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Abstract. Peatlands are some of the world’s most carbon-dense ecosystems and release 40 

substantial quantities of greenhouse gases when degraded. However, conserving peatlands in 41 

many tropical areas is challenging due to limited knowledge of their distribution. To address this, 42 

we surveyed soils and plant communities in Colombia’s eastern lowlands, where few peatlands 43 

have previously been described. We documented peat soils >40 cm thick at 51 of more than 44 

100 surveyed wetlands. We use our data to update a regional peatland classification, which 45 

includes a new and possibly widespread peatland type, “the white-sand peatland,” as well as 46 

two distinctive open-canopy sub-types. Analysis of peat bulk density and organic matter content 47 

from 39 intact peat cores indicates that the average per-area carbon densities of these sites 48 

(490 to 1230 Mg C ha-1, depending on type) is 4 to 10 times the typical carbon stock of a (non-49 

peatland) Amazonian forest. We used remote sensing to upscale our observations, generating 50 

the first data-driven peatland map for the region. The total estimated carbon stock of these 51 

peatlands of 1.91 petagrams (Pg C) (2-sigma confidence interval, 0.60 to 4.22) approaches that 52 

of South America’s largest known peatland complex in the northern Peruvian Amazon, 53 

indicating that substantial peat carbon stores on the continent have yet to be documented. 54 

These observations indicate that tropical peatlands may be far more diverse in form and 55 

structure and broadly distributed than is widely understood, which could have important 56 

implications for tropical peatland conservation strategies. 57 

Introduction 58 

Tropical peatlands are among the world’s most carbon dense ecosystems1–3, and their ongoing 59 

degradation and destruction is exacerbating the climate crisis4–8 and impacting peoples’ 60 

livelihoods9,10. Peatland protection is regarded as one of the more cost-effective natural climate 61 

solutions11,12, but despite their importance to global climate, the extent and distribution of 62 

peatlands throughout many parts of the global tropics remains highly uncertain13,14.  63 

One of the more enigmatic peatland regions is the Colombian lowlands in northern South 64 

America15. In Colombia, peatland accounting is extremely uncertain with published estimates of 65 

peat volume and area differing by orders of magnitude. At one extreme, the algorithmic Global 66 

Wetland Map product predicts roughly 50,000 km2 of peatlands throughout the country's 67 

climatically and geologically diverse lowland regions, with peat thicknesses of up to 10 m, 68 

representing approximately 200 km3 of peat16. In contrast, a synthesis based on soil maps 69 

shows only a few modest areas of mapped Histosols (710 km2) accounting for just 0.3 km3 of 70 

peat1. Colombia is emerging from five decades of civil conflict and many rural areas have been 71 

inaccessible for scientific investigation until recently17, so it is possible that extensive peatlands 72 

have eluded field detection. Furthermore, the region is facing acute environmental 73 

degradation18, raising the prospect that peatland loss may be outpacing peatland detection. 74 

Field investigations are therefore crucial to determine whether peatlands are scarce or 75 

ubiquitous in Colombia’s lowlands, how much carbon they hold, and more generally, to assess 76 

the accuracy of global peatland mapping products16,19,20 in under-surveyed tropical regions. 77 

Tropical peat soils often occur beneath distinctive wetland-adapted plant communities21–23 and 78 

thus peatland ecosystem classification serves as a foundation for understanding peatland 79 
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spatial distributions necessary for carbon stock estimations. Such ecosystem-peat soil linkages 80 

have not yet been established for Colombia; in fact, nearly all studies of tropical South American 81 

lowland peatland ecology to date have been conducted in Peru. Ecological peat classification 82 

systems for Peru24 may not apply to parts of Colombia’s lowlands where climate, soils, and 83 

geology are dramatically different, such as in the highly seasonal savanna region of the Orinoco 84 

basin (the Llanos Orientales), or among the nutrient-poor white sand forests of the Guiana 85 

shield—two ecoregions with little Peruvian analogue. An ecological classification of Colombian 86 

peatlands based on vegetation surveys and soil sampling is needed because, as in similarly 87 

inaccessible locations, the high cost of collecting field data in lowland Colombia means that peat 88 

accounting must depend upon remotely sensed ecosystem information in order to upscale from 89 

scarce field data and infer peatland distributions on a regional scale25,26. 90 

To advance our empirical understanding of the distribution, ecology and carbon stock of 91 

peatlands in the Colombian lowlands, we embarked on a series of field campaigns in search of 92 

potential peatlands. We used multispectral Landsat imagery to identify prospective peat-forming 93 

wetlands27,28 and in the field, when peat was encountered, we sampled soils and plant 94 

communities to support classification into different types. We analyzed 39 extracted peat cores 95 

for organic matter content to estimate belowground ecosystem carbon densities. Finally, to 96 

generate a peat map and estimates of total peat area and carbon stock, we used remote 97 

sensing products and a random forest machine learning algorithm29 to predict the distributions 98 

of peat-forming ecosystems throughout the region.  99 

 100 

Materials and Methods 101 

Field campaigns 102 

We undertook a series of field campaigns in Colombia’s Eastern lowlands between October 103 

