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Abstract 10 

Drylands, encompassing over 40% of the conterminous United States (CONUS), are crucial to the 11 

global carbon cycle and highly susceptible to climate change. However, Earth system models offer 12 

conflicting projections of future drought and vegetation activity in North America, and in-depth 13 

analyses of the long-term changes in greenness and its relationship with underlying climate drivers, 14 

considering both spatial and temporal variations at the ecosystem scale, are lacking. This study 15 

analyzes 20-year (2001-2020) MODIS NDVI observations to assess greening trends in CONUS 16 

drylands and their relationship with climate drivers at 1km spatial resolution. Results indicate a 17 

large scale and systematic greening trend, particularly in the northern Great Plains (NGP) region. 18 

Using an empirical linear attribution approach and Empirical Orthogonal Function (EOF) analysis, 19 

we uncover varied relationships between greenness trends and climate drivers, particularly 20 

highlighting the dominant role of increased precipitation in driving the observed greening. Trend 21 

analysis reveals that while rain use efficiency (RUE) remains stable in most areas, increases in the 22 

NGP region suggest potential CO2 fertilization effects (CFE), while decreases in southern states 23 

correlate with rising temperatures. We also develop an efficiency-based model featuring RUE 24 

which successfully reproduces historical NDVI, re-confirming the dominant influence of 25 

precipitation in local greenness interannual variability. However, CMIP6 projections for 2021-26 

2040 under the “Regional Rivalry” scenario (SSP370) paint a worrying picture, with projected 27 

browning in the NGP region and states near the 42°N latitude, contrasting recent greening trends. 28 

This potential reversal underscores the vulnerability of these ecosystems to future climate change, 29 

highlighting the need to consider both historical trends and future climate projections when 30 

assessing the resilience of drylands ecosystems. Overall, our work re-emphasizes the significance 31 

of water availability to drylands vegetation growth and contributes to a more comprehensive 32 

understanding of carbon-water cycling in arid and semi-arid regions. 33 

 34 

Introduction 35 

Dryland ecosystems play a critical role in the global carbon cycle, strongly contributing to the 36 

trend and inter-annual variability of the global terrestrial carbon sink, due to their high sensitivity 37 

to inter-annual climate variability (Ahlström et al., 2015). Drylands feature a scarcity of water and 38 

are particularly susceptible to climate change (Lian et al., 2021), especially variations in 39 
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 2 

precipitation and temperature. Recent studies indicate declining future of water availability in 40 

drylands as climate projections show that drylands will experience increased warming, drought 41 

frequency, and evaporative demand at rates faster than the global average (Lehner et al., 2017; 42 

Bradford et al., 2020; Feng & Fu, 2013; Müller & Bahn, 2022). Drylands tend to be more severely 43 

impacted by drought events which stress local vegetation and subsequently affect their carbon 44 

sequestration capabilities. Conversely, as droughts exacerbate due to global warming, the 45 

increasing level of CO2 concentration is reported to benefit photosynthesis through the CO2 46 

fertilization effect (CFE) (Gonsamo et al., 2021), as vegetation can keep their stomata closed for 47 

longer durations to conserve water for photosynthesis while maintaining a consistent level of 48 

intercellular CO2 concentration (Zhang et al., 2022). 49 

Discrepancies between global and regional scale studies regarding the present trajectories of 50 

drylands are evident. Several analyses have indicated a global increase in aridity within drylands, 51 

resulting in significant and sudden alterations in numerous ecosystem characteristics (Berdugo et 52 

al., 2020). A considerable portion of drylands has been reported to experience desertification and 53 

soil deterioration due to unsustainable land management practices exacerbated by human-induced 54 

climate variations (Burrell et al., 2020). However, these assertions have been challenged with 55 

claims that conventional aridity metrics inadequately represent the land-based water cycle, thereby 56 

producing questionable outcomes from Dynamic Global Vegetation Models (DGVMs) (Berg & 57 

McColl, 2021). In contrast, trends of greening and increased vegetation activity across diverse 58 

dryland environments have been reported in regional studies (Hänke et al., 2016; He et al., 2019; 59 

Li et al., 2022). Various factors contribute to this discrepancy in findings, with differing spatial 60 

resolutions of input datasets emerging as a pivotal factor. Coarse-resolution pixels consist of mixed 61 

land surface signals, leading to ambiguity in temporal trend analyses when compared with 62 

outcomes derived from datasets at finer resolution (Ji & Brown, 2022; Zhang et al., 2023). Spatial 63 

grain needs to be explicitly considered in dryland ecosystem which is constrained by precipitation 64 

when examining the influence of climate variables on local vegetation dynamics as experiments 65 

have shown that the effects of precipitation manipulation on plants are strongest at the smallest 66 

spatial scale compared to other environmental factors (Korell et al., 2021). 67 

Drylands in the conterminous United States (CONUS) account for more than 40 % of the 68 

territory, encompassing a diverse array of arid and semi-arid ecosystems. These regions, including 69 

parts of the Great Basin, the Colorado Plateau, the Sonoran and Mojave Deserts, and most of the 70 

Great Plains, exhibit pronounced climatic variability. This climatic regime leads to a persistent 71 

water deficit, exerting a significant influence on soil moisture availability and vegetation dynamics. 72 

