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Abstract
This paper explores the challenge of processing and extracting information from large quantities of printed serial sources
from the 19th century, which have been largely untapped due to the inadequacies of existing extraction techniques. We focus
on the Habsburg Central Europe’s Hof- und Staatsschematismus, a comprehensive record published between 1702 and 1918
that documents the Habsburg civil service’s hierarchy and the evolution of its central administration over two centuries. Our
approach sees the significant investment intomachine learning-driven layout detection prior to theOCR-process.We generated
synthetic data mimicking the Hof- und Staatsschematismus style for initial training of a Faster R-CNN model, followed
by fine-tuning the model with a smaller dataset of manually annotated historical documents. Subsequently, we optimised
Tesseract-OCR for our document style to enhance the combined structure extraction and OCR process. Our evaluation
demonstrates significant improvements in OCR performance metrics (WER and CER), with the combined structure detection
and fine-tuned OCR process showing a decrease in error rates of 15.68 percentage points for CER and 19.95 percentage points
for WER. These findings underscore the potential of ML techniques in facilitating the extraction and analysis of historical
documents.

Keywords PDF extraction · Layout detection ·OCR fine-tuning · Synthetic training data ·Document analysis and recognition

1 Introduction

The long 19th century provides historians and fellow human-
ists with a wealth of retrodigitized printed sources. A
significant share of these is made up of serial publications
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with highly structured content and complex layouts (Visually
Rich Documents, VRDs) [1]. A high-profile example of this
is the Habsburg Monarchy’s Hof- und Staatsschematismus,
which was published from 1702 to 1918 [2]. It provides
us with a set of serial data on the administrative and rep-
resentative elites of Habsburg Central Europe in very high
quality [3]. A thorough analysis of this data set would con-
tribute decisively to a significantly better understanding of
relevant social processes, power dynamics, social networks
and careers in modern Central Europe. The Schematismus
could be used to trace the genesis of state and administra-
tive institutions, their functioning and development, and the
professional biographies of tens of thousands of officials and
decision-makers over more than two centuries, across polit-
ical ruptures and social transformations.

However, the complex structure of such publications has
made a more comprehensive and quantitative evaluation
of this source impossible. Even though OCR-quality has
improved dramatically since the early days of the retro-
digitisation of historical publications, structure analysis and
layout detection remain a challenge. The Schematismus is
known for its multi-column layouts, deeply branched hier-
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Fig. 1 Example page of Schematismus from 1910, highlighting the
complexity of its structure, including multiple columns, hierarchical
relationships, unique characters, and special annotations, such as the
curly braces ofwhich two of them are found in themiddle of the page [4]

archies of several levels, and multimodal page designs that
feature text alongside tables and complex lists. These charac-
teristics represent the significant challenges digital historians
and humanists encounter when processing large quantities of
such documents. Thus, there has not been a comprehensive
extraction of information, entire data sets or structures, such
as information on hierarchies, on the detailed composition of
administrative authorities, or simply careers or biographies
with regard to the Schematismus yet. Some studies manually
extracted relevant information, which proved tedious, time-
consuming and prone to errors.

For years consideration has been given to publishing parts
of the Schematismus-series as digital editions. Such under-
takings have so far reliably failed because of the immense
size of the task; the most important series of such handbooks,
digitally published by the Austrian National Library1, com-
prises 145 volumes compiled between 1702 and 1918 (Table
1).

1 alex.onb.ac.at.

Table 1 Data sheet of the Schematismus

Key statistics

Total of 145 volumes

56 volumes in the 1700s

89 volumes between 1800 and 1918

Complete series from 1816 to 1848 and from 1876 to 1918

Ranging from ∼150 pages (1702) to ∼1900 pages (1918)

We calculated that this series contains between 130,000
and 150,000 printed pages. Neither manual extraction of the
information contained therein nor automated processing of
the pages, which have very diverse layouts, seemed feasible
to us with the solutions currently available. The off-the-shelf
solutions we tried, as well as generic layout detection inte-
grated into well-established OCR did not perform too well
with the Schematismus.

We assumed that a powerful layout detection, which
can divide the individual cells of the Schematismus into
meaningful text blocks, could possibly represent a relatively
favourable solution. The complexity and diversity of the lay-
outs led us to consider machine learning models as possible
solutions, as we expected them to be able to handle the fractal
nature of the page layout better than rule-based models. The
first research question in this paper therefore investigates,
whether high-quality layout detection as a preprocessing step
could improve the performance of downstreamOCR, in order
to obtain a relatively simple solution for extracting the rel-
evant information. We first identified and tested a suitable
deep learning architecture—Faster R-CNN. Then we rebuilt
the custom font used in the Schematismus. We used this font
to synthesize a large amount of Schematismus-styled training
data in the first step. Care was taken to ensure that the syn-
thetic training data had a similarly complex and varied layout
as the original data sets. The synthetically produced training
data was also artificially distorted, dirtied, and twisted. We
trained the Faster R-CNN model with the synthetic training
data and further finetuned the model with a smaller number
of manually annotated pages from the Schematismus.

Once our layout detection was working, we tested its
potential with an off-the-shelf distribution of Tesseract.

Then we addressed the second research question, which
investigated, to what degree a custom font finetuned distribu-
tion of Tesseract could boost OCR results. We finetuned an
off-the-shelf distribution of Tesseract with the custom font
we had created of the Schematismus and carried out a second
test run.

For this study, we only invested limited resources in com-
paring possible OCR solutions, and we only took a cursory
look at the necessary post-processing steps. However, the
layout detection solution we present should be able to oper-
ate with any downstreamOCR solution that can be integrated
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into a Python pipeline. We expect that it might perform even
stronger with OCR-engines developed specifically for his-
torical fonts, such as Kraken OCR or OCR4all.

We have not devoted significant resources to the post-
processing step so far, yet we ran some preliminary tests,
using GPT4. The results were promising, and we expect that
the latest generation of LLMs provides enormous potential
to further improve the quality of the OCR results in a post-
processing step.

2 Background & related work

Wide variation in document formats and degradation over
time make automated layout detection and the development
of generic tools quite challenging, especially for historical
documents. For these reasons, a broad range of techniques
and methods has been developed and applied over time, in
order to be able to provide for a better automated information
extraction from historical documents.

In this section, we will first present the state of research
in history and more broadly the humanities, then initiatives
to improve OCR that have been developed and tested in the
field of historical document analysis are discussed.

2.1 Availability and limitations of OCRed primary
sources

The retro-digitisation of either parts of or entire histori-
cal sources has been an issue among historians and fellow
humanists since at least the 1950s, particularly with regard
to serial sources [5]. However, for the larger part of the past
seven decades, information extraction and the production of
digital data that could be processed by computing machines,
has been executed manually. Even though OCR software has
been widely available by the 1990s at latest, particularly pro-
cessing historical data has remained a complex issue [6],
as the quality of results has been varying strongly [7]. We
therefore observe a bifurcation in the field of digital histori-
cal and humanist research: On the one hand, large amounts of
retro-digitised historical data are processed automatically by
important providers of research data, such as www.archive.
org [8]. Many national libraries, as for instance the Austrian
National Library [9], the National Library of Finland [10]
or the Munich Digitization Center of the Bavarian State
Library [11], and further large transnational initiatives, as
for example Europeana [12], also belong to this group. How-
ever, users of these data, such as historical research projects,
are still relying on the manual transcription or annotation of
digitised primary sources, even at scale.2 Frequently, this is

2 There is very little documentation on how data in historical research
projects isOCRed, sowe have to refer to information thatwe obtained in

due to quality issues regarding OCRed documents available
online.3 Relevant databases that were build predominantly
on data extracted by manual labour include the Wiener
Datenbank zur Europäischen Familiengeschichte [13], The
Emperor’s Desk [14], the prosopographical data processed
by The Viennese Court [15], and further the projects run in
Social Mobility of Elites [16].

