hong Kong and Guangzhou in

134 continental air during daytime (06:00 to 19:00 LST).



137

- 138 Figure S11. Spatial distribution of simulated concentration in total VOCs (unit: ppbv; in CL
- 139 case) in continental surface air.





143 Figure S12. Changes in concentration of Maximum Daily 8-hour Average (MDA8) ozone due

to (a) Cl<sub>2</sub> (wCl<sub>2</sub> case-BASE case) and (b) all chlorine-related reactions (CL case – BASE case)

145 during continental air.



147

149 Figure S13. Percentage changes in the fine particulate (a) nitrate (NO<sub>3</sub><sup>-</sup>), (b) ammonia (NH<sub>4</sub><sup>+</sup>),

150 (c) sulfate  $(SO_4^{2^-})$ , and (d) secondary organic aerosols (SOA) due to  $Cl_2$  production  $(wCl_2 \text{ case}$ 151 – BASE case) in continental air.

![](_page_15_Figure_0.jpeg)

![](_page_15_Figure_1.jpeg)

Figure S14. Diurnal variation of observed (OBS) and simulated (in the BASE, wCl<sub>2</sub>, and CL
cases) concentration of ozone and PM<sub>2.5</sub> at the monitoring sites in Guangzhou.

![](_page_16_Figure_0.jpeg)

![](_page_16_Figure_1.jpeg)

160 Figure S15. Spatial distribution of the mixing ratios of (a) daytime (06:00 to 19:00 LST) Cl<sub>2</sub>

and (b) nighttime (20:00 to 05:00 LST) ClNO<sub>2</sub> with emission reduction in NO<sub>x</sub> and SO<sub>2</sub> by a
factor of 2 (in CL\_50%EMIS case).

#### 166

# Table S1. Chlorine-related reactions in this study.

|            | Reactions              | Reaction rate                                                        | References                 |  |  |  |
|------------|------------------------|----------------------------------------------------------------------|----------------------------|--|--|--|
| Pho        | Photolysis reactions   |                                                                      |                            |  |  |  |
| <b>R</b> 1 | CL2+hv=2CL             | j(Pj_cl2);                                                           | Zhang et al. <sup>10</sup> |  |  |  |
| R2         | OCLO+hv=O+CLO          | j(Pj_oclo);                                                          | Zhang et al. <sup>10</sup> |  |  |  |
| R3         | HOCL+hv=CL+OH          | j(Pj_hocl);                                                          | Zhang et al. <sup>10</sup> |  |  |  |
| R4         | CLNO2+hv=CL+NO2        | j(Pj_clno2);                                                         | Zhang et al. <sup>10</sup> |  |  |  |
| R5         | CLNO3+hv=CL+NO3        | j(Pj_clno3);                                                         | Zhang et al. <sup>10</sup> |  |  |  |
| R6         | CLNO3+hv=CLO+NO2       | j(Pj_clno3b);                                                        | Zhang et al. <sup>10</sup> |  |  |  |