The temperature profiles in these regions are marked by extreme seasonal and diurnal variations. 73 

The high variability in temperature and precipitation, both spatially and temporally, underpins the 74 

ecological processes and biotic adaptations in these arid landscapes. 75 

Few research endeavors have been focused on exploring the prolonged alteration in vegetation 76 

over an extensive time-frame in conjunction with contemporary climate fluctuations within 77 

CONUS on a continental scale, among global and site-specific investigations. This research 78 
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 3 

addresses this gap by examining greenness trends in the natural CONUS drylands from 2001 to 79 

2020, utilizing long-term satellite-derived Normalized Difference Vegetation Index (NDVI) data 80 

from MODIS. This study delves into the primary climatic drivers at 1km spatial resolution through 81 

regression-based attribution and empirical orthogonal function (EOF) analysis, assessing 82 

associations from both temporal and spatial perspectives. To evaluate the local ecosystem's 83 

functionality, adaptability, and reaction to climatic changes, the study specifically scrutinizes the 84 

long-term trends of rain use efficiency (RUE) across the entire research area. Furthermore, we 85 

develop a simplified model based on RUE to replicate observed NDVI trends and annual variations, 86 

projecting NDVI alterations in CONUS drylands for the subsequent two decades (2021-2040) 87 

utilizing downscaled CMIP6 precipitation projections. 88 

Data and methods 89 

Terra MODIS Vegetation Index Products  90 

The NDVI observations in this study comes from Terra MODIS Vegetation Index Products 91 

Collection 6.1 (MOD13Q1 v061) (Didan, 2021, DOI:10.5067/MODIS/MOD13Q1.061) which 92 

provides consistent, spatial, and temporal comparisons of global terrestrial vegetation conditions. 93 

Normalized difference vegetation index (NDVI) is provided as 16-day composite layers at 250-94 

meter spatial resolution. To maintain the consistency of the data sources across all years, only 95 

Terra MODIS products are used to acquire NDVI observations for its longer record compared to 96 

Aqua products. Only data for 2001 to 2020 is used. In addition, to exclude the effects of cloud 97 

cover, surface reflectance inconsistences, and other potential artifacts, we mask out pixels related 98 

to bad quality according to the built-in VI Quality band. We also adopt a upward-smoothing 99 

approach to fill the data gap (Chen et al. 2004). 100 

MODIS Land Cover Type Products 101 

The land cover (LC) type information is obtained from MODIS Terra and Aqua combined Land 102 

Cover Type products Collection 6.1 (MCD12Q1 v061) (Friedl & Sulla-Menashe, 2022, 103 

DOI:10.5067/MODIS/MCD12Q1.061) which provide global land cover types at yearly intervals 104 

from 2001 to 2022. The spatial resolution of MCD12Q1 is 500-meter. This study specifically uses 105 

the International Geosphere-Biosphere Programme (IGBP) classification scheme. To focus on 106 

vegetation change in natural drylands and avoid influence of human intervention, pixels classified 107 

as one of following four land cover types, Croplands, Urban and Built-up Lands, Cropland/Natural 108 

Vegetation Mosaics (Semi-Croplands), and Water Bodies, in any LC layers within the two-decade 109 

study period are further masked out. To maintain spatial gridding consistency across datasets, the 110 

final decision is made on a resampled 1km reference LC composite map.  111 

Meteorological data 112 

Data of precipitation, daily maximum temperature, and incoming shortwave radiation flux density 113 

used in this study are collected from Daymet: Daily Surface Weather Data (Version 4) (Thornton 114 

et al., 2022, available at https://doi.org/10.3334/ORNLDAAC/2129). This dataset offers persistent 115 

and continuous gridded estimations of daily weather and climatological variables at 1km spatial 116 

resolution and over an extended period (1980~2022), which is arguably the most accurate and 117 
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 4 

updated meteorological dataset currently available for CONUS. These estimations are derived by 118 

interpolation and extrapolation of ground-based observations through statistical modeling 119 

techniques (Thornton et al., 2021).  120 

Study Region 121 

This study focuses on CONUS drylands, defined as areas receiving less than 600 mm of annual 122 

total precipitation (ATP). Figure 1 illustrates the spatial patterns of key climate variables across 123 

the study region, highlighting distinct regional differences. Precipitation tends to be the primary 124 

limiting factor for vegetation growth in CONUS drylands, particularly in the south (Nemani et al. 125 

2003). While temperature exerts a secondary influence, its importance increases with latitude. This 126 

is reflected in the three distinct climate zones evident in Figure 1A: the Northern Great Plains 127 

(NGP) region, encompassing Montana, Wyoming, North Dakota, South Dakota, and Nebraska, is 128 

characterized by a relatively wet and cool environment and is the focus of further investigation in 129 

this study; the Southern Great Plains have a wet and hot climate; and the Southwestern states are 130 

dominated by dry and hot conditions. Figure 1B further reveals the spatial distribution of incoming 131 

shortwave radiation, which exhibits variation primarily along latitudinal gradients. 132 

 133 
Figure 1. Climatology (2001~2020) spatial distribution of climate drivers in CONUS drylands (ATP < 

600mm/year). The enclosed area defines the zoom-in study region in the northern Great Plains. (A) Joint 

spatial distribution of annual total precipitation and annual mean daily maximum temperature. Distinct 

regional patterns can be observed; (B) Spatial distribution of daytime incident shortwave radiation flux 

density. Its value varies mainly along latitude. 

