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Abstract. The identification of spatial soil moisture pat-
terns is of high importance for various applications in high-
latitude permafrost regions but challenging with common
remote sensing approaches due to high landscape hetero-
geneity. Seasonal thawing and freezing of near-surface soil
lead to subsidence–heave cycles in the presence of ground
ice, which exhibit magnitudes of typically less than 10 cm.
Our investigations document higher Sentinel-1 InSAR (in-
terferometric synthetic aperture radar) seasonal subsidence
rates (calculated per thawing degree days – a measure of
seasonal heating) for locations with higher near-surface soil
moisture compared to drier ones. Based on this, we demon-
strate that the relationship of thawing degree days and subsi-
dence signals can be interpreted to assess spatial variations
in soil moisture. A range of challenges, however, need to
be addressed. We discuss the implications of using different
sources of temperature data for deriving thawing degree days
on the results. Atmospheric effects must be considered, as
simple spatial filtering can suppress large-scale permafrost-
related subsidence signals and lead to the underestimation of
displacement values, making Generic Atmospheric Correc-
tion Online Service for InSAR (GACOS)-corrected results
preferable for the tested sites. Seasonal subsidence rate re-
trieval which considers these aspects provides a valuable tool
for distinguishing between wet and dry landscape features,
which is relevant for permafrost degradation monitoring in
Arctic lowland permafrost regions. Spatial resolution con-

straints, however, remain for smaller typical permafrost fea-
tures which drive wet versus dry conditions such as high- and
low-centred polygons.

1 Introduction

Soil moisture information with high spatial resolution is re-
quired for numerous applications in Arctic regions. The sat-
uration of soils determines aerobic or anaerobic conditions
and consequently carbon or methane release. Therefore, soil
wetness representations facilitate the upscaling of fluxes and
consequently the determination of greenhouse gas compo-
sition (Bartsch et al., 2023; Miner et al., 2022). Addition-
ally, moisture conditions affect soil thermal properties. Wet-
ter soils transfer heat more effectively and rapidly due to
higher thermal conductivity and diffusivity (Farouki, 1981).
Higher thermal inertia further leads to a quicker response to
external temperature changes in wetter soils (Campbell and
Norman, 1998). Moreover, wet soils can store more heat for
a given temperature change because of higher heat capacity
(Campbell and Norman, 1998). Thus, soil moisture data are
of high importance in Arctic permafrost regions, especially
for permafrost and climate modelling (Subin et al., 2013;
Göckede et al., 2017; Zwieback et al., 2019).

Land cover heterogeneity in permafrost lowlands is com-
parably high with complex spatial patterns of wet and dry
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soils (Bartsch et al., 2023; Treat et al., 2024). Permafrost-
related processes frequently lead to changes in land-surface
hydrology. This includes drainage and formation of lakes
(Nitze et al., 2017; Jones et al., 2011) and ice-wedge degrada-
tion, which can be observed on sub-decadal timescales (Lil-
jedahl et al., 2016). Polygonal features are associated with
ice wedges. Polygons are a few metres in diameter and can
differ in topography (low centred or high centred), leading to
specific wet and dry patterns which change over time (Lil-
jedahl et al., 2016). In general, a change in surface wetness
over several years can be associated with permafrost change.

Surface wetness monitoring can be addressed with satel-
lite data, commonly based on data acquired in the microwave
domain but also using optical data (Table 1). Thermal obser-
vations have also been shown to be of value using the princi-
ple of thermal inertia, but their applicability is limited due to
frequent cloud cover and the perturbation of meteorological
conditions and vegetation (Zhang and Zhou, 2016).

Microwave retrievals make use of the high dielectric per-
mittivity of liquid water in the microwave domain as com-
pared to other soil materials (Barrett et al., 2009). A clear
advantage is the ability to penetrate cloud cover, providing
the potential for good temporal sampling. For global-scale
products, near-surface soil moisture is therefore derived from
microwave sensors. However, the used methods which are
based on backscatter intensity (scatterometer or synthetic
aperture radar) or brightness temperature (radiometers) are
of limited applicability in Arctic environments (Wrona et al.,
2017; Högström et al., 2018; Kim et al., 2023). The pres-
ence of surface water within coarse scatterometer footprints
may cause deviations. Wind-induced variations in scatter-
ing properties generate biases in lake-rich areas (Högström
and Bartsch, 2017). Furthermore, short-term variations in
soil moisture derived from C-band radar are influenced by
temperature variations in the organic layer (Högström et al.,
2018).

For passive microwave sensors, radiative transfer mod-
els are applied utilizing the measured brightness temper-
ature, while for active sensors various approaches do ex-
ist including change detection and modelling methods (Das
and Paul, 2015). Global soil moisture products from ac-
tive and passive microwave systems like ASCAT (Advanced
Scatterometer, C-band; Bartalis et al., 2007; Wagner et al.,
2010), AMSR2 (Advanced Microwave Scanning Radiome-
ter 2, multi-frequency; Parinussa et al., 2015; Zhang et al.,
2021), SMOS (Soil Moisture and Ocean Salinity, L-band;
Kerr et al., 2012; Sadri et al., 2020) and SMAP (Soil Mois-
ture Active Passive, L-band; Colliander et al., 2017; Sadri
et al., 2020; Entekhabi et al., 2010) only provide very coarse
spatial resolutions (10–50 km) and are therefore not suitable
for heterogeneous Arctic landscapes.

As an alternative, higher-resolution (but still comparably
coarse) static data (75–500 m) from ENVISAT ASAR data
(Advanced Synthetic Aperture Radar, active C-band sensor,
horizontal–horizontal (HH) polarization) were used to de-

pict spatial wetness patterns in tundra regions, with win-
ter minimum backscatter values representing surface rough-
ness and serving as a proxy for these patterns (Widhalm
et al., 2015). Although fully polarimetric (quad-pol) obser-
vations from synthetic aperture radar (SAR) backscatter at
the C-band have been shown to be promising (Zwieback and
Berg, 2019), these data are usually not acquired. Experiments
were made with airborne P -band observations (Ye et al.,
2021), but such data are so far not available from space.
Recently, Treitz et al. (2024) utilized in situ surface rough-
ness measurements in conjunction with fully polarimetric
RADARSAT-2 data to develop a surface roughness model in
a localized study. This model, combined with HH-polarized
backscatter and local incidence angle data, was subsequently
employed to model a time series of volumetric soil moisture.

Interferometric models using SAR data (InSAR) have pre-
viously been created to elucidate how changes in dielectric
constant, attributed to time-varying soil moisture, affect in-
terferometric phase (De Zan et al., 2014). In recent years,
attempts have been made to derive soil moisture changes
from related closure phase data (e.g. Michaelides and Ze-
bker, 2020; Wig et al., 2023; De Zan and Gomba, 2018).
However, as this requires a triplet of interferograms, with one
spanning over all three acquisition dates, this application is
not feasible in areas with rapid loss of the degree of interfero-
metric coherence as can be the case in permafrost regions, de-
pending on the used frequency. An alternative method is wet-
ness indices which can be derived from multispectral data.
Usually bands with reflectance in the near-infrared and short-
wave infrared are used in combination, e.g. for the Normal-
ized Difference Moisture Index (NDMI; Cheţan et al., 2020)
or the Tasseled Cap Wetness index (TCW; Frappier et al.,
2023), which uses a transformation of multiple visible, near-
infrared and shortwave infrared bands. These indices, how-
ever, do not give actual volumetric soil moisture content but
rather serve as proxies for soil wetness. Although spatial res-
olution of multispectral data is substantially higher than for
global soil moisture products, temporal sampling is limited
due to the requirement for cloud-free conditions in frequently
cloud-covered Arctic regions (Sudmanns et al., 2020).

Another index that can serve as a proxy for soil moisture
is the Topographic Wetness Index (TWI; Riihimäki et al.,
2021), which uses topographic information to depict the
steady-state soil moisture distribution. This index is, for ex-
ample, widely used in carbon research (e.g. Mishra and Ri-
ley, 2012; Obu et al., 2017; Virkkala et al., 2021). Its appli-
cability as a soil moisture indicator is, however, limited as it
solely depends on topographic information, which is merely
one component influencing spatial soil moisture patterns (Ri-
ihimäki et al., 2021).

InSAR has been already used for a range of permafrost-
monitoring applications across the Arctic (Bartsch et al.,
2023). Information derived from InSAR is expected to pro-
vide insight into active layer and soil properties (Schaefer
et al., 2015; Chen et al., 2023; Li et al., 2023). Local In-
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SAR seasonally aggregated subsidence patterns have been
reported to be related to wetness gradients (e.g. Liu et al.,
2010; Strozzi et al., 2018; Bartsch et al., 2019, 2023). Per-
mafrost regions are characterized by a continuous period of
frozen soil conditions. Seasonal phase change occurs with
gradual thaw followed by gradual freeze of the so-called ac-
tive layer. The phase change results in a volume change, de-
pending on the amount of ice/water in the soil. A high sub-
sidence in summer is expected when the water/ice content of
the soil is high. Subsidence typically peaks towards the end
of the unfrozen period, usually in late August in Arctic per-
mafrost regions. However, the timing of this peak is subject
to variability that is influenced by factors such as latitude,
local climatic conditions and interannual fluctuations. Con-
sequently, variations in the timing of peak thaw layer thick-
ness might cause it to occur sooner in August or continue
into early October. Seasonally aggregated vertical displace-
ment detected by InSAR is of the order of several centimetres
(e.g. Strozzi et al., 2018). The magnitude can vary from year
to year depending on the warming of the soil or changes in
water content through variations in the water budget and is
typically less than 10 cm (Streletskiy et al., 2025) but can ex-
ceed this in more dynamic regions.