| Gas        | -phase reactions       |                                                                      |                            |  |  |  |
| R7         | CL+O3=CLO{+O2}         | ARR3(2.8d-11, 250dp, TEMP); a                                        | Zhang et al. <sup>10</sup> |  |  |  |
| R8         | CL+HO2=HCL{+O2}        | ARR3(1.4d-11, -270dp, TEMP);                                         | Zhang et al. <sup>10</sup> |  |  |  |
| R9         | CL+HO2=CLO+OH          | ARR3(3.6d-11, 375dp, TEMP);                                          | Zhang et al. <sup>10</sup> |  |  |  |
| R10        | CL+H2O2=HCL+HO2        | ARR3(1.1d-11, 980dp, TEMP);                                          | Zhang et al. <sup>10</sup> |  |  |  |
| R11        | Cl{+H2} {+O2} =HCL+HO2 | ARR3(3.9d-11, 2310dp, TEMP);                                         | Zhang et al. <sup>10</sup> |  |  |  |
| R12        | Cl+NO2=ClNO2           | TROE (1.8d-3, -2. d0,1.0d-10, -1. d0,0.6d0, TEMP, C_M); <sup>b</sup> | Zhang et al. <sup>10</sup> |  |  |  |
| R13        | CLO+OH=Cl+HO2          | ARR3(7.3d-12, 300dp, TEMP) ×0.94d0;                                  | Zhang et al. <sup>10</sup> |  |  |  |
| R14        | CLO+OH=HCl{+O2}        | ARR3(7.3d-12, 300dp, TEMP) ×0.06d0;                                  | Zhang et al. <sup>10</sup> |  |  |  |
| R15        | CLO+HO2=HOCL           | ARR3(2.2d-12, -340dp, TEMP);                                         | Zhang et al. <sup>10</sup> |  |  |  |
| R16        | ClO+O3=Cl{+2O2}        | 1.5d-17;                                                             | Zhang et al. <sup>10</sup> |  |  |  |
| R17        | CLO+NO=CL+NO2          | ARR3(6.2d-12, -295dp, TEMP);                                         | Zhang et al. <sup>10</sup> |  |  |  |
| R18        | CLO+NO2=CLNO3          | TROE (1.8d-31, -3.4D0,1.5d-11, -<br>1.9d0,0.6d0, TEMP, C_M);         | Zhang et al. <sup>10</sup> |  |  |  |
| R19        | CLO+CLO=2CL{+O2}       | ARR3(3.0d-11,2450dp, TEMP);                                          | Zhang et al. <sup>10</sup> |  |  |  |
| R20        | CLO+CLO=CL2{+O2}       | ARR3(1.0d-12,1590dp, TEMP);                                          | Zhang et al. <sup>10</sup> |  |  |  |
| R21        | CLO+CLO=OCLO+CL        | ARR3(3.5d-13,1370dp, TEMP);                                          | Zhang et al. <sup>10</sup> |  |  |  |
| R22        | HCL+OH=H2O+CL          | ARR3(1.7d-12,230dp, TEMP);                                           | Zhang et al. <sup>10</sup> |  |  |  |
| R23        | HOCL+OH=ClO+H2O        | ARR3(3.0d-12,500dp, TEMP);                                           | Zhang et al. <sup>10</sup> |  |  |  |