 134 

Temporally Summarized Datasets 135 

The primary challenge of analyzing the impacts of interdependent and correlated climatic factors 136 

on the trend of greenness is to identify climate indices that effectively capture the “period of 137 

climatic influence” (Ahlström et al., 2015). Because of that, two types of datasets, annual and 138 

growing season summarized datasets, are created for NDVI and three climatic variables from 139 

original monthly datasets. Annual summarized data has the merit of being simple and is more 140 
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 5 

useful for studying extensive areas where heterogeneity in growing seasons is present. Growing 141 

season summarized data is in general a better proxy for quantifying the direct influence of climatic 142 

variables on vegetation growth. By adopting growing season identifying methods introduced in 143 

Körner et al., 2023, a period of six months (April~September) is determined as the growing season 144 

(monthly resolution) for the NGP region (Figure S1). Corresponding growing season average/sum 145 

datasets are created for all variables.  146 

Trend Analysis 147 

In this study, trends are evaluated using the Mann-Kendall (MK) test, a non-parametric method 148 

well-suited for detecting trends in vegetation indices without assuming data normality (de Jong et 149 

al., 2011; Fensholt et al., 2012; Chen et al., 2019). Specifically, we employ the modified pre-150 

whitening MK test (Yue et al., 2002), which reduces potential false positives by mitigating 151 

autocorrelation in time series data. For computational efficiency, the pyMannKendall package 152 

(Hussain & Mahmud, 2019) source code is adapted for compatibility with C++. A significance 153 

level () of 0.1 is set, indicating that a time series with p ≤ 0.1 exhibits a statistically significant 154 

trend. 155 

Empirical Linear Attribution Method 156 

A multiple linear regression (MLR) model is employed to attribute observed greenness changes to 157 

the dominant climate drivers. MLR has been in studying spatial-temporal variation of LAI (Zhang 158 

et al., 2024), soil properties (Forkuor et al., 2017), and droughts (Kim et al., 2020). Similar methods 159 

are used to assess contributions of anthropogenic and natural factors to global climate change 160 

(Canty et al., 2013; Lean & Rind, 2008; Stern & Kaufmann, 2014). The regression coefficients in 161 

MLR provide conceptually simple and direct insights into the strength and direction of the 162 

relationship between NDVI and each climate variable, which makes it easy to assess the relative 163 

contributions of different drivers. This approach assumes predictor independence. To ensure this, 164 

the correlation matrix is evaluated prior to analysis. The model takes the following form: 165 

ΔV = α + β1ΔP + β2ΔT + β1ΔRsw + ϵ (1) 166 

where the Δ terms are normalized anomalies of each variable, βi is the associated coefficient, α is 167 

the intercept, and ϵ is the error term, and V, P, T and Rsw denote greenness (NDVI in this study), 168 

precipitation, temperature, and shortwave radiation, respectively.  169 

    Anomalies are calculated as deviations from climatological means, and normalization is 170 

achieved by dividing by the Euclidean (L2) norm. This allows each time series to be viewed as a 171 

unit vector in multidimensional space. By evaluating the coefficients, the interannual variability 172 

of NDVI in the study region can be attributed to its potential climate drivers. 173 

Empirical Orthogonal Function (EOF) Analysis 174 

EOF analysis is commonly used to reduce the dimensionalities of the datasets and extract the 175 

leading modes of variability which are often assumed to relate to various physical processes 176 

(Volkov et al., 2022). It has vast applications in environmental studies to analyze spatiotemporal 177 

patterns of climate variables (Roundy, 2015; Tippett & L’Heureux, 2020; Werb & Rudnick, 2023; 178 
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Zhang et al., 1997). We employ EOF analysis in this study to assess the intercorrelation between 179 

NDVI and selected climate variables in both spatial and temporal domains. For each mode of a 180 

climate variable, a spatial regression map (EOFi) and the corresponding principal component (PCi) 181 

are generated, and they are then compared with the EOF analysis results of NDVI using different 182 

techniques. A python package (eofs) (Dawson, 2016) is used for performing the analysis.  183 

Rain use efficiency and efficiency-based model 184 

Rain Use Efficiency (RUE) refers to the ratio of Aboveground Net Primary Production (ANPP) to 185 

total precipitation, and it is an effective index for assessing ecosystem productivity of drylands (Le 186 

Houérou, 1984). The linear relationship between ANPP and NDVI has been well studied and 187 

established (Myneni & Williams, 1994; Holm et al., 2003; PRINCE, 2007; Rasmussen, 2010; 188 

Wessels et al., 2006; Xue et al., 2017). Temporal integrated NDVI (NDVI or iNDVI) is found to 189 

be a consistent proxy for ANPP (Chang et al., 2018; Dardel et al., 2014; Fensholt et al., 2013; 190 