2020 and February 2023 to search for peatlands among a variety of wetland types. The Global 104 

Wetlands Map V316 helped us identify regions of interest, which were further investigated using 105 

Landsat false color imagery of infrared and near-infrared bands and digital elevation models to 106 

look for wetland areas similar in appearance to known peatland sites in Peru (Fig. S1). Security 107 

and logistical limitations prevented us from visiting some promising regions, such as the middle 108 

and lower Rio Caquetá. Within our regions of interest, we visited the sites with the most 109 

convenient access by road or boat to efficiently visit wetlands and sample as many distinct 110 

potential peatland sites as possible. Altogether we assessed more than 100 discrete wetland 111 

sites across seven Colombian departments. 112 

At each wetland site we first determined whether peat was present, with a depth of 40 cm as a 113 

minimum following the USDA histosol definition30. If we determined a site to be a mineral soil 114 

wetland, we carried out a rapid survey of vegetation (noting dominant species and classifying 115 

the community type), hydrologic indicators and soil texture and color before moving on to search 116 

elsewhere. If we encountered at least 40 cm of peat, we established a transect up to 600 m long 117 

through the site taking rapid surveys with measurements of peat thickness, canopy height and 118 

density, and hydrologic and plant community observations every 100 m. At a central point on 119 
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each transect we completed one detailed survey of a peatland that included a 0.1 ha floristic 120 

inventory, identifying and measuring all trees of at least 10 cm diameter at breast height, as well 121 

as extraction of an intact peat core in 50 cm sections using a Russian style peat auger until a 122 

core section overlapped with underlying mineral material (Fig. S2).  123 

Laboratory analysis 124 

All peat core sections were transferred to 4-cm PVC half tubes and wrapped in plastic wrap in 125 

the field, labeled, stored immediately in coolers and then transferred to freezers in the nearest 126 

town until the end of the regional campaign. At the end of each campaign cores were 127 

transferred frozen to Pontificia Universidad Javeriana in Bogota for processing. Each core was 128 

thawed and then sliced into 10 cm sections before being oven dried at 80°C and weighed for 129 

calculation of dry bulk density (dry weight (g) / volume (cm3)). We performed loss on ignition 130 

assays from 39 cores at 10 cm intervals along each peat profile for a total of 1,046 analyses in a 131 

muffle furnace for 4 hours at 450°C. Since conversion factors from soil organic matter to soil 132 

organic carbon vary substantially between soil types 31,32, we analyzed a subset of 42 samples 133 

for total carbon at the Environmental Measurements Facility at Stanford University using a 134 

ThermoScientific Flash elemental analyzer to generate a conversion factor specific to our data 135 

set.  136 

Carbon calculations 137 

We found a strongly linear relationship between % organic matter from loss on ignition and % C 138 

from elemental analysis (Fig. S3; r2 = 0.98, p-value < 0.001) and used the slope of the 139 

regression line (%C = %OM * 0.5591 -1.64) to estimate carbon content of samples for which we 140 

only had % organic matter data32. To calculate ecosystem belowground carbon density we 141 

summed carbon in each 10 cm layer of each of 39 fully processed peat cores using the 142 

following equation:  143 

𝐸𝐵𝐶𝐷 =  ∑(10 × 𝐷𝑛 × 𝜌𝑛 × 𝐶𝑛)

𝑁

𝑛=1

 157 

Where EBCD is Ecosystem Belowground Carbon Density in Gg C ha-1, Dn is thickness of the 144 

nth peat layer in cm (usually 10 cm except in case of missing data, in which case we 145 

interpolated linearly), ρn is dry bulk density of the nth peat layer in g cm-3, and Cn
 is carbon 146 

content of the nth peat layer in %. For peat thickness, we defined the peat core bottom as the 147 

deepest sample containing at least 45% organic matter, the threshold recommended by a 148 

systematic review of peat classification systems in the context of extensive organic-rich valley 149 

soil observations from tropical Asia30. Because belowground ecosystem carbon densities were 150 

non-normally distributed, we used a bootstrap resampling with replacement approach to 151 

generate 100,000 simulated bootstrapped distributions from which we extracted mean values 152 