Bartsch et al. (2019) suggested that the temporal evolu-
tion of seasonal subsidence reflects differences in soil prop-
erties based on vegetation patterns which reflect soil condi-
tions. Scheer et al. (2023) confirmed the linkage to ground
ice content, although only a limited number of samples were
available. Chen et al. (2020, 2023) suggested the retrieval of
equivalent water depth from InSAR subsidence. Seasonally
aggregated subsidence may thus hold the potential to serve
as a proxy for soil moisture, similar to indices based on mul-
tispectral data which represent general land-surface wetness
and are available at a similar level of detail (including NDMI
from sensors such as Landsat or Sentinel-2).

Temporal resolution is limited to year-to-year changes
when data are seasonally aggregated, but is potentially of in-
terest for permafrost-related long-term soil moisture change.
Long-term (aggregated over several years) subsidence itself
is usually interpreted as a sign for loss of ground ice of the
underlying permafrost, as an impact of climate change (e.g.
Liu et al., 2015; Wang et al., 2022). Such an approach does,
however, require signal stability, and it necessitates an ade-
quate degree of coherence in yearly interferograms to estab-
lish connections between data from consecutive years, which
can be achieved in areas with limited vegetation growth only
(Strozzi et al., 2018).

One of the major challenges for InSAR applications in
Arctic permafrost regions is the limited availability of regu-
lar and spatially continuous SAR acquisitions (Bartsch et al.,
2023). A second issue is the available wavelength. The longer
L-band is less sensitive to vegetation changes and is there-
fore less prone to coherence loss, allowing longer intervals
between acquisitions. Shorter wavelength ranges such as the
C-band and X-band are usually only applicable in regions

with low vegetation. The X-band is, in general, not freely
available, and time series are limited to small regions. With
Sentinel-1 A and B, a freely accessible dataset in the C-band
range is available and usable for InSAR in Arctic permafrost
regions with limited vegetation cover (Sentinel-1A launched
in April 2014, Sentinel-1B launched in April 2016 and ended
December 2021) (Strozzi et al., 2018). The L-band is cur-
rently also mostly acquired on demand across the Arctic;
however, usually only one or two acquisitions exist for the
unfrozen period, and rarely does any acquisition match the
timing of the maximum active layer depth. A general chal-
lenge is the impact of snowmelt in spring. Signal decorrela-
tion reduces the availability of image pairs at the time when
ground thaw is initiated.

A further obstacle for such an application is atmospheric
effects and ionospheric activities which disturb the signal
(e.g. Muskett, 2017). When atmospherically contaminated
interferograms cannot be simply discarded (as, for exam-
ple, done in Liu et al., 2010), owing to coherence restric-
tions, atmospheric corrections are a necessity. Available at-
mospheric correction methods can be divided into methods
with and without external data (Xiao et al., 2021). Exter-
nal data, such as weather reanalysis or global positioning
system soundings, can be utilized to mitigate turbulent at-
mospheric noise from affected interferograms, when suffi-
ciently available (Dini et al., 2019; Jolivet et al., 2014, 2011;
Michaelides et al., 2021). Corrections like stacking or time
series analysis, which do not rely on external data but rather
on data redundancy of interferogram networks, often do not
capture the complexity of atmospheric effects (Xiao et al.,
2021). On the other hand, methods incorporating external
data, like ground observations, satellite observations or nu-
merical weather models, increase processing efforts (Xiao
et al., 2021). The Generic Atmospheric Correction Online
Service for InSAR (GACOS) tackles this problem by pro-
viding easy-to-apply corrections which use external infor-
mation on atmospheric conditions (Iijima et al., 2021). By
incorporating weather model data as well as topographic in-
formation, zenith tropospheric delay (ZTD) maps are pro-
duced and made available in near real time. The effectiveness
of this method has been demonstrated locally (e.g. Murray
et al., 2019; Ulma et al., 2021), in some cases, however, with
varying degrees of success (e.g. Wang et al., 2019). Particu-
larly, capturing the smaller-scale turbulent atmospheric phase
appears to be lacking, while the mitigation of elevation-
dependent and long-wavelength components seems to be fea-
sible (Li et al., 2022). The utility of this approach for per-
mafrost applications has not yet been evaluated. This requires
testing with in situ data as well as common statistical assess-
ments of phase residuals of the multi-baseline processing. In
situ subsidence data are scarce, but the assessment of phase
residuals can be applied independently.

An atmospheric correction method frequently applied in
permafrost-related studies is spatial filtering, such as high-
pass filtering (e.g. Strozzi et al., 2018; Michaelides et al.,
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Table 1. Summary of remote sensing techniques for near-surface soil moisture estimation (modified after Engman, 1991; Moran et al., 2004;
Wang and Qu, 2009).

Sensor type Approach/observed
property

Basic principle Advantages Disadvantages Applicability in
permafrost regions

Optical reflectance indices and
derivatives such as the
Normalized Difference
Vegetation Index
(NDVI)

albedo high spatial resolution,
broad coverage

cloud coverage,
strongly perturbed by
vegetation and other
hampering factors

limited applicability
due to frequent cloud
coverage in Arctic
regions (Sudmanns
et al., 2020)

Thermal
infrared

surface temperature thermal inertia high spatial resolution,
broad coverage

cloud coverage,
strongly perturbed by
vegetation, influenced
by meteorologic
conditions

limited applicability
due to frequent cloud
coverage in Arctic
regions (Sudmanns
et al., 2020)

Passive
microwave

brightness temperature dielectric properties high temporal
sampling, broad
coverage, all weather

low spatial resolution,
perturbed by surface
roughness and
vegetation

limited applicability in
heterogeneous Arctic
(Wrona et al., 2017;
Kim et al., 2023)

Active
microwave

backscatter dielectric properties high spatial resolution,
all weather

perturbed by surface
roughness and
vegetation

low reliability in Arctic
regions (Högström
et al., 2018; Kim et al.,
2023)

Active
microwave

backscatter surface roughness high spatial resolution,
all weather

only in Arctic regions,
only static product
containing four classes

applicable in Arctic
tundra regions
(Widhalm et al., 2015)

Active
microwave

InSAR surface
displacement

volume change high spatial resolution only in permafrost
regions, only one static
product per thawing
season, atmospheric
effects

applicability in Arctic
permafrost regions to
be determined

2021; Rouyet et al., 2021). This approach is also applica-
ble for InSAR datasets of a daisy-chain network that were
processed in series and do not include overlapping inter-
ferograms in the time domain. The filtering method relies
on the significant disparity in correlation length in the spa-
tial frequency domain of atmospheric and thaw-subsidence-
induced effects (kilometre scale compared to metre scale)
(Michaelides et al., 2021).

For seasonal aggregation, the timing of acquisitions in
summer in relation to the day of year (DOY) presents another
difficulty. The driver of ground thaw, the seasonal warming,
can be expressed through the sum of positive degree days or
degree days of thaw (DDT). Bartsch et al. (2019) suggest the
use of DDT to facilitate the comparison of seasonal deforma-
tion across different years. Scheer et al. (2023) implemented
a DDT-dependent methodology in combination with a nor-
malization step. The approach of DDT requires the availabil-
ity of temperature data, which are available locally in very
few cases only. Therefore, the suitability of reanalyses data
needs to be assessed for application across larger regions.

A further challenge is that in situ subsidence measure-
ments as well as soil moisture measurements are scarce
across the Arctic, primarily due to logistic constraints
(Högström et al., 2018; Strozzi et al., 2018; Bartsch et al.,

2019). Spatially distributed measurements are necessary in
order to capture landscape heterogeneity, limiting soil mois-
ture measurements to the near surface and mostly to snap-
shots in time. However, both surface soil moisture and sub-
sidence measurements are available from a long-term mon-
itoring site in central Yamal in western Siberia and in NW
Canada. They can potentially serve as reference sites in ad-
dition to campaign data.

In summary, the investigation of InSAR-derived aggre-
gated seasonal subsidence rates per DDT as a soil moisture
indicator necessitates consideration of various retrieval chal-
lenges and assessing the applicability across different per-
mafrost landscape types. Hereafter, all references to subsi-
dence rates refer to the DDT domain.

The purpose of this study is to investigate the potential of
seasonally aggregated InSAR subsidence signals for retriev-
ing a soil moisture indicator index. An interpretation scheme
of the relationship between DDT and Sentinel-1-based sub-
sidence for soil moisture categories is derived, and its perfor-
mance is compared to other existing soil moisture approaches
using near-surface in situ soil moisture measurements. To
ensure reliable results, correcting InSAR values for atmo-
spheric effects is essential. Thus, we assess various meth-
ods for correcting these disturbances using in situ subsidence
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measurements. Regions with varying landscape histories are
selected, including sites with relevant in situ measurements
and auxiliary measurements.

2 Study regions

Three primary study regions with in situ soil property in-
formation were investigated within this research (Inuvik in
northwestern Canada, central Yamal in northwestern Siberia
and Chersky in northeastern Siberia; see Fig. 1 and Table 2).
These regions cover permafrost-related long-term monitor-
ing sites. Two of these regions with in situ subsidence mea-
surements and spatially distributed in situ surface soil mois-
ture records were selected for detailed assessment (Inuvik
and central Yamal), with one site also offering near-surface
as well as borehole temperatures for DDT investigations
(central Yamal). Chersky was selected to add to the statis-
tical evaluation of processing results through analyses of the
standard deviation of phase residuals. This third region also
provides in situ air and borehole temperatures.