Kaptué et al., 2015; Paruelo et al., 1999). In this study, the temporal average NDVI (NDVI̅̅ ̅̅ ̅̅ ̅), which 191 

is conceptually equivalent to iNDVI (only differ by a constant factor), is used for RUE calculation, 192 

RUE =
NDVI̅̅ ̅̅ ̅̅ ̅

n

∑ Pi
n
1

(2) 193 

where n represents the number of months, which varies depending on the period (annual or 194 

seasonal) for which the RUE is evaluated, and i denotes the month. 195 

To rule out the climate influence on vegetation beyond the target period, which is often defined 196 

as the “zero intercept” difficulty when using NDVI instead of ANPP for RUE calculation (Dardel 197 

et al., 2014; Verón et al., 2005). A concept of baseline average NDVI (NDVI̅̅ ̅̅ ̅̅ ̅
b) is proposed in this 198 

study. It is assumed to be proportionate to a portion of in-situ ANPP which is not attributable to 199 

the precipitation descended within the target period but rather to the stored soil moisture or 200 

underground water. NDVI̅̅ ̅̅ ̅̅ ̅
b in this study is taken as the minimum monthly mean NDVI during a 201 

year for annual case, and the monthly mean NDVI over three non-growing season months prior to 202 

the growing season for seasonal case. The improved RUE calculation is then expressed as below, 203 

RUE =
NDVI̅̅ ̅̅ ̅̅ ̅

n − NDVI̅̅ ̅̅ ̅̅ ̅
b

∑ Pi
n
1

(3) 204 

The regional average RUE is calculated as the ratio of pixel-wise sum of NDVI to the pixel-wise 205 

sum of total precipitation, 206 

RUE̅̅ ̅̅ ̅̅ =
∑ (NDVI̅̅ ̅̅ ̅̅ ̅

n,p − NDVI̅̅ ̅̅ ̅̅ ̅
b,p)N

1

∑ ∑ Pi,p
n
1

N
1

, (4) 207 

where N denotes the pixel count of the target region, and p denotes the pixel index. 208 

    Based on RUE, we proposed a efficiency-based model to reproduce the historical NDVI 209 

interannual variability and project future conditions of CONUS drylands vegetation. This model 210 

is adapted from an open-loop linearized model, first introduced in Wang et al., 2006, which is 211 

established for semi-arid grassland regions in the North America to quantify the vegetation 212 

dynamics and contribution of precipitation to local vegetation growth. With the main difference 213 

that we aim to study vegetation change and its correlation with precipitation seasonally and 214 

annually instead of monthly in its original work, we can safely regard that NDVI can be informed 215 
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 7 

by contemporary precipitation, given the prolonged study period and transit nature of precipitation 216 

in drylands environments. The modified model has the following form, 217 

Vt = αVb,t + βPt + ϵt (6) 218 

where Vt and Vb,t denote the temporal average NDVI and corresponding baseline NDVI,  and  219 

denote the persistence rate of greenness and RUE, respectively, Pt is the total precipitation of 220 

interested period. 221 

    To account for the widely observed negative correlation between RUE and precipitation (RUE 222 

decreases as precipitation increases) (Huxman et al., 2004; Zhang et al., 2020), RUE () in this 223 

model is calculated as the sum of its climatology value and response to precipitation anomaly (P) 224 

by coefficient k, which has the following form, 225 

β = β0 ⋅ (1 + kΔPt) (7) 226 

When Vb,t is taken as its climatology value, the only independent variable in this model is annual 227 

or seasonal total precipitation. 228 

Future Projections from downscaled CMIP6 simulations 229 

The proposed efficiency-based model is in addition used for projecting the future greenness 230 

conditions of CONUS drylands, with the state-of-the-art CMIP6 climate projections as inputs 231 

(Eyring et al., 2016). WorldClim (worldclim.org) provides the latest downscaled CMIP6 232 

projections at 30 arc seconds, processed and calibrated with WorldClim v2.1 (Fick & Hijmans, 233 

2017) as baseline climate. 20-year climatology monthly precipitation predictions for the future 234 

(2021~2040) are obtained from six global climate models (GCMs), which are GFDL-ESM4 235 

MIROC6, MPI-ESM1-2-HR, EC_Earth3-Veg, UKESM1-0-LL, and CMCC-ESM2 for the 236 

boundary conditions given by the SSP370 scenario (O’Neill et al., 2016). SSP370 is specifically 237 

selected because the projection period in this study (2021-2040) is not far into the future. Because 238 

of that, we predict the trajectory of our study region, assuming that there is no major change in the 239 

environment policies for the next two decades. SSP370 is the one closest to the “business as usual” 240 

scenario among all available SSPs. 241 

Results and discussions 242 

Inter-annual NDVI trend and relationship with climate drivers 243 

The 20-year trend analysis of annual mean NDVI in CONUS drylands (Figure 2A) reveals a 244 

predominance of non-significant trends, with the notable exception of the Northern Great Plains 245 

(NGP) region, which exhibits extensive and clustered greening. In other states, significant greening 246 

trends are fragmented and sparsely distributed. Arizona also demonstrates notable greening trends, 247 

though less pronounced than in the NGP and weaker in magnitude. Browning trends are minimal 248 

across the study area, occurring primarily at a micro-scale, with slightly higher prevalence in New 249 