| R24  | CL+CLNO3=CL2+NO3                                                          | ARR3(6.2d-12, -145dp, TEMP);                                                                                                         | Zhang et al. <sup>10</sup>                     |
|------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| R25  | CLNO3+OH=0.5CLO+0.5HNO3+<br>0.5HOCL+0.5NO3                                | ARR3(1.2d-12,330dp, TEMP);                                                                                                           | Zhang et al. <sup>10</sup>                     |
| R26  | CLNO2+OH=HOCL+NO2                                                         | ARR3(2.4d-12,1250dp, TEMP);                                                                                                          | Zhang et al. <sup>10</sup>                     |
| R27  | CL+CH4=HCL+CH3O2                                                          | ARR3(6.6d-12,1240dp, TEMP);                                                                                                          | Badia et al. <sup>11</sup>                     |
| R28  | CL+CH2O=HCL+HO2+CO                                                        | ARR3(8.1d-11,34dp, TEMP);                                                                                                            | Badia et al. <sup>11</sup>                     |
| R29  | Cl+CH3CHO=HCl+CH3CO3                                                      | 8.0d-11;                                                                                                                             | Badia et al. <sup>11</sup>                     |
| R30  | Cl+CH3OH=HCl+HO2+CH2O                                                     | 5.5d-11;                                                                                                                             | Badia et al. <sup>11</sup>                     |
| R31  | Cl+CH3OOH=HCl+CH3O2                                                       | 5.7d-11;                                                                                                                             | Badia et al. <sup>11</sup>                     |
| R32  | Cl+CH3O2=0.5CH2O+0.5CO+<br>0.5H2O+0.5HO2+0.5HCl+0.5ClO                    | 1.6d-10;                                                                                                                             | Badia et al. <sup>11</sup>                     |
| R33  | CLO+CH3O2=CL+CH2O+HO2                                                     | ARR3(3.3d-12,115dp, TEMP);                                                                                                           | Badia et al. <sup>11</sup>                     |
| R34  | Cl+C3H8=HCl+C3H7O2                                                        | ARR3(7.85d-11,80dp, TEMP);                                                                                                           | Badia et al. <sup>11</sup>                     |
| R35  | CL+C2H6=HCL+C2H5O2                                                        | ARR3(7.2d-11,70dp, TEMP);                                                                                                            | Badia et al. <sup>11</sup>                     |
| R36  | Cl+C3H6{+O2} =HCL+PO2                                                     | 3.6d-12;                                                                                                                             | Badia et al. <sup>11</sup>                     |
| R37  | CL+BIGENE=ENEO2+HCL                                                       | 2.5d-10;                                                                                                                             | This work.<br>Based on Li et al. <sup>12</sup> |
| R38  | CL+BIGALK=ALKO2+HCL                                                       | 5.0d-11;                                                                                                                             | This work.<br>Based on Li et al. <sup>12</sup> |
| R39  | CL+ISOP=ISOPO2+HCL                                                        | 4.3d-10;                                                                                                                             | This work.<br>Based on Li et al. <sup>12</sup> |
| R40  | CL+TOLUENE=0.18CRESOL+<br>0.10TEPOMUC+0.07BZOO+<br>0.65TOLO2+0.28HO2+HCL  | 6.1d-11;                                                                                                                             | This work.<br>Based on Li et al. <sup>12</sup> |
| R41  | CL+XYLENES=0.15XYLOL+<br>0.23TEPOMUC+0.06BZOO+<br>0.56XYLENO2+0.38HO2+HCL | 1.2d-10;                                                                                                                             | This work.<br>Based on Li et al. <sup>12</sup> |
| R42  | CL+APIN=TERPO2+HCL                                                        | 4.7d-10;                                                                                                                             | This work.<br>Based on IUPAC.                  |
| R43  | CL+BPIN=TERPO2+HCL                                                        | 3.8d-10;                                                                                                                             | This work.<br>Based on IUPAC                   |
| R44  | CL+LIMON=TERPO2+HCL                                                       | 6.4d-10;                                                                                                                             | This work.<br>Based on IUPAC                   |
| R45  | CL+MBO=MBOO2+HCL                                                          | 2.2d-10;                                                                                                                             | This work.<br>Based on IUPAC.                  |
| Hete | erogeneous reactions                                                      |                                                                                                                                      |                                                |
| R46  | N2O5+H2O+CL <sup>-</sup> =HNO3+ClNO2                                      |                                                                                                                                      | Dai et al. <sup>13</sup>                       |
| R47  | $\operatorname{CL}^{-} \xrightarrow{NO3-,H+} 0.5 \operatorname{CL}2$      | $k_1[\mathrm{H}^+]$ [NO <sub>3</sub> <sup>-</sup> ] $J(\mathrm{NO}_2)$ Sa.<br>k1=28.91                                               | This work.                                     |
| R48  | $\text{CL}^{-} \xrightarrow{NO3-,H+,ORG} 0.5 \text{ CL}2$                 | $\frac{k_2[\mathrm{H}^+][cl^-]}{k_2[\mathrm{H}^+][cl^-]+k_3[cl^-]+[\mathrm{H}_20]+k_4[\mathrm{Org}]};$<br>k2=19.38; k3=483; k4=2.06; | This work. Based on Xia et al. <sup>14</sup>   |
| SOA  | formation                                                                 |                                                                                                                                      |                                                |
| R49  | CL+BIGALK=CL+BIGALK+CVA<br>SOA4                                           | 5.0d-11×vbs_yield_cl<br>(nume, den, vbs_alk5, vbs_c1000); <sup>c</sup>                                                               | This work.<br>Based on Li et al. <sup>12</sup> |