The study regions lie in the zone of continuous permafrost,
with Yamal also showing areas of discontinuous permafrost
in the southwest of the processed scene (permafrost extent
data source: Obu et al., 2018). Long-term permafrost moni-
toring is available in these regions. In northeastern Siberia,
the Northeast Science Station (NESS) was established in
1980 near the city of Chersky. The Yamal study region in-
cludes the research station Vaskiny Dachi, where permafrost
studies have been conducted since 1988 (Leibman et al.,
2015). The Trail Valley Creek research station (established
in 1991; Pomeroy et al., 1998) is located within the anal-
ysed Inuvik region. Various landscape types are represented
within the selected regions.

The lake-rich Khalerchinskaya tundra is located northwest
of the lower Kolyma River, in the northwest part of the scene
of the Chersky area. This region is underlain by ice-poor
sands and dominated by a predominantly waterlogged land-
scape (Fyodorov-Davydov et al., 2004). The river valley is
characterized by alluvial deposits (Shmelev et al., 2017) and
features regularly flooded shrub and herbaceous vegetation
(JRC, 2003). The east and south of the scene are partly under-
lain by organic- and ice-rich Yedoma deposits (Grosse et al.,
2013), featuring needle-leaved and deciduous tree cover as
well as herbaceous land cover on mountain regions (JRC,
2003).

The Yamal area is characterized by marine, coastal-marine
and fluvial-marine lithologies (Leibman et al., 2015), where
shrub and herbaceous tundra dominates (Khitun and Rebris-
taya, 1998; Widhalm et al., 2017a; Stolbovoi and McCallum,
2002).

The Mackenzie delta area of the Inuvik region is covered
by needle-leaved evergreen trees (JRC, 2003) and is charac-
terized by alluvial sediments (Geological Survey of Canada,
2014). The west of the scene is dominated by shrub cover

and sparsely herbaceous and shrub-covered mountains (JRC,
2003). To the west and east of the delta, glacial sediments
prevail (Geological Survey of Canada, 2014). East of the
delta, the land cover is dominated by a mosaic of tree cover
and other natural vegetation with areas of shrub and herba-
ceous cover (Bartholomé and Belward, 2005; JRC, 2003).

In order to support the discussion on the applicability of
InSAR for permafrost-related features prone to degradation,
a fourth region was investigated in an area of discontinu-
ous permafrost near the Tazovsky settlement, about 500 km
southeast of the Yamal sites. The characteristics of polyg-
onal tundra, which may vary in moisture regimes, are dis-
cussed, highlighting the relevance of InSAR results for char-
acterizing different types of permafrost wetlands. This re-
gion is characterized by a relatively flat, slightly dissected
surface with a high number of wetlands, lakes and widely
spread flat-topped and convex, hummocky peatlands (Babkin
et al., 2018). The temperature of permafrost ranges from 0
to –1.0 °C, decreasing to –1.5 °C in dome-shaped peatlands
(Koroleva et al., 2021). Polygonal features are widespread
in this area and are usually linked to peatlands (Khomu-
tov et al., 2022). The features include high- and low-centred
polygons. Low-centred polygons have comparably wet soils
and/or water-filled ponds inside them. Further landscape fea-
tures include watery troughs on peatlands, over-saturated
wetlands and wetlands without visible polygons.

The active layer thickness (maximum thaw depth; source:
ESA Permafrost_cci, year 2019 of Obu et al., 2021) is largest
for the Inuvik study region and the region around Tazovsky
with values of, on average, 0.96 and 0.94 m, respectively. Ya-
mal shows average active layer thickness values of 0.84 m,
and the Chersky area features the thinnest active layers with
values of circa 0.64 m.

3 Data

3.1 Sentinel-1

ESA’s Sentinel-1 satellites are operating C-band SAR instru-
ments with wavelengths of 5.6 cm. For our investigations, we
used single look complex (SLC) images in interferometric
wide (IW) swath mode, which provide a ground sampling
distance of 2.3 m in range and 13.9 m in azimuth direction as
well as a swath width of 250 km. Sentinel-1A was launched
in April 2014 and Sentinel-1B followed in April 2016. The
constellation of two satellites offered a possible repeat cy-
cle of 6 d; however, due to global acquisition strategies, 12 d
was more common and was also generally available for most
Arctic regions. Regular acquisitions started for most study
regions in mid-2016, not always covering the entire thawing
season of this year. At the end of 2021, Sentinel-1B stopped
operating, resulting in no recent Sentinel-1 data acquisitions
for the Siberian study regions. Table S1 in the Supplement
indicates the acquisition dates of all Sentinel-1 SAR acqui-
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Figure 1. Study region locations: Chersky, northeastern Siberia; Inuvik, northwestern Canada; Yamal, northwestern Siberia; and Tazovsky,
northwestern Siberia. Background map: permafrost zones (Obu et al., 2019).

sitions used in this study. Paths and frames of the investi-
gated scenes can be found in Table S2 in the Supplement.
The seasonal study periods were selected from the start of
the thawing season, as soon as interferograms showed good
coherence, until the onset of freezing (delineated from ERA5
reanalysis data).

3.2 In situ data

In situ data, including subsidence, soil moisture and temper-
ature measurements, were available for the three study re-
gions. An overview of the used data is provided in Table 2.

3.2.1 Yamal

Yearly in situ subsidence measurements were conducted at
the CALM (Circumpolar Active Layer Monitoring) grid near
the research station Vaskiny Dachi in central Yamal. For this,
L-shaped metal rods were inserted through holes in plates
to the base of the active layer, with the hooked end tight on
the plate. In winter, frost heave raises the plate, pushing the
rod up, where it becomes fixed by freezing. During spring
thaw, the plate subsides with the ground surface, while the
rod remains fixed. The difference between the plate and the
rod’s end is measured as ground movement. Surface subsi-

dence measurements started in 2016 with five to six points.
An additional 20 points are available since 2018 and a further
4 points since 2021. Measurements were performed yearly at
the end of August or start of September with the exception of
2016 when travel restrictions resulted in measurements not
until mid-October. The CALM grid is situated on a sloping
plain where dry cryptogram crust dominates the flatter upper
part. Grasses and mosses as well as low and high shrubs can
also be found in the remaining parts along with patches of
wet sedge (Widhalm et al., 2017a).

Soil moisture measurements were conducted at the 121
CALM grid points (Widhalm et al., 2017b) and at seven tran-
sects containing 12 to 34 individual points, as well as at 10
selected additional locations. Moisture values were measured
at the top 5 cm with the Delta-T Devices HH2 soil moisture
sensor. For the soil moisture values at the CALM grid, mea-
surements of three different dates in August 2015 were aver-
aged. The other points were measured only once, also in Au-
gust 2015. The moisture conditions in the Yamal Peninsula
study region were normal in 2015, with total precipitation
values of 185 mm for the months of June through September,
compared to median values of 188 mm over a 15-year pe-
riod (measured at Maresale). Precipitation values during the
years of InSAR observations ranged from 120 mm in 2017
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to 244 mm in 2021. For the comparison with InSAR results,
soil moisture values of points which were located within the
same Sentinel-1 pixel were averaged. This resulted in 132
samples (68 CALM grid values, consisting of 121 valid sam-
ples, and 64 pixels in the other categories, containing 146
valid measurements).

Near-surface soil temperatures for the derivation of DDTs
based on in situ data were measured with DS1921G-F5 Ther-
mochron iButton devices between October 2016 and August
2017. Temperatures were recorded at four sites at the Yamal
study region (locations shown in Fig. 2). One point is located
at the CALM grid, while the other three points are placed at
monitoring sites which were established within the Greening
of the Arctic (GOA) project of the International Polar Year
(IPY) (Walker et al., 2009). Site VD1 is located on a gen-
tle terraced hilltop with clayey soils, sedge and dwarf-shrub,
and moss tundra. VD2 is on a broad hilltop, characterized by
sandy and clayey soils dominated by dwarf-shrub, graminoid
and moss tundra. Site VD3 is characterized by dry dwarf-
shrub–lichen tundra on sandy soils (Walker et al., 2009).

Additionally, borehole temperature data at 50 cm depth of
two of the GOA points (VD1 and VD2) were used.

3.2.2 Chersky

Borehole data from depths of 4 and 8 cm, as well as tempera-
ture data from an automatic weather station near the borehole
located approximately 15 km south of the city of Chersky at
the research site Ambolikha, were utilized. This site is lo-
cated on the floodplain of the Kolyma River and dominated
by wet tussock tundra with tussock-forming sedges and cot-
ton grasses on an organic peat layer overlain by alluvial min-
eral soils (Göckede et al., 2019).

3.2.3 Inuvik

At the Inuvik study site, in situ soil moisture measurements
were conducted similarly to those in Yamal, using a Delta-
T Devices HH2 soil moisture sensor in the top 5 cm. The
measurements were conducted in the region between north
of the city of Inuvik and south of the Trail Valley Creek re-
search station in July 2023. As this time was characterized
by drought conditions, the maximum of multiple samplings
was further used at each measurement point. The measure-
ment points were recorded in transects and irregular point
locations. Again, samples within the same InSAR pixel were
averaged for comparisons with InSAR results; 78 pixels were
used including 91 measuring points.

To investigate the effects of soil moisture change on In-
SAR results, soil moisture time series at Trail Valley Creek
from Boike et al. (2023) were analysed. Soil moisture data at
a depth of 5 cm for the years 2018–2022 were used.