2.2 Common challenges

Historians and digital humanistsworkingwith retro-digitised
text data are familiar with the phenomenon that OCR-ed texts
provided on common platforms may vary in quality. This is
mostly due to the fact that texts underwent OCR procedure
at different times and different technologies were used. As a
result, full-text searches frequently produce inhomogeneous
results. Also, a “systematic” OCR error, i.e. distortions that
are typical for certain OCR software, can no longer be pro-
cessed in such a targeted manner if large text corpora consist
of parts that were OCRed at different times with different
software. In many projects, therefore, raw digitised docu-
ments are now re-OCRed, although many historical layouts
still pose a challenge for standard OCR but also specialised
software [10].4 Apart from specialised solutions [17], Tesser-
act OCR and Transkribus are currently regarded as reference
standards in the field of historical OCR, but still encounter
limitations that require a high level ofmanual effort, given the
special layouts and structures thatwill be discussed here [18].
Further,OCR4all offers a toolbox for open sourceOCRappli-
cations that has proved highly performant lately [19], as well
as kraken OCR, developed by the EHESS and closely asso-
ciated with the digital research environment eScriptorium.5

Libraries have begun to use the potential of ML to the clas-
sification of large quantities of texts [20], especially in the
context of research libraries [21].

For historical research, important primary sources such as
censuses of the Habsburg Empire have been mostly digitized
manually [22, 23]. Such sources usually feature a relatively
limited volume and a highly homogeneous layout and struc-

personal conversation with several dozen colleagues over the past one-
and-a-half decade. Based on the information available to us, we would
assume that manual transcription of historical text, but especially tabu-
lar data, is still the standard procedure, even though this usually starts
with a raw document created with standard OCR (Tesseract or Tran-
skribus), which is subsequently improved. The digitisation of tabular
data is particularly challenging because the target structure usually has
to be created manually beforehand. Cf. [6].
3 An entire panel in the recent 15th AustrianContemporaryHistoryDay
was devoted to the manual and semi-automatized correction of flawed
OCR data from large repositories.
4 Details about the OCR process at large providers of cultural heritage
data are only available to a very limited extent, and the publicly accessi-
ble documentation leavesmuch to be desired, even at public institutions.
5 https://github.com/mittagessen/kraken.

123

www.archive.org
www.archive.org
https://github.com/mittagessen/kraken


    3 Page 4 of 19 D. Fleischhacker et al.

ture. However, because of the enormous volume, this method
is not feasible for other complex source works, such as the
Schematismus. Even in the last initiative we know of, the
size and complexity of the Schematismus was ultimately
considered insurmountable for only partially automated data
extraction, and manual edition of a small part was envisaged
as an alternative. Due to these obstacles, very little research is
engaging with a deeper exploration of the information stored
in the Schematismus, the work of Bavouzet [24] (building
entirely on manually extracted data) is clearly standing out
as a beacon here.

Only recently have developments in new fields of research
such as document intelligence begun to open up the possibili-
ties ofmachine learning for this area on a larger scale [25–27].
Impressive progress has been made in some areas [28].

2.3 Pre-OCR steps to enhance OCR quality

The process of extracting information from historical doc-
uments can also be considered as a complete extraction
pipeline, instead of individual tasks. Monnier and Aubry
present work on an extraction tool for historical documents,
which provides improvements in terms of robustness and
extraction performance due to mutual reinforcement of text
line and image segmentation [29]. The task of segmentation
is also highlighted byGruber et al. [30]where the authors also
propose to conduct preprocessing of the image before con-
ducting OCR . Such approaches have already been explored
in the past, for example by processing the background of
the image [31]. Consequently, techniques such as Generative
Adversarial Networks have been explored to achieve super-
resolving of the input images [32]. Augmentation has been
used on several occasions lately in order to develop economic
ways to scale up information extraction from historical doc-
uments. Grüning et al. use the deep neural network ARU-Net
to address the issue of line detection in historical docu-
ments [33]. Martínek et al.[18] realise an approach, which
combines fine-tuning OCR-engines with comparatively little
data, after training the engine with large synthetic data-sets.

Document layout analysis has received increasing atten-
tion in the past few years, though this area remains under-
explored [34]. Solutions found in this field are not always
tackling specifically historical problems, as for instance [35].
It has been recognised though that the increasing availability
and usability of deep neural networks, in particular CNNs,
offers entirely new opportunities for the development of
custom-made solutions for certain document layout analysis
tasks [36]. With regard to OCR, line detection is frequently
considered more relevant than layout detection [28]. Nev-
ertheless, significant progress has been made in this area in
recent years, with layout detection often being understood as
part of a more complex single stage process [1, 26, 27]. Lay-
outLM presents a promising and versatile solution to address

Table 2 Approximate number
of persons mentioned in each
Schematismus per year and the
number of pages in the
respective volume

Year Persons Pages

1702 2200 150

1750 4000 430

1801 6700 1030

1820 26,400 1300

1848 28,800 1200

1860 15,000 300

1878 51,200 1100

1910 93,400 1600

1918 110,400 1900

We calculated these values by
averaging the number of bound-
ing boxes predicted on each name
register page andmultiplying this
average by the number of name
index pages listed in each year’s
name register

many common tasks in this area [37]. We also tried Lay-
outLM for the Schematismus, but it did not prove efficient
with this particular type of documents.

3 Methodology

StateManuals andHof- und Staatsschematismen for theHab-
sburg Empire in particular are commonly provided in PDF
format. These documents are accessible via various histor-
ical document repositories such as the Austrian National
Library6, the Munich Digitalization Center (MDZ) of the
Bavarian State Library7 or archive.org8. Frequently, how-
ever, plain text is not available at all or is available in
sub-optimal quality.

Whereas the general issue of suboptimal OCR quality
is widely acknowledged in historical and further humanist
research, most approaches consider layout a secondary line
of attack, when it comes to improving OCR quality. There
are few exceptions, as for instance [34, 36, 38]. Even the
two probably most important and most widely used out-of-
the-box solutions in the field of historical OCR, different
distributions of Tesseract and the variety of different OCR
and HTR models provided by Transkribus, require signifi-
cant (manual) effort in data preprocessing, when it comes to
extracting information from digitised primary sources. Even
conventional document layouts often pose a challenge [6].
Lately, OCR4all has come up with a strong layout detection.

Complex layouts as encountered in the Schematismus,
however, are still considered a major challenge by the his-

6 alex.onb.ac.at.
7 www.digitale-sammlungen.de.
8 www.archive.org.
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Fig. 2 Number of persons (blue) and pages (green, 10fold augmenta-
tion) in different volumes of the Schematismus

torical research community. Efficient information extraction
from such documents is considered a difficult and compli-
cated task. Several efforts to automatically extract structured
data from the Schematismus have failed so far. Generally,
particularly in historical texts, OCR is performed page-wise,
which means that snippets, belonging to different blocks of
text, are performed serially, as common OCR processors
work line-wise.