and 95% confidence intervals. This is a slightly different approach than in prior carbon estimates 153 

from Peru where authors had non-overlapping observations of peat bulk density, carbon content 154 

and thickness and treated these as independent measurements24,33. In this study we instead 155 

calculated the peat column carbon of an intact core from each site and treated those as 156 
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independent measurements. This is preferable in a setting where peat columns contain high 158 

levels of mineral intrusions because the three variables of carbon content, thickness and bulk 159 

density tend to be correlated rather than independent with higher bulk densities associated with 160 

lower carbon content and deeper peat columns.  161 

To estimate peat carbon stock for each ecosystem we used a Monte Carlo method of randomly 162 

selecting a value from bootstrap simulated distributions of mean belowground ecosystem 163 

carbon density and our two distributions of estimated area (as described below) to multiply 164 

together to generate carbon stock values. We repeated this process 107 times to generate mean 165 

carbon stocks and 95% confidence intervals for each peatland type.  166 

Floristic analysis 167 

We compared the floristic composition of the 53 0.1-ha Colombian plots to a wide range of 168 

RAINFOR forest plots established in different ecosystem types in north-western Amazonia34–169 
36.The RAINFOR dataset contains 116 forest plots of 0.1–1.0 ha in size, with small plot sizes 170 

(0.1-0.5 ha) generally established on low diversity ecosystems including peatland ecosystems, 171 

such as open peatlands, palm swamps and pole forests. Large plot sizes (1 ha) were generally 172 

used on more diverse ecosystems such as white-sand forests, seasonally flooded forests, and 173 

Terra Firme forests. Identification of all individuals with diameter at breast height (DBH) ≥ 10 cm 174 

was done by comparing botanical specimens collected in each plot with herbarium vouchers34. 175 

Only plots with at least 75% of stems identified to species level were selected. 176 

 177 

We built a matrix of the species abundance of the combined 169 plots. Scientific names of 178 

species were standardized using the Taxonomic Name Resolution Service online (Boyle et al., 179 

2013; 2021). After removal of unidentified individuals, the matrix remained with 1,698 species 180 

and 40,618 individuals. We transformed the dataset using the Hellinger method and constructed 181 

the floristic distance matrix using the Euclidean distance in the ‘vegan’ package in R (Dixon, 182 

2003). This distance matrix was used to create non-metric multidimensional scaling (NMDS) 183 

ordinations optimized for three axes to visualize floristic dissimilarity among ecosystem types 184 

(Fig. S4). This ordination provides a way of assessing how similar plots are to one another 185 

based on the abundance of tree species. 186 

Mapping and upscaling 187 

To map peatlands, we took two steps. First, to leverage known linkages between ecosystem types 188 

and peat presence in the tropics24, we generated a land cover classification to identify areas 189 

corresponding to ecosystems with the potential for peat formation and those not known to support 190 

peat soils. Second, to capture spatial uncertainty of peat presence among potentially peat-forming 191 

ecosystems28, we assessed the probability of peat soil presence within potentially peat-forming 192 

ecosystems. For both classifications, we trained a random forest (RF) classifier29,37 on 70% of the 193 

samples (stratified random selection) using a stratified group k-fold cross-validation (5 folds; see 194 

Fig. S5) and a maximum depth of 300 estimators. Maximum features per split were set to the 195 

square root of total number of features. The remaining 30 % of the samples were used for 196 

independent validation. All spatial modeling was performed using the python scikit-learn 197 
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package38.  For both classifiers we removed redundant variables from a larger group of potential 198 

variables to avoid overfitting, based on an assessment of partial dependency and comparison of 199 

classifier results using different variables. While some of the selected variables still show a cross-200 

correlation, for example the wet and dry season HH and HV backscatter products (Table S2), we 201 

used them in the classifier as they were crucial in the separation of specific land cover classes 202 

(see Uhde et al. in review for more details). 203 

The land cover model was trained on a variety of earth observation products and derivatives 204 

conventionally used in digital peat mapping, including mean wet-season and mean dry-season 205 

backscatter of ALOS2 PALSAR2 L-band ScanSAR HH and HV data; Copernicus Sentinel-1 VV  206 

multi-temporal 5th percentile and standard deviation; Harmonized Landsat Sentinel-2 (HLS) 207 

shortwave-infrared (SWIR) and shortwave-infrared 2 (SWIR2) bands39, the Normalized Difference 208 

Vegetation Index25, and the Normalized Difference Wetness Index40. We also used the 209 