In situ subsidence data were available from Anders et al.
(2018) for the years 2015 and 2016. Similar to the measure-
ments in Yamal, poles were anchored below the active layer.

Measurements were performed twice per year, recording the
distance between the top of the pole and a plate on the sur-
face.

3.3 Auxiliary data

Air temperature, utilized for deriving DDT values across the
entire study regions, was derived from ERA5 reanalysis data.
ERA5 combines model information with observations to pro-
duce a globally consistent dataset (Hersbach et al., 2023). We
used air temperature at 2 m above the surface at a temporal
resolution of 2 h at 0.25° spatial resolution.

Landsat 8 (Earth Resources Observation and Science
(EROS) Center, 2020) Level-2 (bottom of atmosphere) data
(30 m spatial resolution) were acquired for the derivation of
NDMI, which utilizes bands in the near-infrared and short-
wave infrared parts of the spectrum to depict changes in wa-
ter content of leaves. Dates were selected close to the in situ
soil moisture sampling dates, specifically on 10 August 2015
for Yamal and on 6 July 2023 for Inuvik.

For the calculation of TWI, the ArcticDEM (Porter et al.,
2022) at 2 m spatial resolution was utilized, which is delin-
eated from optical stereo imagery.

ESA’s CCI soil moisture product (Gruber et al., 2019;
Dorigo et al., 2017, 2023; Preimesberger et al., 2021) was
used for evaluation purposes. This daily, global soil moisture
product, at 0.25° spatial resolution, combines various active
and passive microwave products. Here, we utilized the pas-
sive microwave and combined (active and passive) product,
which are provided in volumetric soil moisture units.

High-resolution satellite imagery of QuickBird-2,
WorldView-2 and WorldView-3 (Khairullin et al., 2019),
topographic surveys (Babkin et al., 2018), and unoccupied
aerial vehicle (UAV) images were available for the area
surrounding the Tazovsky settlement. The UAV images,
acquired in 2022, covered an area of about 25 km2. Ad-
ditionally, high-resolution satellite images available via
Google and Esri Satellite maps were used in the proximity.

The Generic Atmospheric Correction Online Service for
InSAR (GACOS; Yu et al., 2018) was developed at New-
castle University and provides high-spatial-resolution zenith
tropospheric delay (ZTD) maps based on numerical weather
models. Surface pressure, temperature and specific humid-
ity are from a high-resolution ECMWF weather model at
0.1°, and 6 h resolutions are used as input as well as the
90 m resolution Shuttle Radar Topography Mission (SRTM)
DEM (60° S–60° N) and the Advanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER) Global Digi-
tal Elevation Model (GDEM) (at higher latitudes). An itera-
tive tropospheric decomposition model (Yu et al., 2017) was
implemented in order to separate the stratified and turbulent
components from the tropospheric delays and produce ZTD
maps, which are globally available in near real time.
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Figure 2. Sample point and in situ data locations (see also Table 2 for the in situ data description overview). (a) Chersky region: sample
points for time series plots (without in situ information) and borehole location (Background map data source: Google Satellite). (b) Inuvik
region: locations of in situ near-surface soil moisture measurements and in situ subsidence data (Background map data source: Esri Satellite).
(c) Yamal region: locations of in situ near-surface soil temperature and soil moisture measurements (Background map data source: Esri
Satellite). Panels (b) and (c) only show a subset of the processed region, depicting the area where in situ data are available.

4 Methods

The described method is based on seasonal freezing and
thawing of the active layer in permafrost regions. In the pres-
ence of ice in the ground, the surface subsides throughout the
thawing season. This can be measured using InSAR. Bartsch
et al. (2019) demonstrated that the displacement values fol-
low a nearly linear progression with respect to DDT. Alter-
natively, a dependency on

√
DDT has been employed in sev-

eral previous studies (e.g. Liu et al., 2012; Hu et al., 2018).
An overview of the major processing steps is given in Fig. 3.
We utilize this relationship in order to link satellite data to in
situ near-surface soil moisture, which was collected for cal-
ibration and validation purposes. Special attention is paid to

interfering atmospheric effects, by testing various correction
methods.

InSAR displacement results and atmospheric correction
performance are evaluated by investigating displacement
time series at sample point locations across all study regions.
A comparison to in situ subsidence data is performed for the
Yamal site, and standard deviations of phase residuals are
compared for unfiltered and GACOS-corrected results across
all study regions.

GACOS-corrected results and comparable soil moisture
indices are evaluated against in situ soil moisture measure-
ments of Yamal and Inuvik. While in situ soil moisture mea-
surements were limited to the top 5 cm, we posit that under
typical conditions they are representative of the entire active
layer, which can be measured using InSAR. An empirical re-
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Table 2. In situ subsidence, soil moisture and temperature data overview (for locations, see Figs. 1 and 2).

Parameter Region Site name Distribution Sampling type Dates
(dd.mm.yyyy)

No. of used
samples or
sites

Subsidence
(plates)

Yamal CALM irregular point
locations

yearly measurements 2016–2021
measured end
of summer

6–27 per
year

Subsidence (plates)
(Anders et al., 2018)

Inuvik Trail Valley
Creek

irregular point
locations

two measurements
per year

09.06.2015,
20.08.2015,
18.07.2016,
23.08.2016

2

Near-surface soil
moisture, top 5 cm
(Delta-T Devices
probe)

Yamal CALM regular grid temporally averaged 19.08.2015,
23.08.2015,
27.08.2015

121

Near-surface soil
moisture, top 5 cm
(Delta-T Devices
probe)

Yamal other transects & irregular single measurement 08.2015 146

Near-surface soil
moisture, top 5 cm
(Delta-T Devices
probe)

Inuvik transects & irregular spatially averaged 07.2023,
drought
conditions

91

Near-surface soil
moisture, 5 cm depth
(Boike et al., 2023)

Inuvik TVC fixed point location regular time series
(1 h interval)

2018–2023 1

Near-surface
soil temperature
(iButton)

Yamal CALM,
VD1, VD2,
VD3

spatially distributed
fixed point locations

regular time series
(4 h interval)

01.01.2017–
24.08.2017

4

Temperature, 50 cm
depth (borehole)

Yamal VD1, VD2 spatially distributed
fixed point locations

regular time series
(daily interval)

01.01.2017–
24.08.2017

2

Temperature,
4 cm and 8 cm
depths
(borehole)

Chersky Ambolikha fixed point location regular time series
(daily interval)

2017 1

Air temperature
(automatic weather
station)

Chersky Ambolikha fixed point location regular time series
(daily means)

2017 1

lationship between GACOS-corrected results and in situ soil
moisture of Yamal calibration data (normal moisture con-
ditions) is derived and its quality compared to the CCI soil
moisture product. An overview of the conducted evaluations
is provided in Table 3.

4.1 InSAR processing

Our InSAR processing sequence largely follows the work-
flow outlined by Strozzi et al. (2018). This includes the appli-
cation of precise orbit files, co-registration and computation
of interferograms with a multi-looking factor of 5 by 1 pixels.

The interferograms were processed in series in a daisy-chain
network. Longer time steps which would result in temporally
overlapping interferograms were often not possible due to
a decrease in coherence. Temporal baselines were therefore
mostly 12 d, in some cases also 24 or even 36 d, when ac-
quisitions were missing or due to apparent co-registration er-
rors or heavy influence of a turbulent atmosphere, which lead
to the exclusion of isolated acquisitions. Perpendicular base-
lines were on average 46 m, with a maximum value of 152 m.
The next processing steps comprise topographic phase re-
moval, incorporating the Copernicus DEM (European Space
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Table 3. Evaluation and comparison of atmospheric correction and soil moisture indices across various study regions.

Soil moisture indicator assessment Yamal Inuvik Chersky Tazovsky

Subsidence rate αDDT (Sentinel-1) X Xa Xb

Normalized Difference Moisture Index (Landsat) X Xa

Topographic Wetness Index (ArcticDEM) X Xa

CCI soil moisture X

Atmospheric correction assessment

Displacement time series visualization of sample points X X X
In situ subsidence comparison X X
Standard deviations of phase residuals X X X

DDT retrieval discussion

In situ ground temperature X X
In situ air temperature X
Reanalyses air temperature X X

a In situ soil moisture measurements represent drought conditions; b permafrost polygonal features’ spatial distribution.

Figure 3. Overview of the workflow used for the derivation of me-
dian surface displacements in the degree day of thaw (DDT) domain
(αDDT).

Agency, 2021) with 30 m spatial resolution, adaptive phase
filtering (Goldstein and Werner, 1998), phase unwrapping
(Costantini, 1998), and calculation of vertical displacements
via short-baseline InSAR (Berardino et al., 2002) (assum-
ing that all the displacement is vertical) and terrain-corrected
geocoding. The assumption of only vertical displacements
holds true for the investigated in situ site locations where
only low slopes were being observed, and horizontal dis-
placements caused by mass movements, such as solifluc-
tion, can be ruled out. Areas with slopes of > 5° were sub-
sequently masked to ensure the validity of this assumption.

Reference points were selected at or close to airstrips in Inu-
vik (bedrock outcrop 6 km southeast of the airstrip), Chersky
and Bovanenkovo (Yamal region). Areas of low coherence
were masked out (average coherence < 0.8 and average co-
herence of filtered interferograms < 0.5).