| D50          | CL+BIGALK=CL+BIGALK+CVA | 5.0d-11×vbs_yield_cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | This work.                       |
|--------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| K50          | SOA3                    | (nume, den, vbs_alk5, vbs_c100); <sup>c</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Based on Li et al. <sup>12</sup> |
| D51          | CL+BIGALK=CL+BIGALK+CVA | 5.0d-11×vbs_yield_cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | This work.                       |
| K31          | SOA2                    | (nume, den, vbs_alk5, vbs_c10); <sup>c</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Based on Li et al. <sup>12</sup> |
| D.50         | CL+BIGALK=CL+BIGALK+CVA | 5.0d-11×vbs_yield_cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | This work.                       |
| K52          | SOA1                    | (nume, den, vbs_alk5, vbs_c1); <sup>c</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Based on Li et al. <sup>12</sup> |
| D.52         |                         | 4.3d-10×vbs_yield_cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | This work.                       |
| K53          | CL+ISOP=CL+ISOP+CVBSOA4 | (nume, den, vbs_isop, vbs_c1000);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Based on Li et al. <sup>12</sup> |
| D54          |                         | 4.3d-10×vbs_yield_cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | This work.                       |
| K54          | CL+ISOP=CL+ISOP+CVBSOA3 | (nume, den, vbs_isop, vbs_c100);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Based on Li et al. <sup>12</sup> |
| D <i>55</i>  |                         | 4.3d-10×vbs_yield_cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | This work.                       |
| Кээ          | CL+ISOP=CL+ISOP+CVBSOA2 | (nume, den, vbs_isop, vbs_c10);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Based on Li et al. <sup>12</sup> |
| DCC          |                         | 4.3d-10×vbs yield cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | This work.                       |
| K20          | CL+ISOP=CL+ISOP+CVBSOAI | (nume, den, vbs_isop, vbs_c1);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Based on Li et al. <sup>12</sup> |
| D.67         | CL+TOLUENE=CL+TOLUENE+  | 6.1d-11×vbs yield cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | This work.                       |
| K2/          | CVASOA4                 | (nume, den, vbs aro1, vbs c1000);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Based on Li et al. <sup>12</sup> |
| <b>D 5</b> 0 | CL+TOLUENE=CL+TOLUENE+  | 6.1d-11×vbs yield cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | This work.                       |
| R58          | CVASOA3                 | (nume, den, vbs aro1, vbs c100);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Based on Li et al. <sup>12</sup> |
| D.50         | CL+TOLUENE=CL+TOLUENE+  | 6.1d-11×vbs vield cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | This work.                       |
| R59          | CVASOA2                 | (nume, den, vbs aro1, vbs c10):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Based on Li et al. <sup>12</sup> |
|              | CL+TOLUENE=CL+TOLUENE+  | 6.1d-11×vbs vield cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | This work.                       |
| R60          | CVASOA1                 | A $5.0d-11\times vbs_yield_cl$<br>(nume, den, vbs_alk5, vbs_c10); <sup>c</sup> F<br>A $5.0d-11\times vbs_yield_cl$<br>(nume, den, vbs_alk5, vbs_c1); <sup>c</sup> F<br>4.3d-10×vbs_yield_cl<br>(nume, den, vbs_isop, vbs_c1000); B<br>4.3d-10×vbs_yield_cl<br>(nume, den, vbs_isop, vbs_c100); F<br>4.3d-10×vbs_yield_cl<br>(nume, den, vbs_isop, vbs_c10); F<br>4.3d-10×vbs_yield_cl<br>(nume, den, vbs_isop, vbs_c100); F<br>4.3d-10×vbs_yield_cl<br>(nume, den, vbs_aro1, vbs_c1000); F<br>6.1d-11×vbs_yield_cl<br>(nume, den, vbs_aro1, vbs_c1000); F<br>6.1d-11×vbs_yield_cl<br>(nume, den, vbs_aro1, vbs_c100); F<br>6.1d-11×vbs_yield_cl<br>(nume, den, vbs_aro1, vbs_c100); F<br>4.7d-10×vbs_yield_cl<br>(nume, den, vbs_aro1, vbs_c100); F<br>4.7d-10×vbs_yield_cl<br>(nume, den, vbs_terp, vbs_c1000); F<br>3.8d-10×vbs_yield_cl<br>(nume, den, vbs_terp, vbs_c1000); F<br>3.6d+10×vbs_yield_cl<br>(nume, den, | Based on Li et al. <sup>12</sup> |