Copernicus GLO30 digital elevation model. To complement our field data with additional samples 210 

of the other land cover types (water, barren soil, urban, grassland, palm plantation), we inferred 211 

random samples from the satellite data or stratified by the Global Surface Water product41 and 212 

the World Settlement Footprint42. We then applied this model to predict the land cover and 213 

ecosystem classes for the entire study area. We applied a two-fold post-classification 214 

morphological closing to filter for a minimum size of 5 ha per classified object.  215 

We grouped the land cover classes of potential peat (palm swamp, wet white-sand ecosystems, 216 

herbaceous/shrub wetland, and floodplain forest) together for peat probability predictions. We 217 

included floodplain forest in this second analysis because of high misclassifications with the 218 

potential peat classes in the land cover prediction and because it is likely that peatlands of this 219 

ecosystem type exist in Colombia (AGB and JCB personal observations) and it has been reported 220 

in Peru24.  221 

The second model, the peat classifier, constrained to potential peat classes (Fig. S6), utilized 222 

the ecosystem type and peat presence/absence reference data described in Fig. 1 as well as 223 

additional reference points from other sources (Fig. S7). The peat classifier model was trained 224 

using the ALOS2 PALSAR2 dry season HH and wet season HV backscatter and a flood fraction 225 

product derived from the HH backscatter time-series. We further included the Sentinel-1 VH 226 

multi-temporal standard deviation and the HLS NDVI and NDWI. The output generated a peat 227 

probability for each pixel of peatland landcover types.  228 

 229 

From this output we generated two estimates of peatland area by ecosystem type following 230 

different assumptions that create more inclusive or more conservative estimates. For the first, 231 

our “inclusive area estimate,” we multiplied the area of each pixel by the peat probability (e.g. 232 

0.30 X 900 m2 = 270 m2 of likely peat area, for a 30 m x 30 m pixel with an assigned probability 233 

of 30%). This generates a large estimate because of large areas with low probability for peat 234 

cover, especially in the floodplain forest class. Additionally, we generated an alternative more 235 

conservative estimate of peatland area, which discounts areas with low probability to 0. For this 236 

“conservative area estimate,” we grouped the peatland probabilities result into four modal 237 

categories (very low probability, low probability, medium probability and high probability) as 238 

defined by local minima of the distribution function of probabilities. The conservative estimate of 239 
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peat area assumes peat is present within the more probable modes of predicted peatland cover 240 

(medium and high probability) and absent from the low and lowest probability areas. 241 

For each of these approaches to estimating area, we generated 95% confidence intervals from 242 

the confusion matrix of the classification to estimate map estimation error and 95% confidence 243 

intervals of each ecosystem type43. We used these 95% confidence intervals to simulate a 244 

distribution of 1000 values of area for each peatland type.  245 

To estimate peat volume, we used a similar bootstrap resampling approach as described above 246 

for estimating carbon stocks, except instead of calculating ecosystem carbon densities, we 247 

simply generated mean values and 95% confidence intervals of depth for each peatland type. 248 

To estimate carbon stock (as described above) for the floodplain forest peatland class for which 249 

we lack soil cores, we substitute palm swamp soils data since these ecosystems are most 250 

closely related ecologically.  251 

 252 

Results and Discussion 253 

Wide distribution of peatlands 254 

Our results demonstrate that peatlands are widely distributed throughout Colombia’s eastern 255 

lowlands. During 8 field campaigns spanning five Colombian departments, we visited 104 256 

potentially peat-forming wetlands, finding 51 sites with peat soils >40 cm thick (Fig. 1, Table 257 

S1). These peatlands exist within a variety of hydrogeochemical, geomorphologic and climatic 258 

settings, occurring on both whitewater and blackwater/clearwater floodplain terraces; in the 259 

Andean piedmont as high as 400 m elevation; and overlying gray clayey sediment and white-260 

sand soils derived from the Guiana Shield formation. We find peatlands to be present hundreds 261 

of kilometers away from any previously published locations44,45 or mapped Histosols46 and within 262 

regions and biomes not recognized to be conducive to peat formation, such as riparian 263 

vegetation within savannas or shrublands and in white-sand forests (Fig. S8). In addition to their 264 

wide spatial distribution, peatlands in the Colombian lowlands are ecologically diverse, occurring 265 

among seven different ecoregions47. 266 
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267 
Fig. 1. Map of new field observations of wetland soils from this study as well as prior information 268 

on predicted and confirmed peatland locations in the eastern Colombian lowlands. Insets detail 269 

clusters of peatland-rich regions we identified: Rio Ariari catchment in the Andean piedmont of 270 

the Amazon-Llanos ecological transition (A); the Rio Vaupés floodplain, a blackwater 271 

