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Parallel scaling of elite wealth in ancient 
Roman and modern cities with implications 
for understanding urban inequality
 

W. Christopher Carleton    1  , Hugh Elton2, Will Miranda3, Isaac Work3, 
Daniel Safarik3, Ricarda Winkelmann    4,5,6, Manfred Laubichler    7,8,9, 
Jürgen Renn10,11 & Patrick Roberts    2,12,13 

Rapid urbanization and rising inequality are pressing global concerns, yet 
inequality is an ancient trait of city life that may be intrinsically connected 
to urbanism itself. Here we investigate how elite wealth scales with urban 
population size across culture and time by analyzing ancient Roman 
and modern cities. Using Bayesian models to address archeological 
uncertainties, we uncovered a consistent correlation between population 
size and physical expressions of elite wealth in urban spaces. These patterns 
suggest the presence of an ancient, enduring mechanism underlying urban 
inequality. Supported by an agent-based network simulation and informed 
by the settlement scaling theory, we propose that the observed patterns 
arise from common preferential attachment in social networks—a simple, 
yet powerful, driver of unequal access to interaction potential. Our findings 
open up new directions in urban scaling research and underscore the 
importance of understanding long-term urban dynamics to chart a course 
toward a fairer urban future.

As global urbanization accelerates through the Anthropocene, the 
interplay between sustainable development and inequality will be 
paramount for shaping future urban environments and policy. The 
technosphere—technology and anthropogenic structures—now weighs 
an estimated 30 trillion tonnes, much of which is concentrated in urban 
centers1. This massive number reflects the magnitude of urban impacts 
on the Earth system, an impact that will surely grow with projections 
indicating over 70% of the global population will reside in cities by 
the year 20502. This trajectory means that charting a sustainable 
course is increasingly urgent. Recent developments, including the  

United Nations’ (UN) latest Sustainable Development Goals report3  
and Nature’s recent comprehensive special collection on urban  
sustainability4, have highlighted many challenges and perspectives 
surrounding urban growth and sustainability. Chief among these are 
the challenges posed by the intersection between urban development 
and inequality. The UN expects that by 2050 there will be 2 billion more 
people living in slums in and around the rapidly growing urban centers 
of the world3, and many sustainability scientists have identified crucial 
links between inequality and barriers to sustainable development5–7. 
However, the long-term relationships between urban growth, wealth, 
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a pillar of the modern sustainability concept and, by extension, for 
charting a path toward a sustainable urban future.

With these important questions in mind, we conducted an inter-
temporal comparative scaling analysis involving ancient Roman and 
modern elite wealth in urban centers. Our focus on Roman society 
during the first two centuries common era (CE) was motivated by 
recent studies suggesting its urban inequality mirrored that of some 
of today’s largest cities. For instance, Pompeii’s Gini coefficient, a 
measure of inequality, is estimated at 0.5–0.6 (refs. 21–23) for the years 
near its demise in 79 CE, aligning with recent estimates for major US 
cities such as New York and Miami, both of which have estimates of 
~0.51 or higher24. The data on ancient Roman urban monumentality 
that could be compared with modern data are also readily available 
online, whereas we are not aware of comparable datasets for other 
preindustrial societies—though some could be created for ancient 
societies in the Americas, for instance. Similar to other scaling stud-
ies, ours involved comparing urban traits to population sizes using 
regression techniques. The key parameter of interest was the scaling 
parameter—a regression coefficient—which indicated how the evidence 
for urban elite wealth varied with population size.

Our study involves several analyses. First, we examined scaling 
between population size and urban elite wealth in the early Roman 
Empire. The two available datasets were counts of monuments 
(frequently sponsored by the elite25,26) and counts of epigraphic 
inscriptions (honorific dedications, usually to elites and their fam-
ily members27), accessible through online databases. To account for 
idiosyncrasies in these archeological and historical datasets, we used 
novel, advanced, Bayesian versions of standard scaling regression 
models that accounted for the count-based nature of the data, uncer-
tainties in population estimates and potential regional differences 
among Roman provinces8,12,28,29 (Methods). We ran multiple analyses 
involving different subsets of the Roman cities database to explore pos-
sible biases. A key set of analyses involved excluding Roman cities with 
zero counts for monuments/inscriptions, which allowed us to explore 
the effect of zero inflation due to preservation, recovery and research 
biases present in archeological and historical data. Next, we examined 
scaling between population size and urban elite wealth in modern cit-
ies, also using two datasets. One included counts of exceptionally tall 
buildings (exceeding 150 m), which we consider to be an expression of 
both modern urban monumentality and signals of elite wealth concen-
tration/competition30,31 (for example, Trump Tower in New York or the 
Burj Khalifa in Dubai). The other was counts of billionaires residing in 
major cities. Lastly, we ran supplementary analyses to explore model fit, 
compare the power-law model to a reasonable alternative and examine 
the effect of outliers on our scaling parameter estimates.

Then, we developed an agent-based model (ABM) to explore how 
population scaling could potentially be linked to wealth inequality 
in terms of individual interactions so that the explanation would be 
compatible with the SST. We based the ABM on the Boltzmann wealth 
model, which posits that money, similar to energy in a closed system, 
is conserved and will over time become exponentially distributed32. 
Agents, representing (in the present case) all individuals living in an 
abstract city, bounce around (similar to gas molecules) randomly 
exchanging virtual money, which counterintuitively leads to substan-
tial inequality. This simple model of agents bouncing into each other at 
random in a circumscribed space is a direct parallel to the ‘amorphous 
settlement’ model of the SST, from which more complicated complex 
infrastructural models were developed9. Our model, enhanced with 
simple network effects, starts by placing agents in a network, allow-
ing money exchanges only with connected agents, and introduces 
a preferential attachment parameter to mimic real-world social and 
economic networks33. By varying this parameter, we analyzed the 
impact of connection disparities on inequality, measured by the Gini 
coefficient, which we chose because of its simplicity and widespread 
adoption for measuring inequality past and present34.

power and inequality are poorly understood, making predictions and 
planning difficult. Combining the settlement scaling theory8,9 (SST) 
with recently developed and growing archeological and historical 
databases has the potential to greatly improve this situation.