3.1 Approach and research questions

For our approach, we identified two points of attack, which
correspond with the two research questions we formulated.
First, we wanted to find out, whether AI-driven layout detec-
tion prior to OCR could significantly boost OCR quality.
Second, we were interested to see, to what degree finetuning
the OCR engine could further improve its performance. To
tackle research question 1 in a first step, we split the indi-
vidual document pages into their layout elements, in order
to preserve the context of the different blocks of text. To this
end, we used a deep learning convolutional neural network.
This is a complex ML algorithm originally developed for
object localization and object recognition. We assumed this
approach would be suitable, since we consider the identifi-
cation of large coherent blocks a computer vision problem.

In the next step, we used an OCR algorithm to process the
individual image snippets, rather than the entire document
page image. Thenwe addressed the second research question,
to which degree OCR accuracy could be improved by fine-
tuning the standard OCR tool Tesseract on a custom font,
which was designed to look as similar as possible to the
original font used in the Schematismus documents.

We chose a sample from 145 volumes of State Manuals
and focused on editions that were published in the second
half of the 19th century onward, for two reasons:

1. The task is becoming slightly more complex for the
decades prior to 1848, as the fonts that were used are
more diverse and complex. We do not consider this a
major problem, yet for the proof of concept we were
interested in streamlining the entire research process and

to eliminate additional complexities that were not in our
primary line of attack.

2. Even though State Manuals are available for a period of
more than 200 years, the mass of data was produced from
the 1850s onward, therefore the yield for a solution capa-
ble of dealing with documents of this type is expected to
be very high (compare Fig. 2 and Table 2).

To deal with research question 1, we built a machine learn-
ing model that can segment retrodigitised PDF-documents
of the Hof- und Staatshandbücher and split these into their
layout-structure elements, such as individual paragraphs and
headings. Each of these image snippets was subsequently fed
into Tesseract for text extraction. Figure 3 shows a simplified
version of this process.

Weused twoTesseractOCRmodels. For researchquestion
2, an instance of Tesseract that had been fine-tuned on our
custom font. For comparison and performance assessment,
we also used an instance that had not been fine-tuned. OCR
accuracy was then calculated by comparing the extracted
text with the manually transcribed ground truth. Then, this
process was repeated, but without dividing the page into indi-
vidual segments. To answer the research questions in this
study, the accuracies were finally compared in order to eval-
uate the efficiency of our approach.

The following subsections will describe in detail the
implementation of the different methods that we employed
to process PDFs of the Hof- und Staatshandbücher. This
includes training data set generation for the development
of the layout detection, layout detection itself, and optical
character recognition. Each of these three steps constituted a
work package of its own. All the research and analysis was
conducted within Jupyter Notebook, the diverse tools that
were put to use are listed in the following subsections.

3.2 Data set generation

In order to successfully train a convolutional neural network,
a sufficient amount of labeled data is required. Creating a
training data set by manually drawing bounding boxes on
a large quantity of PDFs drawn from historical source doc-
uments is time-consuming and labour-intensive due to the
large number of pages that would have to be annotated.
Therefore, we developed an alternative approach to artifi-
cially generate labeled trainingdata.Wewrote aPython script
that is designed to generate synthetic documents mimick-
ing the style of the Hof- und Staatshandbücher. This Python
script generated Latex-code, which was then compiled using
luatex [39] to create a PDF file. In the course of this process,
the coordinates of the individual text structure elements were
determined, which is described in more detail in the follow-
ing section.
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Fig. 3 This flowchart illustrates
how each extracted layout
element is processed by OCR

In order for the generated data to be used as training data,
it was imperative that the created documents appeared as
visually realistic as possible compared to the original doc-
uments. Reverse engineering the original documents and
paying attention to detail were therefore essential to the cre-
ation of synthetic training data.

Due to the fact that each paragraph begins with a last
name and a first name, a data set containing thousands of
first and last names [40] was randomly sampled in order to
obtain names. The pool of samples was restricted to Austria,
Hungary, Switzerland, and Germany.

A list of abbreviation explanations from the 1910 Schema-
tismus document was manually transcribed and randomly
selected for the text following the names. To vary the length
of individual generated paragraphs, the number of sampled
texts was also randomly chosen.

Figure 1 displays a page from the original 1910 Schema-
tismus document. Variable column numbers are a key charac-
teristic of such documents and are used almost everywhere.
While most sections have three columns, there can be vari-
ations in certain sections. For instance, Fig. 8 shows four
columns in the name-index section. Thus, generating realis-
tic synthetic documents required the use of the same column
layout.

Another key visual element is the relatively distinct font
type. Research led us to a font called “Opera-Lyrics-Smooth”
that appeared very similar to the original. Even though it
represented already a good match, we decided to invest
additional effort: Using the open source program “Font-
Forge” [41], we further customised the font in accordance
with the original. In order to achieve the best possible match
to the original font, screenshots of every letter in the original
documents were taken manually, and then the existing letters
in the font were adapted according to the screenshots taken.

Another distinctive feature of the Hof- und Staatsschema-
tismus is its excessive use of particular symbols, representing
orders and similar distinctions of the persons listed in
this source. The use of these symbols allowed the further
condensation of information stored in the Schematismus.

Fig. 4 Illustration of how Unicode characters are mapped to Schema-
tismus symbols

Nonstandard symbols were mapped to Unicode symbols,
which were unlikely to be needed for document generation.
Figure 4 illustrates this mapping.

This method resulted in the creation of three font types:
one for general text paragraphs, one for headlines, and one
for italics. An example of this can be seen in Figs. 5 and 6,
which shows an original paragraph and a corresponding
paragraph reproduced using the custom font. Additionally,
when reviewing some original Schematismus documents, it
is apparent that font sizes and alignments vary considerably
from section to section or even from page to page. In par-
ticular, the difference can be observed when examining the
headlines of the original documents. To create realistic head-
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Fig. 5 Original paragraph, taken from an existing state manual from
the year 1910

Fig. 6 Corresponding synthetically generated paragraph reproduced
with a custom font

lines, four headline types ranging from “H1” to “H4” were
used to emulate this feature. The first element was the largest
and the rest gradually decreased in size. Table 3 provides a
list of all the different classes.

Finally, it is crucial to emphasise some small but very
significant visual details. Every paragraph begins with one
or two words in bold, the last name of the individual, fol-
lowed by the first name and some additional titles and awards.
Indentation occurs after the first line if the text is too long
for a single line. Furthermore, multiple individuals may be
grouped together within a large curly bracket, as can be seen
in Fig. 1. In name-index pages, multiple individuals with the
same last namemay be grouped by adding a horizontal line at
the beginning, which can be observed in Fig. 7. Additionally,
every entrywithin this section is accompanied by one ormore
numbers that indicate the page number. Finally, it should be
noted that headings are usually centered on the page orwithin
columns and that the end of every text is always marked with
a period.