Amazonian river that feeds the Rio Negro (B); lower Rio Inirida blackwater catchment near the 272 

confluence with the Rio Orinoco (C); upper Rio Caquetá catchment in the Andean piedmont of 273 

the Amazon basin (D). Insets also detail regions with concentrations of predictively mapped 274 

peatlands, but where we were unable to detect any peatlands: palm swamps and riparian 275 

wetlands near the Rio Meta in the Llanos Orientales (E); upper Rio Guaviare floodplain, an 276 

Andean whitewater river tributary of the Orinoco (F). Red-tinted regions in the south cover the 277 

only three Colombia departments within the study area (Amazonas, Putumayo, Caquetá) with 278 

mapped histosols1 or prior published peatland observations44,45 (Fig. S7). Base map is public 279 

domain provided by Natural Earth (https://www.naturalearthdata.com/). 280 

Classification  281 

We classified the surveyed lowland Colombian peatlands into two types based on our field 282 

observations of vegetation (Fig. 2) and subsoils (Fig. 3): palm swamp peatlands and white-sand 283 

peatlands. The two types differ in their hydrogeomorphic setting and geologic context, and their 284 

peats differ in their typical ranges of organic matter content and thickness. Each type can occur 285 

as a closed-canopy ‘forest’ or as a sparsely-treed ‘open’ ecosystem with a dense herbaceous 286 
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cover of grass/sedge. This ecosystem classification system extends and overlaps with a 287 

previously developed system for Peruvian Amazonia24.  288 

Vegetation 289 

Palm swamps peatlands are the most readily encountered and widely distributed peatland type 290 

in lowland Colombia. Although they are easily recognized by the dominance of the Mauritia 291 

flexuosa palm (Fig. 2), many sites (38 out of 68 surveyed) did not support peat soils, despite 292 

having forest structures and plant communities indistinguishable from those of palm swamp 293 

peatlands. Non-peat-forming mineral soil palm swamps are known from perennially humid 294 

Peru48, but in Colombia they appear to be more prevalent, especially in the seasonally flooded 295 

savannas of the Llanos Orientales where a highly seasonal climate with low precipitation 296 

creates less favorable hydrologic conditions for peat formation.  297 

We also found peat in inundated white-sand ecosystems, named for their white sandy 298 

substrates49, which we refer to as “white-sand peatlands” from hereon. This finding was 299 

unexpected as peat has not been previously reported in these South American ecosystems. 300 

Floristically and structurally, white-sand forests—whether peat-forming or not—differ markedly 301 

from palm swamps, exhibiting a pole forest structure of dense, thin-stemmed and often stunted 302 

trees. Although structurally similar, Colombian white-sand peatlands are floristically distinct from 303 

“peatland pole forests” described from Peru23 (Fig. S4) and are typically dominated by latex-304 

producing Hevea sp. (Fig. 2). The presence of a white-sand substrate beneath up to two meters 305 

of peat soil is counterintuitive since sandy soils should have a poor water holding capacity and 306 

be unlikely to support peatland hydrology. Although we were unable to directly observe deep 307 

soil layers, we suspect the presence of an impermeable bedrock or cement ortstein layer 308 

beneath the white-sand as is present in hydromorphic spodosols to which Amazonian white-309 

sand ecosystems are often mapped49. Interestingly, peat soils atop white sandy substrates have 310 

been described in Kerangas heath forests of Southeast Asia50–52 and a few studies describe 311 

thick humus or organic soil layers in inundated white sand ecosystems from other tropical South 312 

American countries53–55, suggesting this may be an underrecognized, but broadly distributed 313 

peatland type. 314 

The herbaceous/shrub or “open” peatlands we encountered, although structurally alike, share a 315 

primary affinity with their principal forest type, rather than each other, in terms of both species 316 

composition (Fig. 2B) and soil profiles (Fig. 3). The distinction between forested and open 317 

canopy types is often a gradient or patchwork within structurally heterogeneous peatland 318 

complexes and may reflect successional trajectories21or local disturbance regimes from fire or 319 

other yet-to-be studied mechanisms.  320 

The peatland community typology we describe may be expanded in the future, as there are still 321 

regions in which wetlands have not been well-surveyed, especially in the southern part of the 322 

Colombian Amazon. Two types of peatlands described in Peru, “open peatlands” and hardwood 323 

swamp forested peatlands, have not yet been catalogued in Colombia (though one site, 324 

PLL_CUN may be a candidate for a non-palm “open peatland”). Initial fieldwork in the flooded 325 

savannas of the Guiana Shield and in flooded forests of the Orinoco basin (JCB and AGS, 326 
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personal observation) suggests that these may also constitute distinctive, undescribed peatland 327 

ecosystems, with characteristic flora and soil properties, or perhaps end-members of poorly 328 

studied ecological gradients.  329 

 330 

Fig. 2. We describe two types of peatlands in the Colombian lowlands based on plant 331 

community with two sub-types based on physiognomy (A). Palm swamps with dominance of the 332 