Mexico and west Texas. Focusing on the NGP region, Figure 2B illustrates the growing season 250 

mean NDVI trend, revealing a larger proportion of pixels with increasing trends compared to the 251 

annual mean NDVI analysis. Figure 2C compares the time series of annual mean NDVI for all 252 

CONUS drylands with the seasonal mean NDVI of greening pixels in the NGP. As confirmed by 253 

the MK test, the annual mean NDVI of all dryland pixels shows no significant trend over the study 254 
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 8 

period due to the relatively small proportion of greening pixels. In contrast, within the NGP region, 255 

the seasonal mean NDVI of greening pixels exhibits a consistent and steady increasing trend 256 

despite clear interannual variability. Figure S2 shows the LC map for CONUS drylands. 257 

Grasslands dominate CONUS drylands (71%), followed by shrublands (17%), together comprising 258 

nearly 90% of the area. Greening trends are evident in 16% of the study area, concentrated 259 

primarily in the Northern Great Plains (NGP) grasslands (90% of the greening trend). Browning 260 

trends are minimal (1%). 261 

 
Figure 2. Results of NDVI trend analysis from 2001 to 2020. (A) Annual mean NDVI trend in CONUS 

drylands; (B) Growing season mean NDVI in the northern Great Plains (NGP) region; (C) Zonal-average 

NDVI time series for two regions of interest. The blue line represents the annual mean NDVI averaged over 

all pixels in CONUS drylands. The green line represents the growing season mean NDVI averaged over only 

greening pixels (P-value<0.1) in NGP drylands. The dashed lines are fitted regression lines according to MK 

test. The green line shows significant increasing trend (P-value < 0.1). The blue line doesn’t show any 

significant trend. 

 262 

Climate variables exhibit differed trends in the CONUS drylands (Figure 3). Among all three 263 

climate factors, precipitation is most strongly correlated with greening trends in CONUS drylands, 264 

especially in the NGP region. While some spatial inconsistencies exist due to differing data 265 

resolutions, the association between increased precipitation and vegetation greening is clear. 266 

Temperature shows less influence, and shortwave radiation exhibits a minor negative correlation 267 

with greening. Outside the NGP, precipitation trends are less significant, while temperature 268 

variations are observed in southern California, Arizona, New Mexico, and Texas. To understand 269 

the drivers of the significant greening trend in the Northern Great Plains (NGP), the MLR model 270 

is applied to greening pixels only. Analysis revealed weak but negligible correlation between 271 
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 9 

climate variables, validating the variable independence assumption. The model effectively 272 

reproduced observed NDVI patterns (R-squared = 0.685) (Figure S3). Table 1 shows the values of 273 

coefficients from the attribution analysis. Precipitation is the dominant driver, with a significantly 274 

larger coefficient (0.8001) compared to temperature and radiation whose coefficients are close to 275 

zero (0.0169 for T, -0.0455 for Rsw), indicating minimal influence on the observed NDVI 276 

interannual variability. This highlights the importance of precipitation in driving vegetation 277 

greening in the NGP. The comparison of the interannual variability of NDVI and precipitation is 278 

provided in Figure S6. 279 

 

Figure 3. Trends of climate variables from 2001 to 2020. (A) Annual total precipitation; (B) 

Daily maximum temperature; (C) Shortwave radiation flux density. 

 280 

Table 1. Results of the empirical linear attribution model 281 

Coefficient Value P-value 

 <0.01 1 

1 0.8001 0.037 

2 0.0169 0.939 

3 -0.0455 0.877 

Note:  is the intercept term in the MLR model. Its close-to-zero value indicates the selected 

climate variables explain the most variability in NDVI anomalies. 1, 2 and 3 are coefficients 

corresponding to anomalies of precipitation, temperature and shortwave radiation. 

 282 

EOF analysis was conducted to further investigate the relationship between precipitation and 283 

NDVI in the NGP region, following the attribution model results. Figure 4 shows the EOF analysis. 284 

The first two EOF modes of both precipitation and NDVI capture the majority of the variance 285 

(72.7% and 69.8%, respectively), exhibiting similar spatial patterns and a high correlation 286 

(=0.849) between their principal components (PCs). This confirms that interannual variability in 287 

seasonal NDVI is primarily driven by local precipitation, with no lagged effects. The first EOF 288 
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 10 

mode for each variable also aligns with the spatial patterns observed in the trend analysis. The 289 

second EOF modes, while still highly correlated (=0.809), reveal a latitudinal gradient in both 290 

precipitation and NDVI, suggesting the influence of other latitude-dependent climate factors on 291 

plant growth. However, the direct driver remains precipitation. From the third mode onwards, 292 

spatial correlations decrease significantly. The third EOF modes for precipitation and NDVI 293 

present similar regional clusters. This might indicates a weak topographic link between 294 

precipitation and NDVI variability at finer spatial scales. 295 

 

Figure 4. EOF analysis of seasonal precipitation and NDVI anomalies from 2001 to 2020. Only 

the results of the first three leading modes (EOF) and corresponding principal components (PC) 

for each variable are presented. The first two columns present the EOFs, and the third column 

presents the comparison of corresponding PCs. 