In order to be able to produce text for the synthetic
Schematismus-style training documents, several sources
were consulted. For the purpose of generating large head-
lines, a simple list of historical Austrian orders and decora-
tions was used [42]. In order to create headlines with smaller
font sizes, a combination of years as strings and Austrian
municipality names was used. For paragraph generation, two
sources were consulted, as previously mentioned. Through
the use of all the abovemethods and visual keys,wewere able
to create a large number of realistic looking synthetic docu-

ments. An example of such a synthetic Schematismus-style
document can be seen in Figure 7.

In addition to generating a synthetic data set of Schema-
tismus documents for training a machine learning model,
annotations for each element of the structure had to be gen-
erated along with the generation of the document in order to
make this data set effective for training. As part of the process
of detecting and localising objects, in this case the layout ele-
ments, bounding boxes were used to define the location and
size of the individual structure elements within an image.
The labels accompanying the bounding boxes indicate the
class of the corresponding box, such as “paragraph” or “H1”,
which are necessary for classification tasks performed by the
machine learning method.

A latex package called “zref-savepos” is used to save the
position of characters on the current page and write these
coordinates to an external file at compilation time. Using the
coordinates, bounding boxes could be computed by parsing
the external file. As the individual text elements had already
beengenerated earlier in the samePython script, itwas known
which label had to be associatedwith the respective bounding
box. In order to construct the data set, the generated docu-
ments, which were compiled by the latex compiler and then
saved as PDF files, were converted to images. In addition to
the image file, a Pascal VOC XML file containing the cor-
responding annotations was created and stored in a separate
directory. A total of 3766 synthetic Schematismus documents
have been generated using this approach. Figure 9 shows a
synthetic document with its corresponding annotations over-
layed.

3.3 Layout detection

For the actual layout detection model to be configured in the
next step, we chose a faster region-based convolutional neu-
ral network (faster R-CNN) built on a ResNet-50 backbone.
The model was created and trained using the PyTorch [43]
framework. In PyTorch, version-2 of the faster R-CNN
implementation was used [44]. Training of the model was
conducted on an Nvidia RTX 4090 with 24 GB of video
memory.

3.3.1 Model training and settings

Even though we used primarily the default settings of
the model, we found that some adjustments had a signif-
icant impact on the model’s performance. The following
paragraphswill provide a detailed description of these adjust-
ments.

1. By setting the pre-trained parameter to “True”, the train-
ing speed has improved in a way that earlier epochs of
training have already begun with a lower training and
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Fig. 7 Example of a synthetic
Schematismus-style document
used in training-set

validation loss than with randomly initialised starting
weights.

2. A further parameter that has been tweaked is the anchor
generation of the region proposal network in the faster
R-CNN model. When identifying areas of interest in an
image, anchor boxes are critical because they determine
where to look. Thus, they play an essential role when it
comes to detecting layout elements within a document
image. In order to be able to accommodate a variety of
different types of objects, anchor boxes were selected
with different aspect ratios and scales. It is imperative

to note that there are multiple anchor boxes applied to
each sliding window position in the region proposal net-
work. Therefore, it is logical to specify these ratios and
scales according to the shape of the objects. Thus, the
minimum, maximum, and mean ratio and scale of all
bounding boxeswithin the 3766 generated Schematismus
documents have been calculated and used as a guide-
line to set the anchor-generation parameters. A general
characteristic of the anchor boxes chosen is their elon-
gated and narrow shape, which is understandable, given
that text lines have a similar shape. Additionally, some
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Table 3 Lists of the class types
used to generate synthetic
Schematismus documents

Class name Class description

Paragraph Synthetic documents are primarily composed of paragraphs. Paragraphs
always begin with a bolded word and are indented after the first line.

BigParagraph A big paragraph is a paragraph with a bold starting word, but an inverted
indentation compared to a normal paragraph. In addition, this type of
structure element may never appear within a column.

H1 H1 headlines represent headings that appear above the start of a column.
This class may also never appear within a column.

H2 H2 headlines have a slightly smaller font size than H1 headings, but will
always be contained within a column.

H3 AnH3 header is a title that has the same font size as a paragraph andmay
only appear within a column. The class is also used to define keywords
on the right-hand side of a curly bracket.

H4 An H4 header is formatted in the same way as an H3, but italicized and
always enclosed in parentheses.

NameEntry Name entries consist of a bold text that is left aligned followed by one
or more numbers that are right aligned.

Curly Using the curly class, multiple paragraphs and a single H3 class can be
contained within. In this manner, it should be easier to assign individual
paragraphs to a H3 class in the future.

Fig. 8 Example of an original page from the name index section

Fig. 9 Example of generated Schematismus-style document alongside
with corresponding annotations (bouding boxes and class label) used in
the training set
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objects, such as single lines or headings,were quite small,
so the anchor boxes generated were smaller than usual.

3. Further, the maximum number of object detections per
image needed to be adjusted. Since most object detection
models detect only a few objects at a time within a sin-
gle image, the default value is 100 objects. It should be
noted, however, that since the purpose of this analysis is
to detect quite fine-grained layout elements within these
Schematismus documents, the number of layout elements
within one documentmay easily exceed250 (somepages,
for instance from the name register of the Schematismus,
feature up to 400 objects on one page). In order to com-
pletely disregard this upper limit of detections per image,
the parameter was set to 1000.

4. Another significant adjustment has been made to the
resolution of the images. It should be noted that while
the standard image input resolution of the faster R-CNN
model is 1333 × 800 pixels, this resolution results in the
model sometimes being unable to detect smaller objects
such as single lines within the Schematismus documents.
The reason for this is that both convolution layers and
pooling layers in the model further downscale the input
image, resulting in loss of important information. Based
on the experiments conducted, a resolution of 1988 ×
1405 pixels has been determined as the input resolution.

As mentioned previously, 3766 synthetic Schematismus-
style documents have been generated for the purpose of
creating a fully annotated data set. Among these, 3126 served
as the training set and 640 served as the validation set. A strat-
ified split of the full data set was used to select the training
and validation sets. In our scenario, the stratification process
involved counting the occurrences of each class within each
generated document page. This information was then used to
split the data into two sets, maintaining a similar class distri-
bution in both the validation and training sets. Even though
there were more than 3000 annotated training documents
available, dataset augmentation strategies have been applied.
Adding random augmentations to existing data allowed the
training set to be artificially expanded in terms of document
variety without increasing the number of documents and thus
increasing training time. Therefore, adding augmentations to
the training of a faster R-CNN layout detectionmodel of doc-
uments can improve its accuracy and robustness.

3.3.2 Training data augmentation and further steps

As a result of applying random transformations such as rota-
tion, scaling, cropping, optical distortion (to simulate page
warping), blur, noise adding and page flipping, the model
could learn to recognise and locate different layout elements
invariant of their angle or size. Considering that all of these
parameters were selected randomly, it is extremely unlikely

that two identical documentswill be input into themodel dur-
ing training. Additionally, augmentation may help to reduce
overfitting, which occurs when a model becomes too spe-
cialised in recognising only training examples and performs
poorly on new, unknown data. By augmenting the train-
ing data, the model is exposed to a wider range of layout
variations and becomes more adaptable to new and unseen
documents.

As for the actual training process, adjustments have been
made to the number of epochs, batch size, and learning
rate. During each training iteration, batch size determines
the number of samples, and thus images, to be processed by
the machine learning model before the weights are updated.
It is one of the most influential hyperparameters when train-
ing deep learning models, and it can be viewed as a trade-off
between accuracy and speed. A larger batch size allowsmore
samples to be processed at once, resulting in faster train-
ing times and better hardware utilisation. However, larger
batch sizes require more memory and may hinder generali-
sation [45].