The SST is a powerful framework for explaining and exploring 
relationships between urban growth and different economic, infra-
structural and structural parameters9. It explains and predicts attrib-
utes of urban centers as a function of fundamental principles of human 
social interaction that scale with population size8,10. Scholars have, for 
instance, found that larger settlements are, on average, not only more 
productive (for example, higher wages and more innovations) but also 
more costly (for example, higher rents), than smaller ones10. These 
scaling relationships are nonlinear such that increases in population 
size can lead to explosive increases in some urban traits. Crucially, 
SST focuses on the complex, nonlinear dynamics of urban systems 
rather than their initial conditions, very similar to how the aphorism 
‘the rich get richer’ highlights wealth compounding without saying 
anything about how the rich got rich initially. Consequently, the theory 
describes scaling process and invokes nonlinear dynamics such as 
feedback, rather than simple linear causation, where one urban trait 
directly causes the other11. According to the theory, these complex 
patterns arise naturally in a law-like manner—similar to metabolic 
scaling in organisms—as a function of small-scale interactions among 
individuals in the context of high-density urban systems that contain 
fractal, space-filling transportation and resource distribution net-
works. This premise has been supported in scaling analyses performed 
on modern cities and ancient examples alike, including, for instance, 
Aztec cities in the Basin of Mexico and Imperial Roman cities8,10. Thus, 
individual cities—regardless of culture, technology, economy or time 
period—are revealed by SST to be manifestations of a general process 
that is inherently nonlinear and stochastic, while still exhibiting vari-
ations that are deeply influenced by contextual factors12,13. This ‘urban 
process’ generates wealth greater than would be expected if individual 
contributions to aggregate wealth increased linearly with population 
growth, which, in part, explains the success, proliferation and attrac-
tion of cities through time and space, despite the costs and potential 
downsides urban dwelling.

Wealth scaling is a positive feature of the urban process, particu-
larly given rapid trends toward urban life in the twenty-first century. 
More wealth per capita reflects efficiency gains, that is, economies 
of scale with respect to infrastructure9, and this greater efficiency 
may help deal with the challenges of population growth and finite 
resources. Moreover, more wealth means more resources available 
for climate change adaptation. Nevertheless, there is also abundant 
evidence that urban wealth gains are not distributed evenly14–18. For 
instance, in modern cities such as San Francisco, the technology boom 
has substantially increased local wealth and also exacerbated housing 
affordability issues, widening the divide between urban high earners 
and other residents19. These disparities can be observed in the physical 
layout, architecture and monumentality of modern urban centers20. 
Such inequality could challenge sustainable development, which is 
why many authors have advocated including ‘equity’ as a pillar of sus-
tainability alongside ‘environment’ and ‘economy’5. It is also why the 
UN emphasizes inequality in the 11th global Sustainable Development 
Goal, to ‘Make cities and human settlements inclusive, safe, resilient, 
and sustainable’3. The ubiquity of inequality in modern urban cent-
ers, along with easy to find examples of inequality in past cities, raises 
important questions: While urban dynamics seem to generate wealth 
by its very nature, do cities also necessarily concentrate that wealth 
in the hands of a few elites as they grow? If so, how universal is this 
tendency across time given the various other important factors such 
as economic system (for example, capitalism versus something else), 
culture, technology and so on? And importantly for present purposes, 
is there a material expression of this tendency that affects urban envi-
ronments? Answering these questions will be crucial for understanding 
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We reasoned that comparing the scaling parameters for proxies 
of elite wealth across time and culture could reveal fundamental simi-
larities that transcend temporal, cultural, economic and technological 
divides. The Imperial Roman period’s surge in monumentality, driven 
partly by euergetism (elite benefaction and power signaling in the 
form of funding monumental building projects and repairs) and the 
increase in epigraphy highlight the ancient elites’ strategies for wealth 
display and status legitimation26,27,35,36. Similarly, modern elite wealth 
and power has been signaled by a kind of patronage involving ambitious 
skyscraper projects for many decades37. By juxtaposing ancient Roman 
practices with the present-day concentration of wealth produced by a 
very different economic system, with different technology, we aimed 
to uncover potentially enduring patterns in the scaling relationship 
between population size and elite wealth. And, lastly, with the our 
network-Boltzmann ABM as an heuristic aid, we sought to explain any 
identified scaling effects by developing an SST-compatible hypothesis 
for future testing.

Results
The results of the analyses consistently indicated the presence of a 
power-law relationship between urban elite wealth indicators and 
population size (Table 1). In each analysis (see Methods for details), 
we found a positive relationship between the relevant elite wealth 
indicator and population size estimates. The models all had average 
R2 values of around 0.15–0.57 (Table 1 and Fig. 1), which reflects data 
uncertainties and the likely possibility that more than just population 
size affects these indicators of elite wealth. It also clearly indicates that 
monuments (modern or ancient), inscriptions and even counts of bil-
lionaires are only a proxy for elite urban wealth with variability left over 
to explain by other factors. Most of the scaling parameter estimates had 
overlapping 95% credible intervals (CIs) spanning ~0.2–0.5 with some 
notable outliers, and most means are clustered in the region ~0.3–0.5. 
Our results also indicate that there was little difference among Roman 
provinces in terms of scaling coefficient (see Markov Chain Monte Carlo 
(MCMC) trace plots in ref. 38 with filenames containing ‘provinces’).

In addition, the supplementary analyses indicate that the power-
law model should be preferred to the linear-log alternative (with 
70–80% of cities being better predicted by the power-law model; 
‘model_comparison.csv’ and ‘loo_est_…csv’ files in ref. 38). We also 
found very few extreme outliers in the power-law model analyses— 
indicated by high Widely-Applicable-Information Criterion diagnos-
tics (pWAIC) values reported by Nimble, Pareto Smoothed Impor-
tance Sampling Leave-One-Out Cross-Validation (PSIS-LOO), Pareto  
K values and residual-versus-predicted plots (‘resid_…png’ files in 
ref. 38). Crucially, these outliers (extreme and moderate) had little 

impact on our parameter estimates (‘post_summary_…linlog.csv’ 
files in ref. 38).