Opting for a daisy-chain network reduces atmospheric ef-
fects for the difference between the first and last scenes,
which is an advantage of this processing method. However,
this approach also increases noise in the integration, includ-
ing that related to soil moisture changes. The use of a daisy-
chain network makes it challenging to distinguish between
surface deformations and atmospheric effects. These atmo-
spheric artefacts, along with phase delays possibly arising
from soil moisture changes (which are considered a possible
limitation and will be discussed later), can introduce noise
and inaccuracies into the interferometric phase, leading to
errors in the estimated deformation signals. Therefore, two
different compensation methods for atmospheric effects were
tested. First, a spatial filter of the linear-least-squares type,
as implemented in the GAMMA software, was applied to
the displacement maps. Different filter radii were assessed.
Secondly, GACOS corrections were applied on unwrapped
interferograms. Artefacts were encountered in the GACOS
products for some study regions (Fig. S1 in the Supplement),
stemming from the ASTER DEM for areas north of 60° N
used by the provider (Yu et al., 2018). The data provider of-
fers the possibility to send in an alternative DEM for a re-
quested area. However, in this case we opted for correcting
the GACOS files by masking out the artefacts and filling in
the missing values with the median of a moving window.

4.2 DDT and subsidence relationship

The data gap at the beginning of the thawing season, caused
by low coherence values due to snow cover on the ground,
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was accounted for by extrapolating the time series using lin-
ear regression (Bartsch et al., 2019). This ensured that every
depicted seasonal displacement time series starts with the on-
set of thaw at DDT= 0. The displacement values calculated
for the comparison to in situ data were then offset using the
slope of the regression of the displacement time series. Uti-
lizing the assumed linear relation between DDT and seasonal
surface subsidence, we derived the subsidence rate (displace-
ment per DDT, hereinafter referred to as αDDT) at each pixel
(Eq. 1), reversing the sign in the equation to produce higher
positive values for areas with higher soil moisture.

αDDT =−
n
(∑n

i=1DDTidi
)
−
(∑n

i=1DDTi
)(∑n

i=1di
)

n
(∑n

i=1DDT2
i

)
−
(∑n

i=1DDTi
)2 , (1)

where di represents the total displacement between the
first acquisition and time step i, and n represents the max-
imum number of available dates.

Using αDDT allows for a calculation of displacement in-
dices that are independent of acquisition time. However, it
should be noted that subsidence may precede at a faster rate
at the non-captured beginning of the thawing season com-
pared to the later season (Schaefer et al., 2015). This can
introduce a potential source of error. Therefore, as an alter-
native approach, α√DDT was tested, incorporating a depen-
dency on

√
DDT (Liu et al., 2012; Hu et al., 2018; Liu, 2024).

The DDT was derived from the mean air temperature at 2 m
height of daily averaged ERA5 data with a coarse spatial res-
olution of 0.25°, which might introduce a source of uncer-
tainty compared to the higher resolution of Sentinel-1 data.
We calculated αDDT for each thawing season. In order to de-
rive general displacement patterns, we calculated the median
αDDT values of all processed years. Using the median value
aids mitigating the effect of remaining atmospheric distur-
bances within some of the processed years. The median αDDT
was further used to investigate the relationship of InSAR sur-
face displacement signals and soil moisture conditions.

4.3 Validation

In order to quantify the validity of InSAR measurements
for soil moisture retrieval, the in situ near-surface soil mois-
ture dataset of Yamal was split into calibration and valida-
tion datasets. For validation purposes, the data from Yamal
were exclusively selected due to their acquisition during typ-
ical moisture conditions, in contrast to the data from Inu-
vik, which were acquired during drought conditions. To ad-
dress the high heterogeneity of soil moisture patterns and to
deal with differences in scale and geolocation of in situ com-
pared to InSAR data, the in situ records were grouped into
discrete bins representing 10 % volumetric soil moisture in-
crements (comparable to Bartsch et al., 2020). Median αDDT
values were then computed for each bin within the calibra-
tion dataset to establish a linear relationship and compared

to the results derived using α√DDT from the alternative ap-
proach. The coefficient of determination (R2) was calculated
to quantify the strength of this relationship, while P values
were derived to ascertain its statistical significance. Addi-
tionally, the root mean square error (RMSE) was determined
for the validation dataset to evaluate predictive accuracy. Ad-
ditionally, classification accuracy was assessed for classifica-
tions comprising a total of six or three moisture level classes.
To achieve this, the αDDT values of samples from the valida-
tion dataset were converted into moisture values using the es-
tablished linear relationship. Subsequently, these values were
categorized into distinct moisture levels and compared to the
true moisture classes.

4.4 Processing of auxiliary data

To assess the performance of αDDT as a moisture indicator,
other indices such as NDMI and TWI were also compared.
The NDMI was calculated for the Inuvik and Yamal sites,
where in situ near-surface soil moisture measurements were
available, using bands 5 and 6 of the Level-2 (bottom of at-
mosphere) Landsat 8 data (Eq. 2).

NDMI= (band 5− band 6)/(band 5+ band 6) (2)

The TWI is defined as

TWI= ln(SCA/tanφ), (3)

with SCA being the specific catchment area, and φ being the
slope angle. The ArcticDEM at 2 m spatial resolution was
used for its calculation.

For the discussion of the results in the context of
permafrost-specific landscape features, different land-cover
units were manually digitized based on UAV observations,
high-resolution satellite images, and the online services of
Google and Esri Satellite maps. Areas of high- and low-
centred polygons were differentiated from other tundra (with
and without wetlands) for 25 selected areas, each sized
1 km× 1 km. The average usage of different types of remote
sensing data was 15 % from UAV images, 77 % from high-
resolution satellite images and 8 % from online services. The
average fraction of area covered by low-centred polygons is
3.9 % (ranging from 0.4 % to 11.2 %). High-centred poly-
gons cover a larger average fraction of about 12 % (ranging
from 4.4 % to 29.0 %).

5 Results

5.1 Atmospheric correction

5.1.1 Spatial filter radius for InSAR processing

In order to specify the filter radius, some initial tests were
performed and visually evaluated. Figure S2 in the Supple-
ment depicts results of a displacement map with no applied
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filter, a spatial filter of radius ∼ 60 km and of radius 6 km.
While atmospheric effects are still clearly noticeable for the
60 km radius, they were mostly removed for the 6 km radius.
Although it cannot be excluded that large-scale deformation
signals have also been removed, a radius of about 6 km (512
pixels) was chosen for further investigations.

5.1.2 Displacement time series – Chersky, Yamal and
Inuvik

To investigate temporal InSAR subsidence results, we exam-
ined the displacement time series for selected sample points.

The points for Chersky were selected within an eastern and
western part of the Sentinel-1 scene. They are located in ar-
eas of similar land cover within wet ecotopes, where summer
subsidence can be expected (locations are shown in Fig. 2).
They represent different patterns of tropospheric delay (e.g.
Fig. S1 in the Supplement). While the differences at point A
are not as pronounced for unfiltered and GACOS-corrected
results, point B shows clear improvements with GACOS cor-
rection (Fig. A2). The implausible heave signal observed dur-
ing the thawing seasons of the years 2017 and 2018 in the
unfiltered results was mostly corrected when the GACOS
correction was applied. However, as illustrated in Fig. A1,
this heave signal was not corrected everywhere. This might
be attributed to unfiltered atmospheric effects, or, as similar
patterns were observed in two different years, displacements
at the reference point cannot be ruled out. Unfiltered and
GACOS-corrected results exhibit distinct temporal fluctua-
tions, whereas spatially filtered results are clearly smoothed.
However, this smoothing also results in a reduction of overall
magnitude of displacement values.

For the Yamal region, the displacement time series is
investigated for a long-term in situ subsidence point on
the CALM grid (Fig. A3). While unfiltered and GACOS-
corrected time series are very similar, spatially filtered data
exhibit the same smoothing and reduction in subsidence
magnitude as in the Chersky example. The depicted sam-
ple point, which exhibits an average subsidence of 3 cm,
falls within the mean range of other points measured on the
CALM grid, with a mean subsidence of 4.7 cm± 2 cm (stan-
dard deviation). The agreement with in situ subsidence val-
ues may vary with sample location, which is further investi-
gated in the next section.

In situ subsidence values for the Inuvik region were avail-
able for different years than InSAR data but were nonetheless
used to compare general magnitudes (Fig. A4). In situ values
were extrapolated similarly to InSAR data to account for the
data gap between the first measurement and the start of the
thawing season. The in situ subsidence rates of 2015 matched
well with InSAR data in terms of magnitudes. Higher rates,
such as those observed in 2016, were also recorded with In-
SAR for the year 2023, particularly for point TVC1. How-
ever, for the spatially filtered results, the magnitude for 2023
at TVC1 was reduced. GACOS was able to correct for some

of the fluctuations in the unfiltered results; however, in the
case of 2019, it introduced additional artefacts. Comparison
of GACOS results in the

√
DDT domain (Fig. S3 in the Sup-

plement) shows that the in situ data align more closely with
the results in the DDT domain.