|              |                         | 4.7d-10×vbs vield cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | This work.                       |
| R61          | CL+APIN=CL+APIN+CVBSOA4 | (nume, den, vbs terp, vbs c1000);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Based on Li et al. <sup>12</sup> |
| D (0         |                         | 4.7d-10×vbs yield cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | This work.                       |
| <b>R6</b> 2  | CL+APIN=CL+APIN+CVBSOA3 | (nume, den, vbs terp, vbs c100);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Based on Li et al. <sup>12</sup> |
| D (2         |                         | 4.7d-10×vbs yield cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | This work.                       |
| R63          | CL+APIN=CL+APIN+CVBSOA2 | (nume, den, vbs terp, vbs c10);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Based on Li et al. <sup>12</sup> |
| DCA          |                         | 4.7d-10×vbs yield cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | This work.                       |
| K64          | CL+APIN=CL+APIN+CVBSOA1 | (nume, den, vbs terp, vbs c1);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Based on Li et al. <sup>12</sup> |
| D ( 7        |                         | 3.8d-10×vbs yield cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | This work.                       |
| R65          | CL+BPIN=CL+BPIN+CVBSOA4 | (nume, den, vbs_terp, vbs_c1000);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Based on Li et al. <sup>12</sup> |
| DCC          |                         | 3.8d-10×vbs_yield_cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | This work.                       |
| R66          | CL+BPIN=CL+BPIN+CVBSOA3 | (nume, den, vbs_terp, vbs_c100);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Based on Li et al. <sup>12</sup> |
| D (7         |                         | 3.8d-10×vbs yield cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | This work.                       |
| R6/          | CL+BPIN=CL+BPIN+CVBSOA2 | (nume, den, vbs terp, vbs c10);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Based on Li et al. <sup>12</sup> |
| <b>D</b> (0  |                         | 3.8d-10×vbs yield cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | This work.                       |
| R68          | CL+BPIN=CL+BPIN+CVBSOA1 | (nume, den, vbs_terp, vbs_c1);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Based on Li et al. <sup>12</sup> |
| D (0         | CL+LIMON=CL+LIMON+CVBS  | 6.4d-10×vbs yield cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | This work.                       |
| R69          | OA4                     | (nume, den, vbs terp, vbs c1000);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Based on Li et al. <sup>12</sup> |
| <b>D7</b> 0  | CL+LIMON=CL+LIMON+CVBS  | 6.4d-10×vbs yield cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | This work.                       |
| <b>K</b> 70  | OA3                     | (nume, den, vbs terp, vbs c100):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Based on Li et al. <sup>12</sup> |
| D71          | CL+LIMON=CL+LIMON+CVBS  | 6.4d-10×vbs yield cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | This work.                       |
| <b>K</b> /1  | OA2                     | (nume, den, vbs terp, vbs c10):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Based on Li et al. <sup>12</sup> |
| D.70         | CL+LIMON=CL+LIMON+CVBS  | 6.4d-10×vbs yield cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | This work.                       |
| <b>K</b> 72  | OA1                     | (nume, den, vbs terp, vbs c1);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Based on Li et al. <sup>12</sup> |