By contrast, a smaller batch size results in fewer samples
being processed at once. Despite slower training times, this
can also prevent, to some extent, overfitting and produce a
more generalisable model. Typically, smaller batch sizes are
used when the data set is small or when the model requires
frequent updating of a large number of parameters. Choosing
the correct batch size cannot be achieved in a one-size-fits-
all manner since it is heavily dependent on the data set being
used. For our study, a batch-size of two has been selected
based on experimentation since it fully utilises GPUmemory
and, along with a scaling factor of 85 percent, produces a
relatively fast training process.

In order to maintain a constant variance in gradient expec-
tations, it is recommended to multiply the learning rate by√

k when multiplying the batch size by k [46]. As a result
of extensive learning rate optimisation, a base learning rate
of 0.005 has been chosen for batch size one. Thus, the final
learning rate is 0.005 ·√2 ≈ 0.007. This learning rate, along
with a weight decay of 0.0005 and a momentum of 0.9, was
used to initialise a stochastic gradient descent optimiser. The
total number of epochs was set to 100. The model is saved
after every epoch if the validation loss is less than the previ-
ous saved validation loss. In this manner, one can be assured
that the final model, which has been trained for 100 epochs,
is the one which worked best on the validation set.

The model, which has been trained purely on synthetic
data, gave fairly solid results when used on original docu-
ments, as described in detail in the Evaluation section. While
these results are already promising, the existing model can
also be further fine-tuned using real, original documents. As
annotations could not be generated this time, they had to be
hand drawn, which is a very time-consuming process.
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PyTorch’s TorchServe [47] framework has, however,
accelerated this process significantly. Employing thismethod
allowed us to “serve” an existing trained model over the
local network, where one could send images to and receive
bounding-box and label prediction information. In theory,
this is not much different from a simple Python script that
runs a model directly to predict the layout elements of doc-
uments that are fed into it, but there are some very specific
applications it can be used for.With the help of an annotation
software called “BoundingBoxEditor” [48] the pre-trained
model can be “served” and therefore accelerate the manual
annotation process of the original documents significantly.
This is due to the fact that the pre-trained model already
yielded good results. Therefore, only a few adjustments and
error corrections were necessary, such as correcting incor-
rect classifications or bounding boxes. A total of 39 original
Schematismus documents have beenmanually annotated and
saved in thisway.Once the originalSchematismus documents
had been annotated, the annotations were utilised to fine-tune
the existingmodel. To that purpose, the newly created data set
had been divided into training and validation sets. Using the
pre-trainedmodel’sweights as initialweights, these setswere
trained for 100 epochs using the same parameters described
earlier. Figure 12 show the training loss and validation loss
for this training process.

3.3.3 Layout detection post-processing

When analysing the predictions in detail, it becomes appar-
ent that some bounding boxes are overlapped, leading to
sometimes incorrect predictions. An illustration of this phe-
nomenon can be found in Figure 11, in which two different
bounding boxes overlap on the second line.

To address this issue, a bounding box and label classifi-
cation post-processing step has been developed. The process
works by iterating over every predicted bounding box and
then calculating the intersection over union (IoU) with every
other bounding box. Essentially, the IoU represents the ratio
between the overlapping area and the union area, and the
closer the IoU is to 1.0, the more similar the bounding boxes
are. As soon as the IoU has been calculated for every bound-
ing box, merge candidates are identified by selecting boxes
with an IoU score higher than 0.3. As a result, a maximum
bounding box is calculated, which encompasses all merge
candidates (including the box currently being viewed), and
is used to replace the original bounding box. Considering
that the merge candidates may be of different classes, the
merged bounding box will be labelled with the class tag of
the highest confidence score. It should be noted that bounding
boxes associated with the “Curly” class will not be selected
as merge candidates, as the nature of this class is to have
enclosed boxes inside them. Figure 11 illustrates the over-

Fig. 10 This figure illustrates a randomly selected original Schema-
tismus document with layout elements overlayed. Element predictions
with confidence levels less than 0.1 have been omitted. The faster R-
CNN model used to get these prediction results has been fine-tuned on
39 original Schematismus documents

Fig. 11 The figure illustrates that some bounding boxes overlap and
have ambiguous label classifications, there are two overlapping bound-
ing boxes in the middle (magenta and teal)

lay of the predicted boxes following the application of the
post-processing step.

3.4 OCR

To extract the text within the individual elements of the pre-
dicted layout, Tesseract 5.0 was used [49]. As mentioned in
Subsection 3.2, the font used in Schematismus documents
is no longer commonly used. Despite the fact that Tesseract
has been pre-trained on a number of fonts, it makes sense
to utilise the custom fonts developed for the generation of
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Schematismus documents to fine-tune the Tesseract optical
character recognition model. In addition, due to the sym-
bols that are used in the documents (see Fig. 4) which are
unique to Schematismus documents, training on this font is
necessary in order to recognise these symbols. To fine-tune
Tesseract on such a font, images containing a single block of
text rendered in the font must be generated. For this, Tesser-
act’s built-in function “text2image” has been utilised. This
function requires a large textfile of training text as one of its
parameters. Despite the fact that there are existing text files
for fine-tuning in German, a custom text file has been com-
piled using the same text generation method as described in
Sect. 3.2.

In addition, a custom character mapping file called
“unicharset” must be provided in order to map the Schema-
tismus unique symbols to special Unicode characters. The
built-in function has been used to create 50,000 images in
total. Additionally, to generating individual images contain-
ing a single text block and saving them as a “.tif” file, two
additional files are generated. One of them is the underlying
ground truth, which is saved as a text file. As for the second
file, it contains information about every character rendered
within the image. It provides details about the character as
well as coordinates describing its bounding box. The three
files are then combined into a single “.lstmf” file, which is
essential for the training process once fine-tuning begins.
A note should be made regarding the fact that the German
OCRmodel has been used as a starting point for this training
process. Section 4 presents an evaluation of the fine-tuned
Tesseract model, as well as additional experiments and pre-
processing steps required to obtain the best results.

4 Evaluation

We start the evaluation of our model performance with an
explanation of our parameter choices for the layout detection
model, discussed in subsection Layout detection. Then, both
the Tesseract optical character recognition algorithm and the
layout detection model are evaluated in detail. As these two
elements perform quite distinctly, evaluation will first take
place separately, followed by an evaluation of the combined
results in subsection 4.3. Furthermore, any additional pre-
or post-processing steps that could be performed to further
improve the results will be described.

4.1 Evaluation of the layout detectionmodel

A set of eighteen original Schematismus document pages
from 1910 was analysed for evaluation of the layout detec-
tionmodel. All the original documents are completely new to
the model. It is important to note that these documents were
not part of the training or validation set used to fine-tune

the model. An example of how predicted bounding boxes
and corresponding labels appear is shown in Figure 10. This
figure illustrates the model being applied to one of eigh-
teen selected document pages. Predicted elements feature a
confidence level between 0 and 1, representing the model’s
certainty about the accuracy of its prediction. Boxes, which
feature a confidence level below 0.1, have been omitted.