Lastly, our ABM results clearly showed that the strength of prefer-
ential attachment is positively correlated with inequality as measured 
by a Gini coefficient. By varying the preferential attachment parameter, 
we could see a clear correlation. Different degrees of preferential 
attachment led, as would be expected, to different degrees of con-
nection bias. With low preferential attachment, a highly even network 
(uniform degree distribution) was obtained where most nodes/agents 
had roughly the same number of connections. In contrast, higher 
preferential attachment led to highly uneven (scale-free) connection 
distributions where connectivity was disproportionately concentrated 
in a few nodes. The latter corresponded to higher Gini coefficients 
indicating greater inequality (Fig. 2).

Discussion
Our results suggest that inequality may be a structural trait of the urban 
process that transcends time and sociocultural, technological and 
economic differences. We identified a pattern of increased wealth 
concentration that corresponds with increased urban population 
sizes across diverse indicators in societies separated by more than 
1,000 years (Fig. 3). Moreover, the two case studies exhibit massive 
differences in culture, technology and economic organization. Yet, the 
values we estimated for the scaling coefficients in these two distinct 
cases are strikingly similar (Fig. 2). Thus, it seems reasonable to suspect 
that perhaps the same mechanisms that lead to superlinear wealth 
scaling in cities could give rise to wealth concentration, with all that 
entails for social and economic inequality.

Our research, of course, has limitations. There are certain well-
known challenges associated with identifying and proving the existence 
of scaling relationships in noisy real-world data39,40. By scaling relation-
ships, we generally mean that one variable is functionally related to 
another and a unit change in the first variable corresponds to a fixed 
unit change in the other regardless of the scale of the two quantities—
that is, a relationship that holds at all scales and is, therefore, ‘scale 
invariant’. Such relationships are important because they imply univer-
sal functional relationships, which suggests a deep connection. In the 
context of SST, the existence of a power law implies that, say, the area 
of roads increases consistently in concert with population regardless 
of whether one considers a change from a small population to a large 
one or a change from a large population to an enormous one (though 
the relationship need not be linear). In real-world data—especially 
aggregated archeological and historical data—it can be difficult to 
distinguish between universal scaling and a relationship that holds only 
over some range of values or only in certain contexts39. Importantly, 

Table 1 | The 99% CIs, means and standard errors of the estimated scaling coefficient for each of our analyses

Analysis N (no. of 
cities)

Scaling parameter (power-law exponent) R2

Lower (99% CI) Upper (99% CI) Mean Standard error

All monuments 885 0.25 0.41 0.32 0.03 0.5

All monuments (no zeros) 851 0.25 0.41 0.33 0.03 0.45

Areas estimated by walls only 454 0.2 0.43 0.31 0.05 0.38

Areas estimated by walls only (no zeros) 449 0.19 0.44 0.31 0.05 0.38

Epigraphy 885 0.26 0.64 0.44 0.07 0.57

Epigraphy (no zeros) 288 0.44 0.94 0.68 0.1 0.26

Filtered monuments 885 0.27 0.47 0.36 0.04 0.48

Filtered monuments (no zeros) 806 0.29 0.49 0.38 0.04 0.43

High-net-worth individuals 91 0.09 0.44 0.27 0.07 0.15

Tall buildings 172 0.41 0.69 0.55 0.05 0.22

It also contains pseudo-R2 values for comparison with previous scaling studies that used log–log linear regression models and reported R2 statistics for summarizing model fit (see Methods  
for details).
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with archeological and historical datasets, there is also a temporal 
palimpsest effect whereby data points corresponding to different times 
are aggregated, often to overcome sparse data problems or because of 
temporal uncertainties. For these reasons, our analysis, similar to many 
other scaling studies, cannot be taken as conclusive. Still, our first sup-
plementary analysis (Methods) in which we compared the power-law 
models with a sensible alternative (linear log) indicated a clear prefer-
ence for the power law. We also found, in our second supplementary 
analysis, no indication of outlier cities having affected our estimates of 
the scaling exponent. In addition, while the Oxford Roman Economies 
Project (OxREP) data spans from 100 before common era to 300 CE, 
most of the monuments and inscriptions date to the second century 
CE during a time of explosive urban growth throughout the Roman 
Empire41,42. So, while we urge caution against overinterpreting our 
findings, they appear to be robust and indicative of scaling behavior.

Importantly, the consistency across data treatments was encour-
aging. The relationships we identified were consistent regardless of the 
way urban areas were estimated and even after filtering out features 
of debatable monumentality, such as street grids and fora/agorai and 
walls that could be confounding because of their use in our analyses 
to define settlement areas. The pattern was also consistent between 
the two different data types, monument counts and epigraphy and 
irrespective of differences in the way the relevant databases were 
compiled. A notable exception was the parameter estimate for the 
epigraphic database that included all of the zeros present in those 
data. The posterior distribution (Fig. 1) for the scaling parameter in that 
case is shifted upward compared with the bulk of the other estimates. 
This indicates that the presence of so many zeros still clearly had an 
effect despite our use of a statistical model often used to account for 
cases where count data contain potentially false zeros giving rise to 
‘overdispersion’. The best explanation, we argue, is that the analysis 
in which we excluded zero counts of inscriptions is closer to the truth 
because we find it highly unlikely for any Roman settlement with city 
civic status—and, thus, in the database we used—to have had no epigra-
phy27 (see Methods for further details). Crucially, for present purposes, 
the Roman scaling relationships were also remarkably close to, and 

had overlapping uncertainties with, the ones we identified in the data 
about modern elite wealth concentration and conspicuous, imposing 
monumentality in urban centers. So, while there is uncertainty about 
the specific scaling value, there appears to be some convergence across 
datasets, and importantly, none of the values seem to correspond with 
existing predictions from the SST. We take this convergence across 
data types and time periods as indicative of some as yet underexplored 
persistent process, making it an enticing empirical finding.