 296 

Based on the combination of historical precipitation records and earth observations (EOs), 297 

precipitation in CONUS drylands is surely experiencing spatial shifting. Precipitation has become 298 

more unevenly distributed over the two-decade study period. Water availability in northern states, 299 

especially the NGP region, are progressively improved as the result of increase in precipitation, 300 

which theoretically increases the capacity of corresponding area to sustain denser and higher-level 301 

vegetation communities. In contrast, water scarcity for vegetation growth is expected to intensify 302 

in the southern states, including southern California, Arizona, New Mexico, and western Texas, 303 

mainly due to the widely observed increase in air temperature (Wahl et al., 2022; Zhuang et al., 304 
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 11 

2024). The local potential evapotranspiration becomes even higher because of the elevated vapor-305 

pressure deficit (VPD) (Swain et al., 2025), which strengthens the water constraint on local plant 306 

growth. 307 

Rain use efficiency patterns and CO2 fertilization effect 308 

Analysis reveals a significant linear relationship between precipitation and NDVI in our study 309 

regions over the two-decade period, evident from both annual (Appendix S4&S5) and 310 

climatological perspectives (Figure 5A&B). Strong correlations (exceeding 0.6) between 311 

climatological NDVI and precipitation suggest a stable long-term mean RUE, around which yearly 312 

values fluctuate. The wide shading areas (one standard deviation interval) in Figure 5C highlight 313 

substantial spatial variation in RUE, likely due to varying species composition and local 314 

environmental factors. Despite this variability, MK tests detect no significant RUE trends from 315 

2001 to 2020 at the aggregated spatial scale (Figure 5C). Per-pixel trend analysis of RUE reveals 316 

greater spatial variation. While most pixels show no trend (Figure 6A), a significant number in the 317 

NGP region exhibit increasing annual mean RUE, largely coinciding with areas of increasing 318 

precipitation and NDVI. Although spatial discrepancies exist, annual and seasonal RUE trends in 319 

this region show broad similarity (Figure 6A&B). Notably, clusters of increasing seasonal RUE 320 

are concentrated further downstream along the Missouri River, compared to annual RUE. Outside 321 

the NGP region, increasing RUE is sparsely distributed, primarily along the 40°N latitude. Further 322 

south, declining RUE becomes more prevalent, particularly in southern California bordering 323 

Arizona, New Mexico, and Texas. This pattern of decline spatially overlay the increasing 324 

temperature trends in Figure 3B. 325 
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Figure 5. Rain use efficiency in the CONUS drylands and NGP region. (A) Scatter plot of 

climatology annual mean NDVI against annual total precipitation (ATP) in the CONUS 

drylands; (B) scatter plot of climatology growing season mean NDVI against growing season 

total precipitation for greening pixels only in the NGP region; (C) time series comparison of 

yearly annual mean RUE in CONUS drylands (orange line) and seasonal mean RUE in the NGP 

region (blue line, greening pixels only). The shading represents one standard deviation interval 

for each line. No trend is detected for both RUE time series by MK test (=0.1). 

 326 
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Figure 6. Per-pixel rain use efficiency trend analysis results. (A) Trend of annual mean RUE in 

the CONUS drylands; (B) Trend of seasonal mean RUE in the NGP region. 

 327 

While a negative relationship between precipitation and RUE is often observed due to reduced 328 

water limitation (Huxman et al., 2004; Chen et al., 2020), the NGP region exhibits a contrasting 329 

pattern of increasing RUE alongside increasing precipitation. This suggests factors beyond simple 330 

water availability are at play. In drylands, high potential evapotranspiration and sparse vegetation 331 

can limit the translation of increased precipitation into significant improved plant growth (and 332 

RUE) (Zhu et al., 2022). A growing body of research has revealed the large-scale CO2 fertilization 333 

effect (CFE) in drylands (Rifai et al., 2022; Verbruggen et al., 2024; Uddin et al., 2018). It has 334 

been commonly accepted that CFE increases water use efficiency (WUE) through reducing 335 

stomatal conductance (Haverd et al., 2020). This phenomenon is expected to be more prominent 336 

in water limited areas, such as drylands, as local vegetation tends to save water while maintaining 337 

the level of photosynthesis. The observed RUE increase in the NGP region (Figure 6A&B) also 338 

points towards the CO2 fertilization effect as a key driver (Zhang et al., 2022; Gonsamo et al., 339 

2021). The potential CO2 fertilization effect in cool grasslands is echoing findings in Winkler et 340 

al., 2021. However, in contrast to expected large-scale decrease in RUE across CONUS drylands 341 

due to CFE, Figure 6A&B show that significant decreases in RUE are limited to areas with 342 

concurrent increases in precipitation (Figure 8C and Figure 9A). This highlights the complex 343 

interplay between water availability and CO2 fertilization in driving vegetation dynamics in 344 

response to climate change in drylands. 345 

    If specifically considering the role of plant transpiration in RUE calculation, Eq. 2 can be re-346 

rewritten as follow, 347 

RUE =
NDVI̅̅ ̅̅ ̅̅ ̅

∑P
=

NDVI̅̅ ̅̅ ̅̅ ̅

∑ET
⋅

∑ET

∑P
 (6) 348 

The increase in atmospheric CO2 concentration affects plant growth in two major ways, reducing 349 

stomata conductance (∑𝐸𝑇

∑𝑃
) by shortening the duration of stomata opening and stimulating vegetation 350 

cover (𝑁𝐷𝑉𝐼̅̅ ̅̅ ̅̅ ̅̅

∑𝐸𝑇
). Zhang et al., 2022 concluded that the increase in sensitivity of dryland vegetation 351 

greenness to precipitation is mainly because the stimulation effect overrides the decline in 𝜕𝐸𝑇