Overlapping bounding boxes were sorted out, using the
post-processing step described in subsubsection 3.3.3. As
a result of this step, the layout detection model can now
be evaluated. For the purpose of obtaining a ground-truth
of bounding-boxes with corresponding labels, the eighteen
selected original documents are hand-annotated. During the
drawing of the bounding boxes, extensive attention has been
paid to detail, in order to reproduce a very accurate ground
truth.

To measure the predicted bounding box accuracy, the
intersection over union (IoU) method is again employed. For
each document image in the testing-set, the bounding boxes
in the ground-truth set were iterated over and the best match-
ing prediction based on the IoU scorewas selected. Following
the establishment of a list of all bestmatching predictions, the
average over all IoU scores is calculated, which represents
the bounding box prediction accuracy for the given page.

It should be noted that in order to distinguish between
binary values in a multiclass classification problem, the met-
rics have to be calculated for each class individually. This is
while only considering the class currently in focus to be pos-
itive (1) and all the rest as negative (0). Figure 13 illustrates
this with a confusion matrix. In order to measure the per-
formance of the classification of each layout element, four
different metrics are used: accuracy, precision, recall, F1-
score (Fig. 14).

All the metrics mentioned above have been calculated for
each of the eighteen documents in the test set in accordance
with the ground truth. Table 4 gives a detailed overview
of each metric for both fine-tuned and non-fine-tuned mod-
els. Compared to the other documents, the documents with
indeces 3 and 5 performed the worst, especially in terms of
accuracy. Explanations and illustrations of why these per-
formed so poorly are provided in Sect. 5.1. Apart from that,
the results for both bounding box accuracy and classification
performance appear promising. Table 5 lists the final perfor-
mance metrics of the fine-tuned model, averaged across all
tested pages.

Additionally, Table 6 provides a statistic about the con-
fidence with which the faster R-CNN model has predicted
bounding-box and corresponding class labels for each class.
There are three approaches that can be used in order to gain
insight into this behavior: The first column in the table rep-
resents the average confidence level whenever anything has
been detected by the model. Column two indicates the con-
fidence level of the model’s prediction, when the associated
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Fig. 12 This figure illustrates
the training and validation
losses associated with a faster
R-CNN model trained on a
dataset containing 39 original
documents. Initial weights were
derived from the weights of the
existing pre-trained model

(a) (b)

Table 4 Summary of classification accuracy, precision, recall, F1-score, and bounding-box accuracy (based on the average IoU) for both non-fine-
tuned and fine-tuned models

Document- index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Fine-tuned

Accuracy 0.98 1 1 0.74 1 0.8 1 1 1 0.97 0.95 1 0.99 1 1 1 0.99 1

Precision 0.99 1 1 0.74 1 0.56 1 1 1 0.98 0.75 1 0.97 1 1 1 0.73 1

Recall 0.94 1 1 0.75 1 0.69 1 1 1 0.92 0.74 1 1 1 1 1 0.62 1

F1 0.95 1 1 0.72 1 0.57 1 1 1 0.95 0.71 1 0.98 1 1 1 0.66 1

bbox- Accuracy 0.91 0.92 0.92 0.90 0.89 0.89 0.79 0.80 0.79 0.96 0.95 0.96 0.97 0.95 0.97 0.97 0.85 0.97

Non fine-tuned

Accuracy 0.81 0.89 0.67 0.81 0.93 0.50 0.97 0.99 0.97 0.83 0.78 0.66 0.59 0.69 0.52 0.54 0.88 0.57

Precision 0.51 0.75 0.38 0.49 0.65 0.50 0.50 0.50 0.50 0.47 0.47 0.64 0.71 0.65 0.55 0.66 0.41 0.63

Recall 0.54 0.71 0.32 0.51 0.53 0.38 0.49 0.49 0.49 0.44 0.43 0.45 0.56 0.55 0.50 0.44 0.45 0.51

F1 0.52 0.71 0.35 0.49 0.56 0.42 0.49 0.50 0.49 0.44 0.45 0.52 0.62 0.59 0.48 0.53 0.43 0.55

bbox- Accuracy 0.77 0.78 0.72 0.70 0.73 0.71 0.75 0.76 0.75 0.79 0.78 0.79 0.73 0.71 0.76 0.71 0.79 0.68

Table 5 Performance measures were calculated based on the average
of all 18 test documents

Performance measure Value

Average classification accuracy 0.968

Average classification precision 0.929

Average classification recall 0.925

Average classification F1 0.919

Average bounding-box accuracy 0.909

class was actually correct, and column three indicates the
confidence level when the associated class was incorrect.
Whenever no incorrect predictions have been made for a par-
ticular class, the value has been omitted. Based on the results
in column three, it can be seen that the model tends to be
overconfident in its predictions.

4.2 Evaluation of OCR performance

To see how Tesseract OCR performs on original Schema-
tismus documents, a ground truth must be established. As
this ground truth must be compiled manually by converting
documents into plain text, this takes a considerable amount
of time. For the evaluation process, a total of 16 original
Schematismus pages have been manually transcribed this
way. Then, in a first step, all pages were fed into a distribu-
tion of Tesseract OCR, which had not been fine-tuned to the
custom font, furthermore, the pages were not preprocessed
via layout detection. Tesseract was configured to use built-
in page segmentation to partition the outputs of the entire
pages into an easily readable and correct format. The result-
ing outputs did not match expected sequence. Consequently,
in order to make a fair comparison between Tesseract’s out-
put and the corresponding ground-truth, the predicted outputs
have been manually split and reordered to match the original
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Table 6 In the Table the confidence levels of the faster R-CNN model in predicting bounding-boxes and corresponding class labels for each class
are displayed

Class name Average confidence for any prediction Average confidence for correct prediction Average confidence for incorrect prediction

Paragraph 0.983 0.991 0.899

BigParagraph 0.923 0.924 0.896

Curly 0.970 0.970 –

H1 0.997 0.997 –

H2 0.911 0.911 –

H3 0.961 0.988 0.797

H4 0.958 0.975 0.747

NameEntry 0.749 0.967 0.422

Presented are the average confidence level, the confidence level when the associated class was correct, and the confidence level when the associated
class was incorrect. According to the results, the model tends to overestimate its predictions, as evidenced by the higher confidence levels associated
with incorrect predictions

Fig. 13 This figure illustrates the confusion matrix for all predictions
made on the test set. Note that the values have been normalized accord-
ing to the ground truth, so that each row sums to 100 percent

Fig. 14 Using ground truth, this figure illustrates the distribution of the
various layout elements found in the test set

layout of the specific page, without altering any extracted
characters or words. The constrained number of tested pages
is also attributed to the time-intensive nature of this addi-
tional process. The exact same process was then repeated
using a distribution of Tesseract OCR, which had been fine-
tuned for the custom font. Followingmanual alignment, CER
and WER were calculated for every block of text. The aver-
age over all pages is shown in rows one and two of Table 7.
According to the results, the average CER has improved by
7.01 percentage points and the average WER by 10.94 per-
centage points when using the fine-tuned OCR model.