5.1.3 In situ subsidence comparison – Yamal

The results of the InSAR time series were evaluated with
in situ subsidence measurements at the CALM grid (Fig. 2)
in Yamal (Bartsch et al., 2019). Results for the years 2016,
2017, 2018 and 2021 were compared (Fig. 4). For the year
2019, there were mostly no Sentinel-1 data available for this
region, and in 2020 missing acquisitions resulted in low co-
herence values preventing the generation of reliable results.
The number of available in situ points was extended over
the years, and some points exhibit data gaps; however, for
the 2D boxplots of in situ and InSAR values, all available
data points were included, along with an indication of the
number of available samples (Fig. 4). While unfiltered and
GACOS-corrected plots show similar results, the spatially fil-
tered results deviate and feature lower values, even heave, es-
pecially for the year 2016. All methods (unfiltered, GACOS-
corrected, spatial filtering) exhibit lower annual mean InSAR
subsidence signal values across all points with the longest
available in situ time series compared to in situ measured
values (Fig. 4 bottom right). The lowest match to in situ val-
ues was derived for the spatially filtered results. The range of
InSAR values is roughly similar for unfiltered and GACOS-
corrected results for these points; however, while unfiltered
values seem to disperse, GACOS-corrected values are less
scattered.

5.1.4 Standard deviation of phase residuals for all
regions

Focusing on the GACOS-corrected results, the standard devi-
ations of the phase residuals are further investigated in com-
parison to unfiltered results (Fig. 5). The phase residuals are
derived through a comparison between simulated interfero-
grams of a smoothed time series and the actual interfero-
grams. Due to the absence of redundancy within the inter-
ferograms, the resulting values primarily reflect the effects
of the time series smoothing. The statistics for the whole
processed scenes for each thawing season were investigated,
with terrain slopes of > 5° being masked out in order to ex-
clude αDDT values which may encounter erroneous results
for vertical subsidence due to additional horizontal displace-
ment resulting from mass movements, such as solifluction.
The values improve for the GACOS-corrected results (see
Fig. 5 and also Fig. A7, depicting differences between unfil-
tered and GACOS-corrected results), especially for the Cher-
sky and Inuvik regions. However, for the Yamal region most
years showed better values before the GACOS correction.
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Figure 4. The 2D boxplots (depicting median values – filled circles; quartiles – boxes; minima and maxima – whiskers; and outliers – empty
circles) for in situ subsidence measured at the CALM grid in Yamal vs. InSAR subsidence for all available points per year (note the available
number of samples varying per year, indicated in the box on the right-hand side). Lower right: scatterplot of mean subsidence values for six
long-term sample points (measured in 3–4 years) for each method and all available years (each point representing 1 year).

5.2 Soil moisture

5.2.1 Soil moisture comparison – Yamal and Inuvik

Comparing the displacement rates to soil moisture measure-
ments (Fig. 6a) showed higher αDDT rates and therefore
greater subsidence signal values for points with higher soil
moisture for the Yamal study site. As the soil moisture mea-
surements at the Inuvik site were conducted under drought
conditions, the soil moisture values tend to be lower. The
relationship identified for the Yamal site was confirmed for
moisture values below 50 % vol. However, values for higher
soil moisture deviated from this trend.

Similarly, the TWI and NDMI were compared to in situ
near-surface soil moisture values. Higher TWI values were
associated with higher soil moisture levels in the Yamal re-
gion (Fig. 6b). However, the comparison for the Inuvik re-
gion did not yield consistently increasing TWI values with
rising soil moisture, with deviations found for moisture bins
below 30 % vol. The NDMI values exhibited only low spread,
and their comparison with near-surface soil moisture data
revealed no discernible stringent relationship. While NDMI
values tend to be lower for low soil moisture levels in Yamal,
the opposite was observed for the Inuvik region.

5.2.2 Accuracy assessment – Yamal

In order to derive a measure of quality for the applicability of
αDDT values as a soil moisture proxy, a linear relationship for
the Yamal calibration dataset was derived (Fig. 7a). For this,
the median αDDT values of six soil moisture bins were cal-
culated. The number of sample points per soil moisture bin
ranges from 4 (soil moisture range < 70 % vol) to 16 (soil
moisture range 40 %–50 % vol). The standard deviations of
αDDT for each bin are below 0.0097 [mm per DDT] (Table 4).
The obtained linear regression has a coefficient of determina-
tion of R2

= 0.72 for the αDDT values (Fig. 7a) compared to
0.68 of the α√DDT values (Fig. 7b). While the intercept of
the linear regression for αDDT values is statistically insignif-
icant with a P value of 0.91, the slope of the regression has
a P value of 0.03, indicating statistical significance. Values
of > 60 % vol reveal greater deviations from what appears to
be a nearly perfect correlation of values of < 60 % vol, with
P values of 0.0036 and 0.0008 for intercept and slope, re-
spectively.

Although the linear regression excluding values > 60 %
appears to show a better fit, it does not follow physical intu-
ition, as its intercept is −37.6 % vol and therefore not appli-
cable for αDDT values closer to 0. The derived equation for
all six moisture bins (equation given in Fig. 7a) was subse-
quently used to predict soil moisture values of the validation
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Figure 5. Boxplots of standard deviations of the phase residuals
for the whole processed scenes (terrain slopes of >5° were masked
out) for unfiltered and GACOS-corrected results for (a) Chersky,
(b) Inuvik and (c) Yamal. The number of used Sentinel-1 scenes is
specified on top of the plots.

dataset (Fig. 8). A RMSE of 14 % vol was delineated for the
validation data.

For the purpose of using αDDT as an approximation for
soil moisture conditions, we also calculated the accuracy
of a possible classification of predicted soil moisture values
within the soil moisture bins (indicated in Fig. 7). For these
six classes, an accuracy of 25 % is achieved. A reduction of
classes into three bins of< 40%, 40 %–60 % and> 60 % vol

Figure 6. Distribution of (a) GACOS-corrected αDDT values,
(b) TWI values and (c) NDMI values for near-surface soil moisture
bins of Yamal and Inuvik (at minimum six samples per bin).

would result in an accuracy of 53 % (maps of categorized soil
moisture are presented in Fig. 9).

To compare this accuracy assessment to other remotely
sensed soil moisture products, we investigated values of
ESA’s CCI soil moisture product (Gruber et al., 2019; Dorigo
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Figure 7. Relationship of averaged (10 % vol bins) in situ near-surface soil moisture of the Yamal calibration dataset with (a) median αDDT
values and (b) median α√DDT values for each bin. (αDDT and α√DDT values represent median values of all years.) Error bars indicate

standard deviation per bin. The dashed line depicts the linear regression of all depicted points (equation and R2 indicated on top left). The
dotted line shows the relationship of the moisture values of < 60 % vol.

Table 4. Count and standard deviation of near-surface soil moisture
sample points (Yamal) for each bin value used in Fig. 7a.

Soil moisture No. of Standard deviation of
bin [% vol] sample points αDDT [mm per DDT]

<30 8 0.0093
30–40 13 0.0071
40–50 16 0.0097
50–60 13 0.0065
60–70 10 0.0069
>70 4 0.0026

Figure 8. Scatterplot of in situ soil moisture values and calculated
soil moisture values for the validation dataset of Yamal (used soil-
moisture – αDDT relationship; see Fig. 7a). The 1 : 1 line is depicted
as a dotted grey line.

et al., 2017; Preimesberger et al., 2021). Due to the coarser
resolution of 0.25°, our in situ data are covered by only two
pixels. The mean soil moisture values for the investigation
period are only 19 %–22 % vol for the passive microwave

product and 18 % vol for the combined solution (passive
and active microwave; see Fig. 10). These products have an
RMSE of 30 % vol and 33 % vol for passive and combined
solutions, respectively,

6 Discussion

6.1 Soil moisture

Our InSAR-derived soil moisture approach delivers static
values intended to serve as a proxy for general soil moisture
conditions. While yearly products are feasible, median val-
ues are recommended to account for irregular values caused
by uncorrected sources of error.

It is important to note that the relationship between αDDT
and soil moisture was derived using in situ measurements of
near-surface soil moisture. However, since thaw subsidence
observed via InSAR reflects an integrated response from the
entire thawed soil column (Liu et al., 2012; Chen et al.,
2023), αDDT likely represents a weighted average of soil
moisture across the active layer. Given the pronounced verti-
cal variations in soil moisture and ice content in Arctic low-
lands, using in situ near-surface soil moisture data may intro-
duce potential uncertainty when interpreting InSAR-derived
soil moisture as representative of the entire active layer.

Our investigations showed higher subsidence values for
points of higher in situ near-surface soil moisture compared
to dryer ones (Fig. 6a). This effect could be demonstrated
for both study sites (Yamal and Inuvik). The relationship
was more pronounced at the Yamal site, where in situ data
measurements were conducted under normal moisture con-
ditions. This observed relationship aligns with findings from
Antonova et al. (2018), who identified more prominent sub-
sidence in wetter parts of thermokarst basins. They attributed
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Figure 9. Maps of categorized soil moisture derived from InSAR-based αDDT for (a) Chersky, (b) Inuvik and (c) Yamal. All regions are
masked for slopes >5°. The Chersky region has additionally been masked for areas higher than 150 m due to temperature lower than 2 °C or
more (according to ERA5) than in lower regions during the Sentinel-1 acquisition time. The “n.a.” values represent those that fall outside the
valid range. Panels (b) and (c) show subsets of the processed regions, depicting the area where in situ data are available.

this to higher ground ice contents of these parts and higher
ground heat flux found in wet parts due to their higher ther-
mal conductivity.

Other wetness indices were compared with in situ near-
surface soil moisture data, similar to previous αDDT inves-
tigations. This analysis aimed to evaluate the performance
of αDDT relative to the other indices, specifically to deter-
mine whether these indices also demonstrated strong correla-
tions with the in situ measurements. The NDMI derived from
multispectral data (Gao, 1996) exhibited varying correlations
with soil moisture values across the investigated study sites
at in situ sampling point locations (Fig. 6c). The TWI (Beven
and Kirkby, 1979), a static wetness index derived from topo-
graphic information and often used as a proxy for soil mois-
ture, exhibited similar performance to the InSAR results at
the Yamal site (Fig. 6b). However, at the Inuvik site, the anal-
ysis did not indicate the suitability of TWI as a measure for
soil moisture. These findings suggest a better suitability of
αDDT for deriving soil moisture conditions.