Mauritia flexuosa palm and white-sand peatlands with a distinctive pole forest community of 333 

thin, short trees often including latex (Hevea sp.) among other characteristic taxa (B). Both 334 

types are commonly closed-canopy forests but may also be encountered as herbaceous/shrub 335 

swamps or ‘open’ ecosystems. PS is an abbreviation for Palm Swamp and OWS is an 336 

abbreviation for Open White-Sand. Note that site PLL_CUN contains four species which are not 337 

abundant in the dataset (Enterolobium schomburgkii, Calophyllum brasiliense, Macrolobium 338 

acaciifolium and Montrichardia arborescens) and is placed tentatively within the Open PS class 339 

due to its structural similarity and the observation of M. flexuosa present at the site outside the 340 

0.1 ha plot. We also note that Hevea species encountered in white sand peatland plots lacked 341 

reproductive parts, making species level determinations tentative (see SI for further comment). 342 
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Soil profiles 343 

Our analysis of peat column organic matter (OM) reveals a wide range of peat depths and 344 

patterns of organic content among Colombian peatlands, with clear differences between palm 345 

swamp peatlands and white-sand peatlands (Fig. 3). Because palm swamp peatlands are often 346 

associated with abandoned branches or floodplain terraces of whitewater rivers21,56,57, historical 347 

flood pulses have deposited mineral material episodically58,59, leading to dramatically fluctuating 348 

OM content down core. In contrast, white-sand peatlands lack mineral intrusions and maintain 349 

extremely high OM content throughout most of their profiles, a difference that reflects settings 350 

where blackwater flood waters carry little to no mineral sediment.  351 

Palm swamp peats have a mean belowground ecosystem carbon density that is more than 352 

double that of white sand peatlands (1230 versus 490 Mg C ha-1) because of their deeper peat 353 

depths (mean of 2.40 versus 1.38 m) and higher bulk density (mean of 0.19 versus 0.09 g cm-3). 354 

For context, these peatland belowground carbon densities are four to 10 times greater than 355 

aboveground carbon density of Amazonian Terra Firme forests (roughly 125 Mg C ha-1)24. 356 

Although these relationships between peat depth and ecological community help constrain 357 

regional carbon stocks (Fig 4), variability and uncertainty remain substantial and further field 358 

investigations will yield further improvements in peat carbon accounting within and beyond 359 

Colombia.  360 

361 
Fig. 3. Profiles of organic matter (OM) content from loss on ignition sampled at 10 cm intervals 362 

from peat cores of the Colombian lowlands sorted by plant community (A). The vertical lines at 363 

45% OM indicate our threshold for delimiting peat for the purposes of defining the core bottom 364 

and mineral intrusions30 following Wust et al. (2003). Inset B shows ecosystem carbon density 365 

as calculated by organic matter content and bulk density for each site’s peat column. Horizontal 366 
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black bars indicate mean. Core gaps (e.g. open palm swamp site PLL-ISL) represent water filled 367 

horizons at sites with floating peat mats. OWS is an abbreviation for Open White-Sand. Site 368 

details are listed in Table S1. 369 

 370 

Fig. 4. Summary of peatland types in Colombia’s eastern lowlands with associated plant 371 

communities, vegetation structure, soil organic matter content and ecosystem carbon density 372 

based on field observations of 51 peatland sites and lab analyses of 39 intact peat cores in the 373 

region. Palm swamp and white sand peatlands may be closed-canopy forests or open-canopy 374 

ecosystems with scattered trees and herbaceous cover. Soil profiles reflect the tendency of 375 

palm swamps to occur on whitewater floodplains and receive mineral intrusions, whereas white 376 

sand peatlands lack mineral inputs and have high concentrations of organic matter throughout 377 

their peat profiles. Profiles shown are examples from site PLO-SPB near Puerto Lopez, Meta 378 

and site PIG-TA2 near Puerto Inirida Guainía (Fig 3).  379 

Mapping and extrapolation 380 

We upscaled our field observations from Colombia’s eastern lowlands to build a map of 381 

peatland coverage (Fig. 5) and generate a “best guess” of peatland areal coverage of 19,230 382 

km2. This “best guess” is the mean of two separate estimates (9,391 and 29,069 km2) of area 383 

generated using more “conservative” or more “inclusive” handling of large areas of wetlands 384 

with low predicted peat probabilities, respectively (see methods). We suggest that the true 385 

peatland area for the study area likely lies somewhere between 7,370 and 36,200 km2, which 386 

includes the 95% confidence intervals of both conservative and inclusive estimates. These area 387 

estimates are more than an order of magnitude greater than one based on mapped histosols 388 