167 Note: <sup>a, b</sup> ARR3 and TROE function and specific kinetic data are taken from WRF-Chem v 4.1.2;<sup>15,16</sup>

168 TEMP is the ambient air temperature (unit: k); C\_M is the ambient air density (unit:  $cm^{-3}$ ); <sup>c</sup> Calculation

of SOA yield is based on Lane al.<sup>17</sup> and Li et al.<sup>12</sup>; nume and den is the reaction rate constant for the
 reaction of RO<sub>2</sub> with NO and RO<sub>2</sub> with HO<sub>2</sub>, respectively; vbs terp represents different types of VOCs;

171 vbs c1, vbs c10, vbs c100 and vbs c1000 represent the saturation concentrations in 1, 10, 100, and

172 1000 (unit:  $\mu g m^{-3}$ ) of the surrogate specie.

| 174 | Table S2. HONO-related reactions in WRF-Chem model      |                                                                        |                           |  |  |  |
|-----|---------------------------------------------------------|------------------------------------------------------------------------|---------------------------|--|--|--|
|     | Reactions                                               | Reaction rate                                                          | References                |  |  |  |
|     | NO+OH→HONO                                              | TROEMS (7.0D-31, -2.6_dp, 3.6D-11, -<br>0.1_dp, TEMP, C_M);            | Dai et al., <sup>6</sup>  |  |  |  |
|     | NO+NO <sub>2</sub> +H <sub>2</sub> O→2HONO              | $5.00 \times 10^{-40}$                                                 | Dai et al., <sup>6</sup>  |  |  |  |
|     | HONO+HONO→NO+NO <sub>2</sub> +H <sub>2</sub> O          | $1.00 \times 10^{-20}$                                                 | Dai et al., <sup>6</sup>  |  |  |  |
|     | HONO+OH→NO <sub>2</sub> +H <sub>2</sub> O               | $2.50 \times 10^{-12}$                                                 | Dai et al., <sup>6</sup>  |  |  |  |
|     | NO <sub>2</sub> →0.5HONO+0.5HNO <sub>3</sub>            | -                                                                      | Dai et al., <sup>6</sup>  |  |  |  |
|     | PNO <sub>3</sub> -→ $0.67$ HONO+ $0.33$ NO <sub>2</sub> | : $J_{PNO3} = (8.3 \times 10^{-5} / 7 \times 10^{-7}) \times J_{HNO3}$ | Dai et al., <sup>25</sup> |  |  |  |
| 175 |                                                         |                                                                        |                           |  |  |  |

- 175
- 176

### Table S2. HONO-related reactions in WRF-Chem model

| Atmospheric process      | Scheme                                                                  |  |  |
|--------------------------|-------------------------------------------------------------------------|--|--|
| Cloud microphysics       | Morrison double moment <sup>18</sup>                                    |  |  |
| Cumulus parameterization | Grell 3D Ensemble Scheme <sup>19</sup>                                  |  |  |
| Land-surface physics     | Noah Land Surface Model <sup>20</sup>                                   |  |  |
| Longwave radiation       | RRTM scheme <sup>21</sup>                                               |  |  |
| Shortwave radiation      | RRTM scheme <sup>21</sup>                                               |  |  |
| Planetary boundary layer | Yonsei University PBL <sup>22</sup>                                     |  |  |
| Photolysis               | Madronich Fast Tropospheric Ultraviolet-Visible (FTUV) <sup>23,24</sup> |  |  |
|                          |                                                                         |  |  |

Table S4. Statistical analysis of model performance for meteorological parameters and air
 pollutants in South China.

|                             | SIM  | OBS  | Bias | R    | NMB    | NME   |
|-----------------------------|------|------|------|------|--------|-------|
| Relative humidity (%)       | 80.2 | 82.0 | -1.8 | 0.94 | -7.8%  | 18.9% |
| Wind speed (m $s^{-1}$ )    | 5.3  | 4.5  | 0.8  | 0.90 | 8.9%   | 19.2% |
| Surface temperature (°C)    | 28.4 | 29.0 | -0.6 | 0.94 | -6.2%  | 15.2% |
| Ozone (µg m <sup>-3</sup> ) | 40.8 | 46.3 | -5.5 | 0.86 | -12.8% | 24.5% |
| $NO_2 (\mu g m^{-3})$       | 32.5 | 29.1 | 3.4  | 0.62 | 5.2%   | 20.9% |
| $PM_{2.5} (\mu g \ m^{-3})$ | 42.0 | 48.2 | -6.2 | 0.78 | -13.5% | 29.2% |

185

Note: SIM and OBS represent the average of calculated and measured value of meteorological parameters or concentrations of chemicals. Bias is the mean bias calculated as the difference between SIM and OBS; R is the correlation coefficient (unitless); NMB is the normalized mean

189 bias (unit: %); NME is the normalized mean error (unit: %).