To quantify the performance of the investigated method,
results were evaluated for their correlation with in situ soil
moisture measurements. An empirical function for a cali-
bration dataset was derived and assessed for its accuracy
using a validation dataset. The in situ dataset from Yamal
was chosen as it was collected under typical moisture condi-
tions rather than drought conditions. Binned and averaged
in situ soil moisture and αDDT data yielded a comparably
high coefficient of determination of 0.72 (Fig. 7a), slightly
higher than the alternative approach based on

√
DDT values

(Fig. 7b). It was noted that excluding higher soil moisture
levels of> 60 % vol would result in nearly perfect correlation
for αDDT values. However, to account for all relevant mois-
ture levels, the function derived from all moisture values was
further used. This function also appears to be more plausi-
ble, as its intercept is 1.9, which would mean no deformation
for basically dry soils. However, it should be noted that the
coefficient of determination for un-averaged calibration data
would be only 0.15. Binning was conducted (comparable to
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Figure 10. Boxplot of in situ measured near-surface soil moisture
values compared to values of the CCI soil moisture products (pas-
sive and combined product; Gruber et al., 2019; Dorigo et al., 2017;
Preimesberger et al., 2021) and soil moisture values calculated with
the InSAR approach for Yamal. Black x’s represent mean values,
and circles indicate outliers.

Bartsch et al., 2020) to account for differences in the in situ
data’s representativeness (point measurements versus spatial
resolution of InSAR data). A comparison of in situ observed
moisture levels to predicted ones for the validation dataset re-
vealed no larger discrepancies for higher soil moisture values
(Fig. 8). A RMSE of 14 % vol could be achieved.

Results were further compared to the CCI soil moisture
product. A direct comparison between the CCI soil moisture
dataset and the InSAR data is challenging due to the signif-
icant difference in their spatial resolutions. The CCI dataset
has a much coarser resolution, with each pixel covering an
area approximately 106 times larger than that covered by
each pixel in the InSAR dataset. Consequently, any differ-
ences observed between the two datasets when comparing
them to in situ data may be partly attributed to this resolu-
tion discrepancy. The CCI soil moisture comparison showed
RMSE values that are twice the value of the InSAR approach.
The moisture values of the CCI products are much lower than
was measured in the field (Fig. 10), with just 1 % of field data
being lower than what was indicated by the CCI soil moisture
products (passive and passive–active combined). The active
product of CCI soil moisture was not used, as it provides only
saturation values. However, comparisons of in situ values and
the active product derived from ASCAT were previously per-
formed by Högström et al. (2018) for five Arctic regions. The
in situ data were scaled to the satellite product to enable com-
parison. ASCAT has been shown to be drier than in situ data
in most cases, which agrees with our result.

We further assessed the accuracy of a potential soil mois-
ture classification product based on αDDT values. A classi-
fication with six moisture classes would yield a 25 % accu-
racy. Therefore, it is suggested to only use three moisture
categories, for which the accuracy would improve to 53 %.
It should be noted that assessed soil moisture values used

for the derivation of the linear relationship were within the
range of 20 %–80 % vol. However, it can be assumed that a
proposed classification of three moisture categories is con-
servative enough to also account for moisture values outside
of the tested range.

6.2 DDT normalization

As shown in Fig. A2, the time series of GACOS-corrected
results still show interfering fluctuations. However, this issue
may be addressed by simply utilizing the slope of the time se-
ries (αDDT). What is further visible (Fig. A2) is the data gap
at the beginning of the time series, which may differ in length
for different years or study regions. Nevertheless, this should
be of lesser concern if a linear trend is to be assumed over
DDT, which, based on our findings, appears to be mostly the
case in our study regions. It is important to note, however,
that active layer thaw is presumed to be greater in early sum-
mer and decreasing in August and September (Short et al.,
2014). Although this is not consistently reflected in our DDT
plots (Fig. A2), it cannot be completely ruled out.

The uncertainties for ERA5 data in the Arctic, which were
used to derive DDT, represent another potential source of
error. A comparison of ERA5 values with those from an
ERA5-independent automatic weather station near Chersky
revealed slightly lower measured values at the weather sta-
tion than ERA5 values (see also Fig. 13). The seasonal max-
ima of DDT for the years 2016–2022 (missing data for 2018)
differed by about 100–150 °C, which corresponds to approx-
imately 7 %–10 % of the maximal ERA5 DDT values and
would result in slightly different αDDT values. DDTs of the
automatic weather station yielded αDDT values 17 % lower
than those of ERA5 (Fig. 13).

It also needs to be considered that ERA5 air temperatures
at 2 m height may deviate from topsoil temperatures, result-
ing in variations in αDDT values. In order to investigate these
variations, we compared ERA5 results to ground tempera-
tures at four points in Yamal, measured between October
2016 and August 2017 near the surface using iButton de-
vices (Fig. 2). While the point at the CALM grid showed
good agreement with ERA5 values in the positive tempera-
ture range, the other points demonstrated lower in situ tem-
peratures than ERA5 temperatures (Fig. 11). Although the
in situ time series ended on 24 August and maximum DDT
values were not yet reached (80 % of maximal ERA5 DDT
value), we compared maxima of ERA5 and in situ DDT val-
ues for this date (aggregated from values shown in Fig. 11).
Only the in situ values of the CALM grid had higher DDT
values than ERA5 (147.2 °C higher, 21 % of ERA5). The
other points showed higher differences, ranging from 340 to
404 °C, which is 48 % to 55 % of the maximal ERA5 value
on 24 August. These differences can be explained by insulat-
ing vegetation cover, as ERA5 represents air temperature at
2 m compared to near-surface soil temperature. Furthermore,
quality issues and the coarse resolution of ERA5 data may
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Figure 11. Comparison of in situ iButton near-surface soil tempera-
tures (Table 2) and 2 m height air temperatures derived from ERA5
for four different points in Yamal. For in situ point locations, see
Fig. 2. R2 values are given as follows: 0.85 for CALM, 0.79 for
VD1, 0.80 for VD2 and 0.71 for VD3.

play a role. The αDDT values differ significantly from ERA5-
derived αDDT values in the range of −0.087 to 0.007 [mm
per DDT] (Fig. 12).
αDDT derived with DDT values of even deeper soil lay-

ers would naturally deviate even more from those derived
with ERA5 data (Figs. 12 and 13). The resulting displace-
ment rates (αDDT) are shown to be larger for deeper soil lay-
ers, as derived from borehole data of 50 cm depth (Yamal)
and 4 and 8 cm depths (Chersky).

6.3 Atmospheric corrections

In order to achieve reliable InSAR results for soil mois-
ture comparisons, the issue of atmospheric disturbances had
to be addressed. Investigations of displacement time series
(Figs. A2, A3 and A4) revealed that the applied spatial fil-
ter not only reduces spatial variations but also flattens tem-
poral fluctuations. While a reduction in temporal variations
seems to be more reasonable than the often high variability of
unfiltered or GACOS-corrected results, the spatially filtered
results mostly lacked any large-scale spatial deformations,
which may not always represent actual conditions. In this re-
gard, a filter size of 6 km is too small; however, larger filter
sizes would not account for small-scale effects of the turbu-
lent atmosphere. Comparisons with in situ subsidence values
(Fig. 4) further illustrated that spatially filtered results were
greatly reduced in magnitude. This not only led to lower sub-
sidence values but also resulted in measured heave signals,
which deviate from in situ measured results. While additional
temporal filtering is recognized as an important aspect of In-
SAR time series analysis, it was not tested in this study, as
αDDT, representing the linear regression rate, is unlikely to
be significantly influenced by further temporal filtering.

GACOS-corrected products, on the other hand, showed
promising results. After correcting GACOS data for encoun-
tered artefacts (see Fig. S1 in the Supplement), the derived
results were able to compensate for some improbable sum-
mer heave signals visible in the Chersky time series of un-
filtered results (Fig. A2). However, some atmospheric ef-
fects remained (Fig. A1), which may lead to the encoun-
tered fluctuations within the time series. It should also be
noted that GACOS can sometimes introduce new artefacts
(see also year 2019 of Fig. A4) and may not necessarily guar-
antee an improvement of results due to scarcity of GPS sta-
tions and the coarse weather model resolution. However, the
comparison of standard deviations of phase residuals showed
improvements compared to unfiltered results, especially for
the Chersky and the Inuvik region. As the differences of the
median values (unfiltered minus GACOS, Fig. A7) seem to
show a dependency on study area, this may indicate varying
effectiveness of GACOS corrections depending on region.
The differing results for the Yamal region, however, also in-
dicate that, although in this area the GACOS corrections may
not always lead to an improvement (see also Fig. A3), some
years may still benefit from this correction. One reason for
the performance differences observed in various regions may
be the coarse temporal resolution of the weather model used
in GACOS for the turbulent component. Although correc-
tions are provided for the specific times of satellite acquisi-
tions, the interpolated solution may align more closely with
the 6 h intervals of the weather model in some areas than in
others. Moreover, the limited availability of GPS stations in
certain regions may also contribute to these variations.

Even though the standard deviation values of the phase
residual were mostly slightly higher for GACOS-corrected
results than for unfiltered ones in the Yamal region, the com-
parison to in situ subsidence data showed the closest match
for GACOS within this area.