With the foregoing in mind, we can speculate about the particular 
scaling parameters we identified. Compared with most of the other 
empirical SST research and predictions made so far, the 0.3–0.5 range 
of parameter means we observed is unusual—see Hanson for a similar 
finding using a simpler model43. Established SST predictions for socio-
economic productivity (outputs) focus on aggregate wealth (for exam-
ple, total gross domestic product for a given city) and average wealth 
(for example, per-capita productivity), not the wealth of specific socio-
economic strata, as noted by other scholars17. For indicators of aggre-
gate wealth, the theoretical scaling parameter would be 7

6
, and for 

per-capita wealth the parameter would be 1
6

. These values indicate 
superlinear and sublinear scaling of wealth, respectively, and reflect 
primarily the gains from increased total numbers of interactions and 
increased per-capita interaction rates in larger cities. They also arise 
as a result of cost savings from economies of scale making movement 
(and other aspects of urban life) more efficient for larger cities.

The value range we estimated from our case studies, however, is 
lower than would be expected of aggregate wealth and higher than 
expected of average per-capita wealth. Since monuments and dedica-
tion inscriptions were frequently funded by wealthy individuals for 
symbolic and political reasons in the Roman Empire27,35, they do not 
reflect aggregate or per-capita wealth. Likewise, counts of billionaires 
in modern cities or extremely tall buildings do not reflect the typical 
wealth of urbanites in those places. Rather, these indicators reflect the 
wealth of only the wealthiest citizens, which could explain why we 
observe a scaling parameter different than any comparable wealth or 
infrastructure prediction from the SST for structured settlements9. 
The value range is notably higher than would be expected of the 1

6
 value 
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Fig. 1 | Posterior densities of scaling parameters for each analysis. The vertical dashed lines represent theoretically predicted values from the SST discussed in  
the text. The left-most line corresponds to the scaling parameter expected of average individual wealth, while the right-most line indicates the value expected  
for infrastructure9.
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representing average per-capita wealth scaling. Intuitively, a higher 
value makes sense given that individuals with more wealth tend to gain 
more from increased interaction opportunities and larger markets than 
individuals with less wealth. There is a limit to this, though, since the 
scaling parameter we estimated is sublinear, meaning that urban 
expressions of elite wealth concentration grow more slowly than popu-
lation. This implies that there are ‘diminishing returns’, which aligns 
with previous research on ancient inequality showing that the magni-
tude of inequality may be smaller in the largest cities22. Nevertheless, 
these patterns reinforce the old adage that ‘the rich get richer’, an 
unfortunate dynamic that may have been as true in the past as it is today.

This scaling pattern, we think, may be driven by network effects 
acting on interaction rates in urban centers. The SST is based on the idea 
that interaction rates affect a variety of measurable urban traits (for 
example, economic transactions, innovations, patent filings, crime and 
disease outbreaks), and interactions in urban centers are catalyzed by 
increased population density (more people interacting in a given space) 
and efficiencies gained by space-filling infrastructure networks (allow-
ing individuals to interact efficiently across the urban space). Since 
interactions provide benefits, increased average per-capita interaction 
rates are the source of the many superlinear scaling effects observed 
for socioeconomic outputs, such as wages and patents. However, the 

SST does not say anything explicitly about expected patterns in cases 
with differential access to the social networks.

Our ABM simulations indicate that our proposed explanation is 
plausible and could be used to extend the SST. The results showed that 
connection inequality exacerbated wealth concentration substantially 
(Fig. 2). These findings underscore the importance of considering not 
only the physical (complex, space-filling) infrastructure of urban cent-
ers but also the structured nature of human social networks, highlight-
ing a potential pathway for extending the SST to more accurately reflect 
real-world dynamics. As explained earlier, the SST explains observable 
scaling between population and various urban traits (including wealth) 
as a function of lower-level population-interaction probability scal-
ing, where there is no connection variability among individuals. Our 
network model shows what can happen to wealth distribution when 
the assumption about connection quality is relaxed or stressed. Based 
on these simple findings, we argue it is possible that the interplay of 
urban infrastructure networks and human social networks gives rise 
to unequal access to interaction in urban centers, thereby creating the 
observed scaling effects—though it should be noted that a number 
of potential processes beyond simple preferential attachment could 
produce connection inequality, and those should be explored in future 
SST research on inequality.
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Fig. 2 | Preferential attachment effect on Gini. The boxes each refer to N = 100 
Gini estimates for each level of preferential attachment (PA), which indicate the 
median and interquartile ranges (IQR). The whiskers indicate 1.5 times the IQR, 
and the circles are outliers beyond that range. As the plot indicates, increasing 
preferential attachment strength leads to increased Gini coefficients (greater 
inequality). The specific model settings chosen (the range of PA values explored 
and number of agents) were chosen so as to produce a clear image depicting the 

model dynamics. It should be noted that since Gini coefficients are bounded 
in [0,1], and PA values ultimately lead to a continuum between complete 
connectivity and a network where all agents are connected to only one super-
connected agent, the expected relationship between the PA and Gini coefficient 
is actually S shaped, and increasing PA further reveals a smooth increase to an 
asymptote where the Gini coefficient is 1 (interested readers can explore these 
dynamics by running the Python code provided in the project repo in ref. 38).
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To our knowledge, our research revealed the first potential evi-
dence of urban scaling in elite wealth and power displays that tran-
scends millennia, economics, culture, political organization and 
technology17,28. Using a robust Bayesian approach to account for his-
torical uncertainties and spatial effects and combining archeological 
and historical data with modern data has opened up new avenues for 
research under the framework of the SST that focus on elite power 
and inequality manifested in the urban environment. We, of course, 
acknowledge that such an approach will struggle to explore less-tan-
gible elements of political and ideological urban life and that material 
connections to political, economic and social inequality can be mul-
tifaceted and contested44–47. Nevertheless, we believe that it enables 
investigation of urban centers, past and present, as sites of sociopo-
litical, economic and ideological dynamism, with implications for 
understanding urban centers as engines of inequality and potential 
loci of resistance48–52.