#### **191** Supplementary References

192

(1) Fountoukis, C. and Nenes, A.: ISORROPIA II: a computationally efficient thermodynamic
equilibrium model for K+-Ca2+-Mg2+-NH4+-Na+-SO42--NO3--Cl--H2O aerosols, *Atmos. Chem. Phys.*, 2007, 7, 4639-4659.

- (2) Shen, H., Chen, Z., Li, H., Qian, X., Qin, X., Shi, W. Gas-particle partitioning of carbonyl
  compounds in the ambient atmosphere. *Environ. Sci. Technol*, 2018, 52(19), 10997-11006.
- (3) Dai, J., Wang, X., Dai, W., Chang, M. The impact of inhomogeneous urban canopy
  parameters on meteorological conditions and implication for air quality in the Pearl River Delta
  region. *Urban Clim.*, 2019, 29, 100494.
- 201 (4) Huang, Z. J., Zhong, Z. M., Sha, Q. G., Xu, Y. Q., Zhang, Z. W., Wu, L. L., Wang, Y. Z., Zhang,
- L. H., Cui, X. Z., Tang, M. S., Shi, B. W., Zheng, C. Z., Li, Z., Hu, M. M., Bi, L. L., Zheng, J. Y.,
  and Yan, M.: An updated model-ready emission inventory for Guangdong Province by
  incorporating big data and mapping onto multiple chemical mechanisms, *Sci. Total Environ.*, 2021
  769, 144535.
- (5) Huang, X., Li, M., Li, J., Song, Y. A high-resolution emission inventory of crop burning in
  fields in China based on MODIS Thermal Anomalies/Fire products. *Atmos. Environ.*, 2012. 50,
  9-15.
- (6) Dai, J., Brasseur, G. P., Vrekoussis, M., Kanakidou, M., Qu, K., Zhang, Y., Zhang, H., and Wang,
  T.: The atmospheric oxidizing capacity in China Part 1: Roles of different photochemical
  processes, *Atmos. Chem. Phys.*, 2023, 23, 14127–14158.
- 212 (7) Chen, Y., Cheng, Y., Ma, N., Wolke, R., Nordmann, S., Schüttauf, S., Wiedensohler, A. Sea
- salt emission, transport and influence on size-segregated nitrate simulation: a case study in
  northwestern Europe by WRF-Chem. *Atmos. Chem. Phys.*, 2016,16 (18), 12081-12097.
- (8) Geyer, A., Alicke, B., Konrad, S., Schmitz, T., Stutz, J. and Platt, U.: Chemistry and
  oxidation capacity of the nitrate radical in the continental boundary layer near Berlin, J. *Geophys. Res. Atmos*, 2001, 106, 8013–8025.
- (9) Elguindi, N., Granier, C., Stavrakou, T., Darras, S., Bauwens, M., Cao, H., et al.
  Intercomparison of magnitudes and trends in anthropogenic surface emissions from bottom-up
  inventories, top-down estimates, and emission scenarios., *Earth's Future*, 2020, 8,
  e2020EF001520.
- (10) Zhang, L., Li, Q., Wang, T., Ahmadov, R., Zhang, Q., Li, M., and Lv, M.: Combined impacts
  of nitrous acid and nitryl chloride on lower-tropospheric ozone: new module development in WRFChem and application to China, *Atmos. Chem. Phys.*, 2017, 17, 9733–9750.
- 225 (11) Badia, A.; Reeves, C. E.; Baker, A. R.; Saiz-Lopez, A.; Volkamer, R.; Koenig, T. K.; Apel,
- E. C.; Hornbrook, R. S.; Carpenter, L. J.; Andrews, S. J.; Sherwen, T.; von Glasow, R.
- Importance of reactive halogens in the tropical marine atmosphere: a regional modelling study
  using WRF-Chem. *Atmos. Chem. Phys.* 2019, 19 (5), 3161–3189.