𝜕𝑃
 in 352 

those ecosystems. In our study region, except the NGP region, the simulation effect is limited as 353 

indicated by the relatively unchanged NDVI. The water use efficiency (𝑁𝐷𝑉𝐼̅̅ ̅̅ ̅̅ ̅̅

∑𝐸𝑇
) of local plants may 354 

have increased so that it compensates for the decrease in stomata conductance, but not to the point 355 

where the RUE also shows significant changes. 356 

The above explanation assumes that vegetation in drylands aims to maximize water use 357 

efficiency (WUE) and that CFE suppresses stomatal conductance, consistent with the traditional 358 

optimality theory of plants (Cowan & Farquhar, 1977). However, Wolf et al. (2016) propose that 359 

under conditions of intense water competition—driven by high evaporative demand and 360 

competition from neighboring plants—a more evolutionarily advantageous strategy for plants may 361 

be to prioritize maximizing growth rate by increasing stomatal conductance, even at the cost of 362 

reduced WUE. The absence of a large-scale increase in resource use efficiency (RUE) and the 363 
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spatially correlated increase in RUE with precipitation in the NGP region (Figure 6A&B) may 364 

reflect this theory at the ecosystem scale. This suggests that alleviating water limitations could be 365 

a prerequisite for dryland ecosystems to fully benefit from elevated CO₂ concentrations. To reach 366 

a decisive conclusion requires a thorough quantitative analysis of the long-term stomatal behavior 367 

of local vegetation, accounting for the plant hydraulic stress imposed by scare soil moisture in 368 

drylands. 369 

The similarity in the spatial distributions of the decreasing RUE and increasing temperature 370 

patterns observed in the southern states implies their physiological connections. The influence of 371 

temperature on RUE is complicated, as optimum temperature ranges exist for all biomes, in which 372 

vegetation balances it carbonate production and water loss through stomata. Drylands in southern 373 

states are characterized by excessive temperature and dry environments. Increasing temperature in 374 

water limited region strengthens the need for plant to preserve water through further reducing the 375 

stomata conductance. As a result, the intercellular CO2 concentration won’t always be as high as 376 

atmospheric CO2 concentration, which reduces 
𝑁𝐷𝑉𝐼̅̅ ̅̅ ̅̅ ̅̅

∑𝐸𝑇
. The combined effect of intensified reduction 377 

of 
∑𝐸𝑇

∑𝑃
 and further limited 

𝑁𝐷𝑉𝐼̅̅ ̅̅ ̅̅ ̅̅

∑𝐸𝑇
 entails the observed decrease in RUE in southern states. 378 

Modeling and projections 379 

The proposed model aims to quantify the interannual variability of NDVI in CONUS drylands 380 

using precipitation as the sole independent variable. Model performance is evaluated across both 381 

temporal and spatial domains. We first use the model to reproduce the time series of observed 382 

spatial-average NDVI for two regions: the NGP (using growing season mean NDVI) and the entire 383 

CONUS drylands (using annual mean NDVI). As presented in Table 2, there are 61888211 and 384 

16742453 valid pixels in total used for parameter estimation in two different cases. Their 385 

respective R-squared values are 0.721 and 0.859, indicating good model fit. The estimated 386 

climatological RUE (0) (Table 2) closely match values derived directly from the data (Figure 5C). 387 

Figure 7 further demonstrates strong agreement between observed and modeled spatial-average 388 

NDVI times series over time. The model effectively reproduces the spatial-average NDVI time 389 

series in both regions, exhibiting high R2 values (0.825 for NGP and 0.9 for CONUS), low RMSE 390 

(0.014 and 0.004), and low NRMSE (0.125 and 0.112). These results confirm the model's ability 391 

to capture the temporal dynamics of NDVI. To assess the model's ability to capture spatial 392 

heterogeneity, we applied it at the pixel level across the entire study region (Figure 8).  R-squared 393 

values exceed 0.5 for most pixels (Figure 8A).  After excluding pixels with insufficient data or 394 

invalid parameters, the relative error between modeled and observed climatological annual mean 395 

NDVI remains below 10% for most areas, with some overestimation (around 10%) observed in 396 

the NGP region (Figure 8B). Overall, the proposed model demonstrates robust performance in 397 

capturing the interannual variability of NDVI in CONUS drylands, both temporally and spatially, 398 

underscoring the critical role of water availability in driving vegetation dynamics. 399 

 400 
 401 
 402 
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 403 
 404 

Table 2. Modeling results in two study regions 405 

Results 
Region 

NGP CONUS 

# of pixels 16742453 61888211 

R2 0.721 0.859 

Intercept -0.009 -0.011 

 0.966 1.037 

k -2.62010-7 -7.22010-8 

0
 4.72110-4 1.97010-4 

Note: , k, and 0 in the above table are estimated parameters, representing the 

persistence rate of greenness, the sensitivity of RUE to precipitation anomaly, and 

climatology RUE  

 406 

 
Figure 7. Comparison of observed and modeled NDVI interannual variability in (A) NGP and 

(B) CONUS dryland regions. The trend lines for observed and modeled NDVI, as estimated 

through linear regression in both panels, exhibit a high degree of overlap. Significant increasing 

trends are detected in both observed and modeled in (A) by MK test. No significant trends are 

detected in (B) by MK test. 