Importantly, better understanding the source of inequality in the 
urban process will be crucial for efforts toward sustainability develop-
ment. For decades, ‘equity’ has often been considered a pillar of the 
sustainability concept6,53. Our findings indicate that future sustain-
ability discourse is going to have to grapple with the possibility that 
wealth-population scaling in urban systems may also be connected 
to inequality. In addition, while other scholars have proposed scaling 
effects for growth within income brackets17 and effects on housing 
prices18, mechanisms for evident declines in inequality over long time-
frames in history54, discussed the key contextual factors (property 
rights and so on) that have affected historical levels of inequality55, or 
argued that inequality is a product of capitalism56, our work points to 

a potentially fundamental source for inequality scaling: the complex 
interplay of social and infrastructural networks that affect interaction 
rates in urban centers and probably other human settlements. At the 
same time, though, it is important to highlight that we also observed 
variability in the scaling relationships, like all scaling studies have so 
far, for example13. Clearly, some cities display less evidence (in terms of 
monumentality, inscriptions, tall buildings and billionaires) than the 
models predict, which suggests that we might learn something from 
examining these cases in more detail to identify various contextual 
factors that could tamp down on the scaling effect.

Our findings suggest several important areas for future research. 
Chiefly, future research should investigate alternate case studies, 
both historical and contemporary, with a focus on urban material and 
monumental expressions of elite power and/or wealth inequality. At 
the moment, we found only two relevant, readily available, modern 
datasets and one suitable archeological cities database. Potential 
future modern datasets might include buildings specifically sponsored 
by wealthy elites, such as ‘Trump Tower’ or the ‘David Koch Theatre’. 
Similarly, the OxREP database could be further refined by a detailed 
review of monument types, going back to the source material, to deter-
mine whether a more granular analysis of scaling with respect to dif-
ferent types of monuments affects estimates. At the same time, other 
urban archeological datasets could be created and analyzed, and our 
prediction about the relationship between urban monumentality and 
wealth inequality are likewise amenable to archeological methods. 
In particular, given recent research on estimating Gini coefficients22, 
we can make a concrete archeological prediction. We hypothesize 
that ancient urban systems with similar scaling coefficients based on 
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Fig. 3 | Point scatters showing the empirical patterns in the various datasets we analyzed. Note that we added a constant to the response ( y axis) counts to create 
log–log plots consistent with previous scaling research.
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material expressions of elite wealth should exhibit similar Gini coef-
ficients as measured archeologically.

In addition to further empirical research, future work should 
focus on theoretical development of the SST. At the moment, the 
SST is a ‘mean field’ theory because its focus is on predicting average 
scaling relationships and effects. The empirical data we present and 
the scaling parameters we found suggest that, perhaps, the theory 
should be extended mathematically to include whole distributions 
and parameters beyond the mean. Such an extension might reveal 
that the aggregate and per-capita wealth gains in cities that scale with 
population size are telling only part of the story. Inequality may also 
scale as a consequence of the same underlying principles, namely, 
the fundamental complex network effects the SST is based on. Such 
approaches will, ultimately, make it possible to probe the timeless 
structural aspects of urban inequality in search of ways to mitigate it 
while preserving the features of urbanism that generate wealth and 
make cities worth living in.

Methods
Statistics and reproducibility
The following sections explain in detail how the data used in this study 
were gathered, processed and analyzed. Further information and 
detailed instructions for reproducing the analyses can be found in the 
‘Analysis workflow’ section of the Supplementary Information and in 
the repository and archive found in the ‘Data availability’ and ‘Code 
availability’ sections. No statistical method was used to predetermine 
sample size. As detailed in the ‘Data processing’ section, some data were 
necessarily excluded from the analyses. No formal experiments were 
conducted, as the anlaysis was primarily statistical and exploratory, 
and the experiments were not randomized. The investigators were not 
blinded to allocation during the experiments and outcome assessment.

Data processing
The Roman Cities Database was compiled by Hanson as part of the 
OxREP43,57. It comprises 1,388 Roman urban centers. The variables 
include information such as province, civic status, estimated urban 
area and a list of monuments for each city. We imported the data into 
R (ref. 58) using the ‘readxl’59 package and then used other R functions 
to count the number of monuments per city. We combined these data 
with the urban area estimates provided in the database. Then, we fil-
tered the database to exclude cities with no area estimates, resulting in 
a total of 885 Roman cities for analysis (see Table 1 for sample sizes per 
analysis). We also transcribed a published table of population estimates 
corresponding to 52 of the cities in this filtered set43,57. These estimates 
were used to predict population sizes for the rest of the database.

The OxREP database has a number of potential limitations. One 
limitation is that provinces and borders shifted throughout history. 
Consequently, a given city may have been located in different provinces 
at different times or, perhaps, not even part of the Roman Empire (for 
example, Cilicia was part of Syria for most of the first century CE). 
However, this probably had a limited effect on our analysis because the 
cities themselves were nevertheless part of the same urban network. 
Border cities that could be in or out of a given province at some point 
would have been close spatially, economically and culturally to the 
others in the same administrative group or a neighboring one, even if 
the group(s) sometimes had a different political name or affiliation. 
Thus, some swapping of cities at the boundaries between adjacent 
provinces is unlikely to have severely biased our results.

Another potential limitation is that the monuments in the data-
base had diverse labels41, implying they had different functions, sizes 
and/or capacities. None of the potential measures for these traits 
were included in the database, and many (such as capacities) may 
be impossible to know given the state of preservation and recovery. 
The database also lacked a consistent taxonomy or ontology. Some 
monuments had labels that are either only nominally different (for 

example, fora versus agorai) or lack a clear distinction (for example, 
temple versus sanctuary). As a result, we cannot distinguish among the 
monument types, functions or sizes in a granular way. This, however, 
had no impact on our ability to track general scaling patterns related 
to urban monumentality (number of monuments) as a whole. More 
importantly, the different traits, such as function and types of monu-
ments, are distinct proxies from the monument counts we used, and 
these may well scale with population (or not) in different ways. Given 
that our focus in on elite wealth (via a rough proxy for expenditure), 
we do not think these alternate, unavailable proxies would impact 
our findings. We also included other datasets, as explained below, to 
compensate for the limitations of any particular one.