(638 km2)1, but substantially less than estimates from some global peatland models (up to 389 
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58,000 km2)16,20 (Table 1). Our estimate of 46 km3 of peat volume (mean of volumes calculated 390 

from conservative and inclusive areal estimates multiplied by mean depth of each peatland 391 

type) and of 1.91 Pg carbon (from mean of conservative and inclusive volume, mean bulk 392 

density and mean % carbon for each type24) also fall between widely divergent prior estimates 393 

for the region (0.32 to 214 km3 and 0.02 to 10.8 Pg)1,16,19,20.  394 

 395 

 396 

Fig. 5. Map of peatland density in the Colombian lowlands as predicted by a Random Forest 397 

algorithm trained with our field observations as well as other previously published observations 398 

of peat and non-peat soils (Fig. S7) and using multiple remote sensing products, such as 399 

Copernicus Sentinel-1 and -2 and PALSAR2 (see Methods). The map has been upscaled from 400 

30 x 30 m to 1 x 1 km to improve visibility at the scale of the study area, with peat density 401 

representing the percentage of 30 x 30 m peat sub-pixels within each 1 x 1 km pixel. Black dots 402 

and polygons in the interior of the study region are table mountains exceeding 400 m elevation, 403 
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which might support peat soils60, but which we exclude from our predictive mapping since we 404 

lack field data from Colombia for such ecosystems.  405 

  406 

Table 1. Estimates of peatland area, peat volume and carbon stock for the eastern lowlands of 407 

Colombia from this and previous studies. Reported estimates of area for this study are (or are 408 

calculated from) means of “conservative” and “inclusive” approaches to areal estimation (see 409 

Methods). Ranges in parentheses span 95% confidence intervals for both approaches.  410 

  Page et al. 20111 Gumbricht et al. 201716 Xu et al. 201820 Melton et al. 202219 This study 

Area (km2) 638  

(427 – 1263) 

52,915 57,879 27,260 19,230 

(7,370 – 36,200) 

Volume 

(km3) 

0.32 214 124† 58† 46 

(16 – 94) 

Carbon 

(Pg) 

0.02 10.8* 6.2* 2.9* 1.91  

(0.60 – 4.22) 

*Carbon stock estimated from volume using mean percent carbon and bulk density from Page et al. 20111 411 
†Volume estimated from area using this study’s mean peat depth of 2.14 m 412 

Implications and controlling factors 413 

Our field peatland observations resolve the orders of magnitude discrepancy between estimates 414 

for peat area based on soils maps and those of more recent model outputs in Colombia. 415 

Although we find that peatlands are much scarcer and shallower throughout the study area than 416 

the Global Wetland Map predicts16, we are able to corroborate its authors’ general conclusion–417 

that peatlands are more widespread in the interior of tropical South America than is widely 418 

understood. Peatlands were previously documented in the Amazon of Colombia44,45 and 419 

Peru24,56,61,62, but the occurrence of peatlands in the highly seasonal savanna ecoregion of the 420 

Llanos Orientales greatly extends our understanding of geographic range and environmental 421 

conditions under which peatlands can form and persist in the neotropics (though we note 422 

savanna peatlands from Venezuela, Brazil and Bolivia documented in the paleoecology 423 

literature63–65). The many wet white-sand peatlands we encountered near the Venezuelan 424 

border in the Guainía department (Fig. 1C) confirms peat presence in a region where peatlands 425 

have been predicted but had not been previously documented16,19,66. This updated 426 

understanding of peatland biogeography has important implications for conservation planning 427 

and Earth system modelling, which rely on accurate spatial distributions of critical wetland 428 

ecosystems. 429 
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Controls of peatland distribution 430 

We found that peatlands in lowland Colombia can form and persist well away from active river 431 

floodplains, which expands the scope of potential peat distribution on the South American 432 

continent to interfluvial regions where they may occur in association with springs, seepages or 433 

isolated depressions and remain largelyoverlooked. Many of these peatlands are likely to be 434 

groundwater-dependent, with shallow water tables difficult to detect via satellite and which might 435 

be excluded by global maps, in contrast to regularly flooded wetlands with more readily detected 436 

standing surface water67. In the absence of consistent year round rainfall or coastal tides, 437 

tropical peatlands need natural depressions and/or a source of groundwater to maintain the 438 

consistently saturated soil conditions required for peat formation in perennially warm settings68. 439 