Page 15 of 24 AUTHOR SUBMITTED MANUSCRIPT - ERL-119528.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



 16 

 407 
Figure 8. Per-pixel modeling results in the CONUS drylands. (A) presents the coefficient of 

determination (R2) at each pixel; (B) presents the relative error between observed and modeled 

climatology annual mean NDVI (2001~2020) in percentage. Shaded area (gray) in (A) 

represents masked pixels which have less than 15 valid NDVI observations out of 20 years. 

Shaded area (gray) in (B) represents masked pixels that combine the shaded area in (A) and 

pixels with R2 lower than 0.5 or negative estimated 0 (RUE). 

 408 

The model's success in reproducing observed NDVI patterns validates its utility for 409 

understanding and predicting vegetation responses to precipitation variability, particularly in light 410 

of future CMIP6 projections that indicate a potential reversal of recent greening trends. These 411 

projections, based on averaging predictions from six different models (GFDL-ESM4 MIROC6, 412 

MPI-ESM1-2-HR, EC_Earth3-Veg, UKESM1-0-LL, and CMCC-ESM2) under the SSP370 413 

scenario, show a widespread decrease in climatological annual total precipitation (ATP) of 414 

approximately 20% in the NGP region (Figure 9A), with corresponding declines in NDVI of up to 415 

10% (Figure 9B). This potential browning trend, contrasting with the observed greening, could 416 

have significant implications for ecosystem services and carbon sequestration in the NGP and 417 

Midwest. While some southern states may experience localized vegetation increases due to 418 

increased precipitation, the limited extent of these areas underscores the overall vulnerability of 419 

CONUS drylands to future climate change. 420 

 421 

Page 16 of 24AUTHOR SUBMITTED MANUSCRIPT - ERL-119528.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



 17 

 422 

Figure 9. Relative differences between (A) climatology annual total precipitation of the study 423 

period (2001~2020) and CMIP6 climatology projection (2021~2040), and (B) climatology NDVI 424 

of the study period and projected NDVI estimated by per-pixel model, using CMIP6 climatology 425 

precipitation projection (2021~2040) as input. Shaded area (gray) in (B) represents masked pixels 426 

in Figure 8B. CMIP6 climatology precipitation projection is taken as the average of precipitation 427 

simulations of different GCMs under SSP370 scenario. 428 

 429 

It is important to acknowledge that these projections rely on simplified assumptions and do not 430 

account for potential shifts in vegetation communities or factors like CO2 fertilization. While 431 

demonstrating strong predictive power, the model's reliance on precipitation as the sole predictor 432 

also highlights a potential limitation. Future research could incorporate additional variables, such 433 

as temperature and soil moisture, to enhance its accuracy and applicability. 434 

Conclusion 435 

This study utilizes 20-year MODIS NDVI data and high-resolution meteorological data (1-km) to 436 

analyze long-term vegetation changes in conterminous United States (CONUS) drylands and their 437 

responses to climate variability. We find substantial greening trends across the Northern Great 438 

Plains (NGP) from 2001 to 2020, primarily driven by increased precipitation.  Temperature and 439 

shortwave radiation exert secondary influences on NDVI by modulating local precipitation 440 

patterns. While rising CO2 appears to enhance RUE in NGP region where increase trends of 441 

precipitation is also present, decreases in RUE across southern states correlate with rising 442 

temperatures, highlighting the complex interplay of climate factors on vegetation.  Although CO2 443 

fertilization effect (CFE) is expected to promote vegetation growth in drylands by enhancing 444 

water-use efficiency, the extent of this effect depends on local environmental conditions, 445 

particularly water availability, which is in contrast with large-scale CFE in drylands concluded in 446 
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studies using coarser resolution products. These discrepancies also suggest the important role of 447 

stomatal behavior in understanding the adaptation of vegetation in drylands to changing climate. 448 

Our efficiency-based model effectively quantifies NDVI variability, emphasizing the critical role 449 

of water availability in dryland ecosystems. However, CMIP6-based projections using this model 450 

suggest potential future browning in the NGP region and areas near 42°N latitude, contrasting with 451 

recent greening trends. This underscores the vulnerability of these ecosystems to future climate 452 

change, although adaptive capacity and human interventions may modulate these outcomes. Our 453 

findings highlight the need for adaptive management strategies to mitigate potential negative 454 

impacts on dryland vegetation and emphasize the importance of incorporating additional factors 455 

into future models for enhanced accuracy. 456 
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