A third potential limitation is the presence of false zeros in the 
monument counts owing primarily to recovery, preservation and 
research biases. It is highly unlikely that many settlements with city 
civic status actually had zero monuments in them. Some famously had 
few, such as Panopeus, which an historical source (Pausanius) makes 
clear is an exception that proves the rule60. We partly accounted for 
the zero-inflation problem with a statistical model typically used to 
model overdispersion and by running a set of parallel analyses in which 
excluded the zeros entirely (see below).

Lastly and most importantly for our study, not every monument 
was a product of euergetism. Notably, for a monument to elevate the 
social and political standing of elites, its connection to their generosity 
must be publicly acknowledged. To accomplish this recognition, ben-
efactors often had dedicatory inscriptions carved into the monuments 
they funded—a part of a much larger, Mediterranean-wide ‘epigraphic 
habit’ during the Early Roman Empire27. Unfortunately, the database 
contains no information about epigraphy.

To address this key limitation, we used the Epigraphic Database 
Heidelberg (EDH, https://edh.ub.uni-heidelberg.de/)61, an authorita-
tive collection of Latin Roman epigraphy. This database has its own 
limitations42,62, of course, including a bias toward the Western Empire 
and incompleteness arising from preservation and research intensity 
biases. Most importantly, for present purposes, though, the database 
lacks clear information about which ancient city a given inscription 
belongs to. As a result, we analyzed dedication inscriptions per city by 
integrating city coordinate and area data from the Hanson database 
with the coordinate locations in the EDH. Another limitation is that 
the inscriptions database is clearly incomplete42,62. Such as with the 
monuments, few, if any, Roman settlements with civic status are likely 
to have had zero epigraphic inscriptions—inscriptions were a major 
part of Roman urban culture35. Thus, cities with zero inscriptions in 
our compiled database are likely to reflect incomplete data rather than 
true zeros. As with the zeros in the monuments data, we accounted for 
this with our modeling choices. Importantly, while epigraphic inscrip-
tions contain a wealth of information62, we isolated only dedicatory.
inscriptions. We reasoned that this filter makes the inscriptions dataset 
a useful complement to the OxREP database, partially compensating 
for the conflation of monument types.

The database of billionaires per city comes from a report coau-
thored by Henley and Partners and New World Wealth (https://www.
henleyglobal.com). The latter maintains a database of high-net worth 
individuals (those with investable wealth of more than US$1 million) 
and their primary residences. The 2023 report includes a table contain-
ing the number of billionaires in 96 cities. The counts are based on the 
primary residence of the individuals in question. We combined these 
data with population estimates for the relevant cities taken from www.
simplemaps.com, which maintains a global database of urban popula-
tion sizes based on a variety of authoritative sources such as the US 
Census Bureau. A limitation here, of course, is that the database does 
not include all of the world’s cities, and so, we can only examine the 
relationship between population size and billionaires among cities 
with at least one billionaire. As such, our analyses should be interpreted 
in that light.
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Lastly, we collaborated with The Council on Tall Buildings and  
Urban Habitat (CTBUH, https://www.ctbuh.org/) to utilize their database 
of the world’s tallest buildings—three members of the CTBUH coau-
thored this study. The database is one of the most comprehensive of 
its kind owing to the CTBUH’s membership, which includes many of 
the world’s most prominent building developers, urban planners and 
related professionals. It contains a wealth of information on individual 
buildings, but for present purposes, we needed only to know how many 
tall buildings (defined as being at least 150 m from ground level) are 
present in the database per city. The CTBUH compiled the relevant data 
per city along with population size estimates for our analysis. As with the 
billionaires database, we can only examine the relationship between tall 
building counts and population size among cities with tall buildings in 
them. The number of cities in the world is enormous. As such, our analysis 
of these data, too, needs to be viewed in the context of trying to identify 
a relationship and estimate a rate with some limits on available data.

Modeling
Following previous SST research28,63, we used the power-law regression 
model. The logic behind using this approach follows from the relation-
ship between the regression model and the mathematical model that 
defines power-law scaling. A power-law model assumes that a given 
output—response variable, y—is defined by the equation

y = axb,

where a is a normalization coefficient, x is a predictor variable and b is 
the scaling parameter of primary interest. Taking the log of both sides 
leads to the following linear model typically used in scaling studies,

log y = loga + b log x.

The model indicates a simple least squares regression can often 
be used to estimate the target scaling parameter, b. That parameter 
behaves like a simple linear regression coefficient on the log scale, and 
log a becomes an intercept term.

However, our analysis involved count-based response variables. 
Using a Gaussian log–log regression to estimate b might introduce bias 
because the bounded nature of count data is not reflected by a Gauss-
ian distribution, and the logarithm of zero is undefined. In addition, 
the data are overdispersed (variance larger than the mean) (Fig. 3) in 
part because of sampling, preservation and research biases leading to 
false zeros. To address these issues, we used a negative binomial model, 
defining the mean, μ, of the distribution using the power-law relation-
ship. The standard negative binomial mean is defined as

μ = r 1 − p
p ,

where r is usually interpreted as the number of successes in a series of 
Bernoulli trials, and p is the probability of success. In line with standard 
negative binomial regression, we then defined p as

p = r
r + eβ0+β1 log x

.

Here, the power-law model is embedded in the exponent to ensure 
the correct scaling relationship between the population size and the 
count-based response variables. For clarity and consistency with stand-
ard linear regression form, we used the following definition

β0 = loga;β1 = b.