4.3 Evaluation of the OCR in combination with the
layout detectionmodel

In the next step, the layout detection model was utilised to
segment every structure element within the pages into indi-
vidual elements. To obtain the image snippets, the original
images were cropped based on the predicted bounding boxes
for each page.As each element’s coordinates are known in the
original document, it was possible to sort them in the appro-
priate order, so no manual reordering was necessary. The
Tesseract OCR model was then applied to each image snip-
pet individually. Since it became evident in the prior step that
the fine-tuned version performs significantly better, only this
version was used. For each individual image snippet, CER
and WER were calculated with the corresponding ground
truth. Row three in Table 7, the averages of all predictions
across all pages are presented.

According to these results, both average CER and WER
have improved by another 7.87 and 6.38 percentage points
respectively compared to the averages computed based on
feeding the full pages into the fine-tuned Tesseract OCR
algorithm. Even though we consider these improvements
satisfying, we believe that OCR accuracy can be further
improved. Although the layout detection model performs
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Table 7 The table presents the
average CER and WER
resulting from various scenarios

Avg. CER (%) Avg. WER (%)

Full page-without font fine-tuning 20.01 41.05

Full page-with font fine-tuning 13.00 30.11

Utilizing layout detection 5.13 23.73

Final score 4.33 21.10

The first two rows show the impact of fine-tuning Tesseract to a custom font on CER andWER on a full page.
The third row presents the results when layout detection is combined with a fine-tuned Tesseract OCRmodel.
Finally, in the last row, the results after a padding of two pixels and no resizing are applied to each snipped
image, are shown

Fig. 15 The figure shows the
average character-error-rate and
word-error-rate calculated with
different levels of
upscaling/downscaling and
padding applied to individual
image snippets

(a) average character-error-rate

(b) average word-error-rate

123



    3 Page 16 of 19 D. Fleischhacker et al.

well in finding very accurate bounding boxes, sometimes
characters are cropped off at the borders of the images. As a
result, padding has been added around the predicted bound-
ing box, to address this issue. As described in the official
Tesseract guide on improving OCR accuracy [50], Tesseract
generally works better with higher resolution images. There-
fore, the individual image snippets have been resized using
various scales based on the height of each image in order to
find the sweet spot. The aspect ratio of the original image
was maintained while upscaling (or downscaling) through
linear interpolation. Figure 15 illustrate this. Interestingly,
the CER and WER reach their minimum values when the
original image snippet is left unscaled and padded with two
pixels. This observation suggests that the resolution of the
scanned pages may be sufficiently high. Row four in Table 7
shows the final average CER and WER values.

According to these results, it is possible to answer the
research question, which is how much OCR accuracy can
be improved by using a layout detection model as a prepro-
cessing step to segment Schematismus-state documents, and
feeding Tesseract individual images containing one layout
structure rather than a full page. In comparison to the aver-
age CER andWER obtained on a full page using a fine-tuned
TesseractOCRmodel, an 8.67percentage point improvement
in the CER and 9.01 percentage point improvement in the
WER were observed. In comparison with an out-of-the-box
Tesseract OCR model, even higher CER and WER improve-
ments were achieved. Here the average CER improved by
a total of 15.68 percentage points and the average WER
improved by a total of 19.95 percentage points.

5 Discussion

It is evident from the results presented in section 4 that the
use of a custom-developed layout detectionmodel to segment
Schematismus-style documents together with a Tesseract
model fine-tuned to a custom font designed to be as close
to the original as possible significantly improved the quality
of the extracted text. However, it should be noted that, due
to the relatively small sample size of 16 pages, these results
might not represent the full picture. The gain that combined
layout detection and text extraction provides may be larger
than metrics alone can express. That is due to two different
reasons.

As each layout element is segmented by bounding boxes,
it is known where the blocks are located within a document
coordinate-wise. It allows the reordering of the extracted
texts so that they correspond to the reading flow of the docu-
ment. This is essential when extracting text from a document
with columns.

The second reason is that due to the classification of the
individual bounding boxes it is possible to immediately tell

Fig. 16 This figure illustrates a document with index 5 of the evaluation
set, which had the poorest layout-detection performance

the class of a structure element. Thus, it is possible, for
example, to extract only headings and paragraphs from a doc-
ument. Moreover, this makes it easier to match paragraphs
with individual headings, or to get all enclosed structure ele-
ments within curly brackets.

As for the Tesseract OCR model, the custom designed
font should be improved, to make text extraction even better.
Due to the fact that the current version of the font does not
include certain characters such as “č” or “ň” in its unichar set,
detection of these kinds of letters is not possible, resulting in
errors.

The pipeline we outlined in this article is highly adaptable
and could be optimised for similar tasks with relatively little
effort. Particularly the process we suggest to produce syn-
thetic training data at scale contributes largely to our capacity
to adapt the layout detection model quickly. Not only does it
allow to produce a significant amount of training data in rel-
atively little time, but the use of synthetic training data also
appears to significantly increase the precision of the bound-
ing box prediction.
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5.1 Error analysis

According to Table 4, documents with the indices 3 and
5 performed quite poorly compared to others in terms of
accuracy. Both documents are visually very similar. As an
example, the document with index 5 is shown in Fig. 16.
Clearly, this document differs from the typical three-column
Schematismus-style document. Aside from the general lay-
out, a key difference is the indentation of each paragraph.
Although these aspects were considered during the gener-
ation of synthetic documents, resulting in a separate class
“BigParagraphs”, the generated structures do not appear to be
as similar to the originals as intended, based on layout detec-
tion results.Due to the relatively small number of examples of
this type of document in the training set used for fine-tuning,
we could not observe any improvement. Specifically, only
two pages containing “BigParagraphs” were included in the
fine-tuning training set, which appears to be too few for the
model to effectively learn this class. Therefore, to improve
performance on these types of Schematismus documents,
more pages similar to those in Fig. 16 must be manually
annotated and added to the fine-tuning training set.

5.2 Research questions

With regard to our first research question, we could show
howOCRaccuracy can be significantly improved by splitting
individual document pages into their layout elements as a
preprocessing step.

As for the second research question, it has been shown
that fine-tuning Tesseract with a custom font results in per-
formance improvement.

In comparison with the performance of an out-of-the-box
Tesseract Model for OCR on an entire page of the Schema-
tismus, the results indicated that segmenting and splitting
individual document pages into their layout elements with a
deep learning convolutional neural network resulted in sig-
nificantly better OCR accuracy.

5.3 Outlook

The procedure we developed therefore represents a crucial
step toward a significantly improved analysis of printed his-
torical documents produced in the larger context of the long
19th century, particularly as we show how each of the two
steps can be further adapted to the specific needs, require-
ments and challenges met by fellow researchers.

However, we expect that both, layout detection and optical
character recognition, canbe further optimised for evenbetter
performance on historical documents. Layout detection may
benefit from increasing the training dataset, not only in terms
of the number of pages but also by including a wider variety
of documents. In other words, by generating documents that

are visually similar to much older, in our case Schematismus-
style documents produced in the first half of the 19th century,
when a different layout was used, and including these in the
training set, a more generalized and robust model may be
achieved. Further, domain knowledge can be put to use to
enhance text extraction. Considering that most of the printed
text in Schematismus-style documents consists of abbrevia-
tions that are listed and described on specific pages within
these documents, this information can be utilised to build
a custom spell-checking algorithm to correct errors in the
text extraction process. Additionally, it would be of interest
to explore whether the methods used in this paper can be
applied to other types of historical documents.