- 229 (12) Li, Q.; Fu, X.; Peng, X.; Wang, W.; Badia, A.; Fernandez, R. P.; Cuevas, C. A.; Mu, Y.;
- Chen, J.; Jimenez, J. L.; Wang, T.; Saiz-Lopez. A. Halogens Enhance Haze Pollution in China. *Environ. Sci. Technol.*, 2021, 55 (20), 13625–13637.
- (13) Dai, J., Liu, Y., Wang, P., Fu, X., Xia, M., Wang, T. The impact of sea-salt chloride on
  ozone through heterogeneous reaction with N2O5 in a coastal region of south China. *Atmos. Environ.*, 2020, 236, 117604.
- 235 (14) Xia, M., Peng, X., Wang, W., Yu, C., Sun, P., Li, Y., Liu, Y., Xu, Z., Wang, Z., Xu, Z., Nie,
- W., Ding, A., and Wang, T., Significant production of ClNO2 and possible source of Cl2 from
- N2O5 uptake at a suburban site in eastern China. *Atmos. Chem. Phys*, 2020, 20, 6147–6158.
- 238 (15) Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Liu, Z., Berner, J., Wang, W.,
- 239 Powers, J. G., Duda, M. G., Barker, D. M., and Huang, X.-Y.: A Description of the Advanced
- 240 Research WRF Model Version 4, *Tech. rep.*, UCAR/NCAR, 2019.
- 241 (16) Emmons, L. K., Walters, S., Hess, P. G., Lamarque, J.-F., Pfister, G. G., Fillmore, D.,
- 242 Granier, C., Guenther, A., Kinnison, D., Laepple, T., Orlando, J., Tie, X., Tyndall, G., Widmeyer,
- 243 C., Baughcum, S. L., and Kloster, S.: Description and evaluation of the Model for Ozone and
- Related chemical Tracers, version 4 (MOZART-4), *Geosci. Model Dev.*, 2010, 3, 43–67,.
- (17) Lane, T. E.; Donahue, N. M.; Pandis, S. N. Simulating secondary organic aerosol
  formation using the volatility basis-set approach in a chemical transport model. *Atmos. Environ.*2008, 42(32), 7439–7451.
- (18) Morrison, H. C. J. A., J. A. Curry, and V. I. Khvorostyanov. A new double-moment
  microphysics parameterization for application in cloud and climate models. Part I:
  Description., *J. Atmos. Sci.*, 2005, 62.6: 1665-1677.
- (19) Grell, G. A., and Dévényi, D., A generalized approach to parameterizing convection
  combining ensemble and data assimilation techniques, *Geophys. Res. Lett.*, 2002, 29 (14).
- (20) Chen, F., Dudhia, J. Coupling an Advanced Land Surface–Hydrology Model with the Penn
  State–NCAR MM5 Modeling System. Part I: Model Implementation and Sensitivity, *Monthly Weather Review*, 2001, 129(4), 569-585.
- (21) Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and Clough, S. A. Radiative
  transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the
  longwave, J. Geophys. Res., 1997, 102 (D14), 16663–16682.
- (22) Hong, S., Noh, Y., and Dudhia, J. A New Vertical Diffusion Package with an Explicit
  Treatment of Entrainment Processes. *Monthly Weather Review*, 2006, 134, 9, 2318-2341.
- (23) Madronich, S. Photodissociation in the atmosphere: 1. Actinic flux and the effects of
  ground reflections and clouds., *J. Geophys. Res. Atmos*, 1987, 92(D8), 9740-9752.
- 263 (24) Fast, J. D., Gustafson, W. I., Easter, R. C., Zaveri, R. A., Barnard, J. C., Chapman, E. G.,
- 264 Grell, G. A., and Peckham, S. E., Evolution of ozone, particulates, and aerosol direct radiative
- 265 forcing in the vicinity of Houston using a fully coupled meteorology-chemistry-aerosol model,

- 266 J. Geophys. Res. Atmos, 2006, 111, D21305.
- 267 (25) Dai, J. and Wang, T.: Impact of international shipping emissions on ozone and  $PM_{2.5}$  in
- East Asia during summer: the important role of HONO and ClNO<sub>2</sub>, *Atmos. Chem. Phys.*, 2021,
  21, 8747–8759.