Subsequently, the definition for p was used in a negative binomial 
model, which characterized the count-based response variable, y, as

y ∼ NB(p, r),

where NB() refers to the negative binomial distribution. Before we could 
estimate the model parameters, we needed an estimate for x, the popu-
lation sizes of the Roman cities in the database. We found population 
estimates for 52 of the cities43,57. These estimates were derived from a 
combination of expert historical knowledge and detailed excavations 
of floor areas of houses located at each of the relevant cities. However, 
the vast majority of cities in the database were without estimates. 
Thus, we estimated population sizes for every city by leveraging an 
established relationship between urban areas and population sizes63 
and propagated the uncertainties. Importantly, for our analysis, it is the 
(theoretically and empirically grounded) scaling relationship between 
area and population size that affected the rest of the model, while the 
specific number of people per unit area is not relevant.

Our model was Bayesian64,65 and composed of two submodels for 
the Roman data. The first submodel was used to estimate the missing 
population sizes. The model was structured as

log(xi) ∼ 𝒩𝒩𝒩μp,i,σp)

μp,i = b0 + b1 log(αi),

where μp,i  represents the mean of the population estimate, and σp 
represents its variance. The mean, μp,i, is determined by a linear model 
with the intercept, b0, regression coefficient, b1, and the logged urban 
area, αi, for the ith city. Prior distributions were normal for the regres-
sion parmeters, b0 and b1, with zero means and agnostic variances. The 
standard deviation, σp, was assigned an agnostic exponential prior with 
a rate of 1.

The second submodel estimated the scaling parameters. It used 
the population estimates from the first model, xi, as the predictor vari-
able in another regression where monument/inscription counts were 
the outcome. For this model, we also used an indicator variable and 
hierarchical structure to account for potential differences between 
the Roman provinces. The basic model, including regional hierarchical 
grouping, was structured as

yi ∼ NB(pi,k, r)

pi,k =
r

r + eβ0,k+β1,k log xi
,

where yi is the observed count of a given variable for the ith city. The 
intercept and scaling parameters in the power-law model were hierar-
chical, reflecting potential variation among integer-indexed Roman 
provinces, k ∈ [1, 2,… ,K ], with hyperdistributions as follows:

β0,k ∼ N(μβ0 ,σβ0 )

β1,k ∼ N(μβ1 ,σβ1 ).

The size parameter of the negative binomial had a gamma-distributed 
prior

r ∼ gamma(α, λ).

The population estimate, xi, came either from the data we gathered 
or was imputed by the first submodel during the parameter estima-
tion process. If it was imputed, it would reflect the uncertainty in the 
relationship between area and population size described by the first 
model and that uncertainty would then be propagated into the second 
submodel. This data imputation and error propagation occurred as part 
of a Markov Chain Monte Carlo algorithm used to estimate all model 
parameters simultaneously. It is a standard, highly useful property of 
a typical Bayesian analysis65.
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As described earlier, we estimated the scaling parameters for dif-
ferent subsets of the Roman cities dataset (Fig. 1), which differentiates 
our approach from previous analyses43,57. We created six subsets. The 
first was based on the total monument count. The second included only 
cities with one or more monuments (no zeros). For the third subset, 
we isolated cases where the urban area estimate was based on the area 
enclosed by a circuit wall. The rationale was to test whether defining 
urban area by the presence of walls or something less concrete (for 
example, extent of a street grid) had an impact on the scaling parameter 
estimate. The fourth subset was this same ‘walls only’ subset but with 
cities that had at least one monument (again, no zeros). For the fifth 
subset, we filtered out records in the OxREP database with a known 
infrastructural purpose (for example, ‘urban grid’ or ‘wall’) or that 
we thought not really ‘monumental’ (for example, ‘agorai’ and ‘fora’, 
which are public spaces rather than monumental buildings per se). 
Then, lastly, we again limited the data selection to cities with at least 
one monument. These six subsets were then used in six correspond-
ing analyses.

We then ran parallel analyses involving the ancient Roman epi-
graphic and modern cities datasets. For the epigraphic data analysis, 
we used the same model described above for the Roman data, including 
the provincial hierarchy. For the modern data, though, we used a simpli-
fied form. We did not need to estimate missing population numbers 
for the modern cities and, so, could leave that submodel out of the 
analysis. We also did not use a hierarchical model to separate modern 
cities into groups by region because of the global nature of the cities 
in question and the fact that most of the cities are essentially part of 
the same modern, postindustrial economic network.

After estimating the scaling parameters for each of the datasets 
and subsets, we compared the main coefficient, r, from each analysis 
to established SST predictions. According to the SST, the coeffi-
cient would either be sublinear (<1), linear (1) or superlinear (>1). If 
it were sublinear, then it would suggest monumentality followed an 
economy of scale, meaning that a given urban area could achieve a 
cost saving of some kind on monumental investment as population 
size (area) increases. This would also suggest that monuments were 
a kind of public good. If the coefficient were linear, it would suggest 
that monumental investment had to scale directly with population/
area increases, which would suggest monuments were a necessary 
component of the urban fabric and that a fixed number of people 
could/needed to use a given monument. Finally, if the coefficient 
were substantially superlinear, it would suggest that monumentality 
grows faster than population/area, meaning that urbanites produce 
more monuments when there are more people and/or a larger urban 
area to live in. This would suggest that monumentality is a kind of 
socioeconomic output.

In addition to standard Bayesian posterior parameter estimates, 
we also used pseudo-R2 coefficient. We calculated a distribution of R2 
values from the MCMC output of our regression models to provide a 
familiar metric of model fit. This approach produced a distribution 
of R2 values for each model and we then calculated the mean of that 
distribution to provide a summary evaluation of model fit (Table 1).

We then ran two supplementary analyses. The first was aimed at 
investigating the appropriateness of the power-law model. For this 
analysis, we ran a parallel set of analysis in which we used the same 
data and subsets to fit a linear-log version of the model described 
above. We chose a linear-log model because it was the next most likely 
functional form given basic scatter plots (see ref. 38 for images with 
names ‘point_scatters…’). Moreover, we reasoned that the relation-
ship between urban indicators of extreme wealth and population were 
unlikely to be linear given the evidence already available for nonlinear 
wealth scaling in settlement scaling research9,12,28. The core scaling 
model had the following basic form (leaving out hierarchical subscripts 
for simplicity) where yi is the count of monuments/inscriptions/bil-
lionaires/tall buildings in the ith city

yi ∼ NB(pi, r)

pi =
r

r + β0 + β1 log xi
.