Our approach offers a viable solution to a number of com-
mon problems in dealing with retro-digitised historical texts
in historical and humanities research contexts, yet also in
industrial application. In this work, it was first shown that
the breakdown of the OCR problem, and its solution in sev-
eral sub-steps, is very promising. However, careful work and
precise adjustment of the training data are necessary precon-
ditions to obtain excellent performance. Future work based
on our approach will tackle more diverse layouts and broader
scope of documents types.

Funding Open access funding provided by Graz University of Tech-
nology.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Liu, X., Gao, F., Zhang, Q., Zhao, H.: (2019), pp. 32–39
2. Noflatscher, H.: (Böhlau, 2004), pp. 59–75
3. Bauer, V.: Repertorium territorialer Amtskalender und Amtshand-

bücher im Alten Reich: Adreß- , Hof- , Staatskalender und
Staatshandbücher des 18. Jahrhunderts., vol. vol. 2 (Klostermann,
1999)

4. ALEX. Staatshandbuch 1910: Schematismus staat (1910).
https://alex.onb.ac.at/cgi-content/alex?aid=shb&datum=1910&
page=597&size=45. Accessed on: 2022-10-21

5. Raphael, L.: Die Erben von Bloch und Febvre. Annales-
Geschichtsschreibung und nouvelle histoire in Frankreich 1945-
1980 (Klett-Cotta, Stuttgart, 1994)

6. Jannidis, F., Kohle, H., Rehbein, M.: Digital Humanities Eine Ein-
führung. J. B. Metzler, Stuttgart (2017). https://doi.org/10.1007/
978-3-476-05446-3

7. Boros, E., Nguyen, N.K., Lejeune, G., Doucet, A.: Assessing the
impact of ocr noise on multilingual event detection over digi-

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://alex.onb.ac.at/cgi-content/alex?aid=shb&datum=1910&page=597&size=45
https://alex.onb.ac.at/cgi-content/alex?aid=shb&datum=1910&page=597&size=45
https://doi.org/10.1007/978-3-476-05446-3
https://doi.org/10.1007/978-3-476-05446-3


    3 Page 18 of 19 D. Fleischhacker et al.

tised documents. Int. J. Digit. Libr. (2022). https://doi.org/10.1007/
s00799-022-00325-2

8. Wajer, M.B.W.: Internet Archive OCR Stack in 2021. Switching
to Open Source Software (2021). https://ia601807.us.archive.org/
35/items/merlijn-wajer-presentation/merlijn-wajer-presentation-
ocr.pdf

9. Austrian National Library. Austrian Books Online (2023). https://
www.onb.ac.at/en/digital-offers/austrian-books-online

10. Kettunen, K., Koistinen, M., Kervinen, J.: Ground truth ocr sample
data of finnish historical newspapers and journals in data improve-
ment validation of a re-ocring process. LIBER Quarterly 30(1),
1–20 (2020). https://doi.org/10.18352/lq.10322

11. Staatsbibliothek, B.: Technologien & Softwareentwicklung
(2023). https://www.digitale-sammlungen.de/de/technologien-
und-softwareentwicklung

12. G. Markus. Issue 13: OCR. EuropeanaTech Insight is a multime-
dia publication about R&D developments by the EuropeanaTech
Community (2019). https://pro.europeana.eu/page/issue-13-ocr

13. Ehmer, J., Mitterauer, M., Thaller, M.: Wiener Datenbank zur
Europäischen Familiengeschichte (2023)

14. Becker, P., Osterkamp, J.: The Emperor’s Desk (2018–2021)
15. Romberg, M.: The Viennese Court (2020–2023)
16. Popovici, V., Velková, A.: Social Mobility of Elites (2022)
17. Engl, E.: OCR-D kompakt: Ergebnisse und Stand der Forschung in

der Förderinitiative. Bibliothek Forschung und Praxis 44(2), 218–
230 (2020). https://doi.org/10.1515/bfp-2020-0024

18. Martínek, J., Lenc, L., Král, P.: Building an efficient OCR system
for historical documents with little training data. Neural Com-
put. Appl. 32(23), 17209–17227 (2020). https://doi.org/10.1007/
s00521-020-04910-x

19. Reul, C., Christ, D., Hartelt, A., Balbach, N., Wehner, M., Spring-
mann, U.,Wick, C., Grundig, C., Büttner, A., Puppe, F.: Ocr4all–an
open-source tool providing a (semi-)automatic ocr workflow for
historical printings (2019). https://doi.org/10.3390/app9224853.
http://arxiv.org/abs/1909.04032

20. Cordell, R.: Machine Learning + Libraries. A Report on the State
of the Field (2020). https://labs.loc.gov/static/labs/work/reports/
Cordell-LOC-ML-report.pdf?loclr=blogsig

21. Gasparini, A., Kautonen, H.: Understanding artificial intelligence
in research libraries-extensive literature review. LIBER Quart. J.
Assoc. Eur. Res. Libr. (2022). https://doi.org/10.53377/lq.10934

22. Teibenbacher, P., Kramer, D., Göderle, W.: An Inventory of Aus-
trian CensusMaterials , 1857-1910. Final Report. MosaicWorking
Paper 190, 25 (2012)

23. Zechner, A., Knapp, E., Adelsberger, M.: Prices and Wages in
Salzburg and Vienna, c. 1450–1850 An Introduction to the Data.
Vierteljahresschrift fur Sozial und Wirtschaftsgeschichte 108(4),
263–270 (2021). https://doi.org/10.25162/VSWG-2021-0016

24. Bavouzet, J.: in The Habsburg Civli Service and Beyond: Bureau-
cracy and Civil Servants from the Vormärz to the Inter-War
Years, ed. by F. Adlgasser, F. Lindström (Verlag der Österreichis-
chen Akademie der Wissenschaften, Vienna, 2019), pp. 167–186.
https://doi.org/10.2307/j.ctvggx26b.11

25. Wang, J., Liu, C., Jin, L., Tang, G., Zhang, J., Zhang, S., Wang, Q.,
Wu, Y., Cai, M.: Towards robust visual information extraction in
real world: New dataset and novel solution (2021). www.aaai.org

26. Douzon, T., Duffner, S., Garcia, C., Espinas, J.: Improving infor-
mation extraction on business documents with specific pre-training
tasks. In International Workshop on Document Analysis Systems.
(Springer Science and BusinessMedia Deutschland GmbH, 2022),
pp. 111–125. https://doi.org/10.1007/978-3-031-06555-2_8

27. Carbonell, M., Fornés, A., Villegas, M., Lladós, J.: A neural model
for text localization, transcription and named entity recognition in
full pages. Pattern Recogn. Lett. 136, 219–227 (2020). https://doi.
org/10.1016/j.patrec.2020.05.001

28. Tarride, S., Maarand, M., Boillet, M., McGrath, J., Capel, E.,
V’ezina, H., Kermorvant, C.: Large-scale genealogical informa-
tion extraction fromhandwrittenQuebec parish records. Int. J. Doc.
Anal. Recogn. (IJDAR) 26(3), 255–272 (2023). https://doi.org/10.
1007/s10032-023-00427-w

29. Monnier, T., Aubry, M.: in 2020 17th International Conference on
Frontiers in Handwriting Recognition (ICFHR), pp. 91–96. (IEEE,
2020)

30. Gruber, I., Ircing, P., Neduchal,P., Hrúz, M., Hlaváč, M., Zajíc, Z.,
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