Thus, a combination of rainfall patterns and hydrogeomorphology, along with potential organic 440 

matter recalcitrance factors69, together impose fundamental constraints on where tropical 441 

peatlands can form. In Colombia it is evident that groundwater allows for a wide distribution of 442 

peatlands and the same is likely to be true for many other tropical regions where peatlands have 443 

evaded scientific detection. 444 

Although global predictive maps show promise, our data suggest that without field observations 445 

they may have limited applicability. We find that some of the larger wetland areas in the study 446 

area unanimously classified to be peatlands in predictive maps16,19,20 may be largely, if not 447 

entirely, peat free. Although such areas are flat and receive high annual rainfall, peat formation 448 

is likely inhibited by extreme hydrological seasonality. A long dry season (Fig. S9) that exposes 449 

wetland soils to atmospheric oxygen likely prevents peat accumulation because of rapid 450 

decomposition, a phenomenon observed in artificially drained peatlands globally7,70—this  is 451 

likely the case in the climatically-extreme core of the Llanos Orientales, which experiences little 452 

rainfall from December to March in most years (Fig. 1 E)71. In this very flat area of savanna 453 

landscape, a lack of topographic gradients to support groundwater aquifers that could maintain 454 

spring-fed swamps explains the lack of peat observations, in this study and previously72. 455 

Another limit to peat formation is that some river floodplains may be too dynamic for peat 456 

formation. Overbank flooding may bury peatlands under mineral silts and clays faster than peat 457 

can accumulate73, and river meandering may excavate and reprocess floodplain sediments 458 

more rapidly than the peat can form. River dynamics may explain the apparent scarcity of 459 

peatlands along some whitewater rivers, such as the upper Rio Guaviare (Fig. 1F). The 460 

apparent absence of peatlands in some areas likely reflects regional climatic or local hydrologic 461 

and topographic limits that render these areas largely free of peat. 462 

Further research is needed to more fully assess the occurrence of white-sand peatlands. Of the 463 

29 inundated white-sand ecosystems we surveyed, just 9 supported surficial peat layers of >40 464 

cm, suggesting that white-sand peatlands may not be common; we caution that all but one of 465 

these observations stem from a single region (Inirida, Guainia) and may not reflect patterns 466 

across the broader domain of white-sand ecosystems in Amazonia. Despite their apparent 467 

rarity, white-sand peatlands may be widely distributed, as descriptions of thick (>40 cm) organic 468 

horizons atop white-sand soils from Brazil54, Suriname55 and Venezuela53, meet tropical 469 

peatland criteria30 and span a wide swath of northern South America74. Also in need of further 470 

research are hardwood floodplain forest peatlands, which are poorly known, difficult to detect, 471 
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and have rarely been recorded. Nonetheless, about three-quarters of the forested wetlands in 472 

our study area are covered in hardwood floodplain forest, so it is important to determine 473 

precisely what proportion of this large area of forest holds peat.  474 

Outlook for conservation 475 

Although our estimate of peatland carbon stocks for the Colombian lowlands remains highly 476 

uncertain, our central estimate of 1.91 Pg (mean of inclusive and conservative estimates) is 477 

more than one-third of that of the Pastaza-Marañon Foreland Basin (4.3626 to 5.4 Pg33), the 478 

largest known peatland complex in South America, and roughly equivalent to 70 years of 479 

emissions from fossil fuels and industry in Colombia75. This finding emphasizes the need for 480 

further peatland research and carbon-motivated conservation efforts in Colombia, as well as in 481 

other global peatland hotspots identified by models, but which lack field data. An important and 482 

urgent18 next step in Colombia will be an assessment of peatland threats, degradation and 483 

carbon losses, as has recently been carried out in Peru8,33,76,77. Anecdotally, we observed 484 

examples of palm swamp felling and many of the open palm swamp peatlands in the Llanos 485 

Orientales showed evidence of charring on tree trunks, indicating a history of peatland fires. It is 486 

possible that these peatlands may be well-adapted to withstand anthropogenic fire regimes78,79 487 

but, given the history of catastrophic peat fires elsewhere2,5,80, their sensitivity to fire should be 488 

investigated.  489 

Further socio-ecological research is needed to systematically assess evidence for past 490 

destruction and analyze ongoing threats. People that live among Colombian peatlands include 491 

farmers and ranchers as well as indigenous communities, which place a special cultural 492 

importance on water bodies81. Socio-ecological research should be a priority to assess 493 

interactions between local communities and peatlands, and to identify potential threats as well 494 

as opportunities for their protection under an umbrella of community-led sustainable 495 

development82–84.  496 

 497 

 498 
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