To make model comparisons, we used cutting-edge posterior-
predictive methods (estimates of leave-one-out predictive accuracy). 
Specifically, we used PSIS-LOO66 and directly compared log-pointwise-
predictive density (l.p.p.d.) values66. These approaches were chosen 
because, while we initially used the Widely-Applicable-Information 
Criterion (WAIC), diagnostics (pWAIC) indicated the presence of outli-
ers, making WAIC estimates potentially unstable. To address this, we 
calculated the more robust Leave-One-Out-Information-Criterion and 
used the MCMC samples of l.p.p.d. for both models to calculate the a 
difference distribution—l.l.p.d.modelA − l.l.p.d.modelB—and then estimated 
the proportion of times l.p.p.d. was higher for one model than another 
across all data points.

The second supplementary analysis was aimed at determining 
whether outliers we identified in the previous supplementary analysis 
had substantially affected our scaling parameter estimates. For this 
analysis we ran some of our primary models again but excluded cities 
identified as outliers by their high ‘Pareto k’ values estimated with PSIS-
LOO—an indicator of influential data points that impact overall model 
fit. We then informally compared the posterior summary statistics 
(mean, median and credible interval ranges) of the scaling exponent 
parameters of these models to the comparable estimates from the 
primary analyses (see ‘post_summary_…_sup.csv’ files in ref. 38 for the 
relevant summaries from this supplemental analysis).

All scaling analyses were conducted in R (ref. 58). We used ‘readxl’59 
for extracting data from the database Excel sheets, ‘tidyr’67 for data 
wrangling and ‘ggplot2’68 for plotting. We also used ‘nimble’69 for esti-
mating the Bayesian model coefficients with an MCMC algorithm, the 
‘coda’70,71 package for MCMC diagnostics and the ‘loo’72 package for 
model fit statistics. We used a combination of Geweke73 and Gelman–
Rubin74 convergence statistics to check convergence along with trace 
plots to evaluate mixing of MCMC chains, all of which are shown in 
Supplementary Figs. 1–33, under the ‘High-level convergence statistics 
overiew’ and ‘Trace plots for all analyses’ headings.

Lastly, to demonstrate the potential impact of network effects 
relevant to the SST on wealth accumulation, we developed a simple 
ABM. The model was developed in Python using the ‘mesa’ ABM library 
and the ‘networkx’ library to analyze network data. Within the model, 
agents were represented as nodes connected by edges. The model 
class in ‘mesa’ managed key aspects of the agent setup and interaction, 
including the instantiation of agents, the setup and maintenance of the 
agent network and the scheduling of agent actions.

Each agent in our model had only one main parameter, namely 
wealth, which we set at ‘1’ to begin with for all agents. The simulation 
then involved creating agents, connecting them in a network and hav-
ing them engage in a simple trading game over a series of iterations or 
‘steps’. For each step, the agents searched for a transaction partner. The 
choice of transaction partner was random, as with the basic Boltzmann 
model. However, to explore network effects, we limited potential part-
ners to the agents with whom the acting agent had a connection in the 
network. Once a connected trade partner was identified, the acting 
agent then checked to see if they had any wealth to give the selected 
other agent. If they did, they then increased the other agent’s wealth by 
1 unit and subtracted 1 unit from their own wealth. At the end of a run of 
the simulation (involving a given number of steps), we then calculated 
a simple Gini coefficient based on the simulated wealth distribution.

When initializing the network for a simulation run, the agents had 
a probability, p, of being connected to another agent. This parameter 
allowed us to control the number and distribution of connections in 
the network. It was a function of a preferential attachment strength 
parameter, s, and formulated as
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pi =
(di + 1)s

∑(di + 1)s
,

where i refers to the ith agent, pi refers to the probability of connecting 
to agent i and di refers to the degree (number of connections) the ith 
agent already had. With this setup, agents with more existing connec-
tions had a higher probability of gaining even more connections, but 
the strength of this effect was mediated by the prefential attachment 
parameter.

The model was created in a Jupyter notebook to ensure ease of 
reproducibility. The notebook is available (along with information 
needed to replicate our Conda environment) in ref. 38. Within that 
environment, we ran hundreds of simulations. We set explored eight 
levels of the s paramater: [0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5]. At each level, 
we ran the simulation 100 times, each time executing 10 steps with 20 
agents—the latter was chosen after some trial and error with the aim of 
producing decipherable network visualizations. The Gini coefficients 
were then aggregated across simulations by s parameter level to com-
pile Gini distributions reflecting the randomization of the simulations 
per level of preferential attachment strength.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The data used in this study are available via GitHub at https://github.
com/wccarleton/urbanscale (ref. 38) and archived at Zenodo at https://
doi.org/10.5281/zenodo.10925901 (ref. 75). The data were collected 
from three online sources and directly from two organizational pro-
viders. Online sources include OxREP (http://oxrep.classics.ox.ac.uk/
databases/cities/), EDH (https://edh.ub.uni-heidelberg.de/home) and 
Simple Maps (https://www.simplemaps.com). Only the EDH epigraphic 
data were collected and processed entirely with a script (since they 
are archived at Zenodo at https://doi.org/10.5281/ZENODO.4888168 
(ref. 61)). The two organizational providers were Henley and Partners 
(https://www.henleyglobal.com) and The Council on Tall Buildings and 
Urban Habitat (https://www.ctbuh.org/).

Code availability
The R and Python code used to prepare and analyze the data and con-
struct and run the ABM are available via GitHub at https://github.com/
wccarleton/urbanscale (ref. 38) and archived at Zenodo at https://doi.
org/10.5281/zenodo.10925901 (ref. 75).
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