The overall lower InSAR subsidence compared to in situ
values (Fig. 4) has also been reported in other studies in
Arctic regions (Short et al., 2014; Antonova et al., 2018)
and may have multiple causes. First, in situ measurements
are point measurements, and medium-scale InSAR measure-
ments may therefore underestimate true displacements due
to spatial averaging (Short and Fraser, 2023). Furthermore, it
cannot be excluded that the selected reference point (airstrip
at Bovanenkovo) also experiences some degree of surface de-
formation. The assumption of a linear relationship between
DDT and thaw subsidence may also play a role. Potential
faster subsidence rates during the unmonitored beginning of
the thawing season may lead to an underestimation of subsi-
dence values. In addition, soil moisture variations may have
an effect on measured InSAR results. Soil drying, which
leads to a line-of-sight shortening, results in an uplift sig-
nal (Zwieback et al., 2015), potentially contributing to lower
subsidence values compared to in situ measurements. The
effect is estimated to be 10 %–20 % of the radar wavelength
(Zwieback et al., 2017). Further effects were reported due to
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Figure 12. InSAR displacements of the thawing season 2017 by degree day of thaw (DDT) for four sample points in Yamal. DDT was
derived from ERA5 air temperature at 2 m height, in situ near-surface iButton data and borehole temperatures at 50 cm depth (time series
shortened due to in situ data availability; see Table 2). Interpolations (linear regression) are plotted as dotted lines. For in situ point locations,
see Fig. 2.

Figure 13. InSAR displacements of the thawing season 2017 by de-
gree day of thaw (DDT) for a sample point of the Chersky region.
DDT was derived from ERA5 air temperature at 2 m height, auto-
matic weather station (AWS) data, and borehole temperatures at 4
and 8 cm depths. For in situ point location, see Fig. 2.

vegetation growth and the inherent decrease in plant moisture
(Zwieback and Hajnsek, 2016), which may also cause addi-
tional uplift signals. An investigation of soil moisture change
at Trail Valley Creek (data source of soil moisture time se-

ries: Boike et al., 2023) for consecutive Sentinel-1 acquisi-
tions, compared with changes in InSAR displacement signals
(see Fig. 14), revealed no significant relationship, leading to
the assumption that this source of error is of subordinate im-
portance in this case. Furthermore, it should be noted that
validating InSAR displacement values was not the primary
objective of this study. An underestimation of subsidence
values is less relevant if it occurs consistently, as the linear
relationship between displacement and moisture values was
derived from these biased data.

6.4 Limitations for InSAR processing

The demonstrated relationship between soil moisture and
InSAR subsidence signals exemplifies the potential of In-
SAR data to derive maps of soil moisture classes needed
for upscaling carbon fluxes and climate modelling. How-
ever, some inhibiting factors have to be addressed. As illus-
trated, GACOS corrections are an adequate and easily imple-
mentable solution to reduce atmospheric effects. Some rem-
nants may persist, especially effects of the turbulent atmo-
sphere (Li et al., 2022). Furthermore, ionospheric effects are
not accounted for with this correction. It is therefore essential
to carefully select interferograms and use thawing seasons of
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Figure 14. Comparison of InSAR displacement signals from con-
secutive Sentinel-1 acquisition dates and corresponding soil mois-
ture change (derived from Boike et al., 2023), measured at Trail
Valley Creek in the Inuvik study area.

years with minimal interfering effects in the derivation of soil
moisture class maps.

Additionally, the selection of an adequate reference point
is crucial and can prove to be difficult. Moreover, errors may
increase with distance from the reference point (Short, 2017;
Antonova et al., 2018), which has to be taken into account
when processing whole Sentinel-1 scenes.

Another potential source of uncertainty is the impact of
time-varying soil moisture on interferometric phase. A link
between subsidence change and soil moisture change could
not be observed at the study site of Trail Valley Creek
(Fig. 14). The variation in soil moisture between consecutive
acquisition dates is mostly below 10 % vol, which is much
lower compared to other studies (Wig et al., 2023). There-
fore, the influence of soil moisture change appears subordi-
nate compared to other disturbances (including atmosphere).
However, this phase term remains coupled with the ground
motion information and thus persists as a potential source of
error in the results.

6.5 Permafrost features characterization

Delineated soil wetness should also be reflected in cer-
tain land-cover features related to polygonal tundra. Slightly
higher αDDT and subsidence can indeed be observed for areas
with polygonal features compared to other non-wetland tun-
dra (Figs. A5 and A6). However, no visible differentiation is
detectable between high-centred and low-centred polygons.
The derived αDDT values for the subsidence of the polygo-
nal features are similar to those of wetlands without visible
polygonal features. Both areas with low- and high-centred
polygons are expected to be characterized by strong micro-
topography, resulting in a mix of wet and dry parts, which
leads to medium αDDT values (not as low as for in situ points
with very high soil moisture contents; see Fig. 6a).

7 Conclusions

A representation of soil moisture classes is in high demand
for applications in Arctic permafrost regions. In this study,
we proposed a novel approach for deriving a soil moisture in-
dex based on InSAR subsidence signal rates. We illustrated
the relationship between Sentinel-1 InSAR subsidence sig-
nal per DDT and surface soil moisture, with lower rates at-
tributed to surface subsidence signals for drier regions and
seasons, demonstrating its potential as a proxy for soil mois-
ture classes. Compared to conventional coarser-scale datasets
such as ESA’s CCI soil moisture product, which underes-
timated in situ values with an RMSE of around 30 % vol,
our proposed method achieved an RMSE of 14 % vol. Al-
though this approach provides only static information and
does not account for seasonal fluctuations in soil moisture,
it is assumed to be a valid indicator for general or predom-
inant moisture conditions for permafrost regions. It is rec-
ommended to distinguish only three soil moisture categories.
Its application for upscaling carbon fluxes and climate mod-
elling remains to be tested.

Spatial patterns of wet and dry areas can be derived, but
not all features typical for permafrost can be resolved. It is
also pointed out that the ERA5 air temperature at 2 m height
used for the calculation of DDTs may result in different sub-
sidence rates (αDDT) compared to using topsoil temperatures.

Phase delays arising from soil moisture changes represent
a limitation that should be considered in future studies, with
potential benefits from leveraging insights gained from on-
going research.

Limiting factors for the utilization of InSAR also include
atmospheric effects. Atmospheric correction is therefore es-
sential for InSAR applications to derive reliable results, es-
pecially in cases where coherence loss prevents the use of
interferograms overlapping in time. We tested two easy-to-
apply filtering methods for implementation in Arctic regions.
Our study showed that while spatial filtering corrects for spa-
tial and temporal variabilities, the suppression of larger-scale
displacement signals leads to a reduction of subsidence sig-
nal values, resulting in a poorer match with in situ values.
GACOS-corrected results showed a reduction of atmospheric
effects within the investigated time series, as well as an im-
provement in standard deviation values of phase residuals,
and often the best match with in situ subsidence values. How-
ever, it should be noted that smaller-scale tropospheric vari-
ations (<75 km) may not be corrected (Murray et al., 2019).
While long-wavelength components may be accounted for,
the turbulent atmosphere phase mostly cannot be removed
(Li et al., 2022). Nevertheless, our investigations showed that
GACOS-corrected results are more suitable than spatial fil-
tering and better suited for the derivation of soil moisture
classes.

In upcoming years, InSAR processing of Sentinel-1 data
are anticipated to benefit from the release of the extended
timing annotation dataset (ETAD), which includes correction
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layers for tropospheric delay and ionospheric delay, among
others (Gisinger et al., 2022). Similar to GACOS, the tro-
pospheric delay is based on weather model data. However,
data provision is currently only planned for newly acquired
scenes, which prohibits its application for past years.

L-band missions, which have the potential to better pre-
serve coherence, would reduce the importance of the inves-
tigated correction methods. Comprehensive L-band datasets
are, however, mostly acquired on demand, and available data
acquisition dates rarely meet requirements for the proposed
investigation method. Nevertheless, with the launch of the
upcoming NISAR (NASA-ISRO Synthetic Aperture Radar)
mission, improved data coverage is anticipated in the near
future.

https://doi.org/10.5194/tc-19-1103-2025 The Cryosphere, 19, 1103–1133, 2025



1124 B. Widhalm et al.: Subsidence rates reflect spatial soil moisture patterns in permafrost

Appendix A

Figure A1. Comparison of unfiltered, GACOS-corrected and spatial filter InSAR results for the Chersky study region for 23 June 2017–
3 September 2017.

Figure A2. Sample point displacements by degree day of thaw (DDT) for Chersky, accounting for the early thaw data gap in InSAR time
series by extrapolation (approach following Bartsch et al., 2019; dotted lines correspond to the linearly extrapolated part of the time series).
For point locations, see Fig. 2.
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Figure A3. Displacements by degree day of thaw (DDT) of a sample point location with in situ subsidence measurements on the CALM grid
in Yamal. The early thaw data gap in the InSAR time series was accounted for by extrapolation (approach following Bartsch et al., 2019;
dotted lines correspond to the linearly extrapolated part of the time series). For CALM grid locations, see Fig. 2.
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Figure A4. Displacements by degree day of thaw (DDT) of two sample points with in situ subsidence measurements for the years 2015 and
2016 near the Trail Valley Creek (TVC) research station (Inuvik region). The early thaw data gap in the InSAR time series was accounted
for by extrapolation (approach following Bartsch et al., 2019; dotted lines correspond to the linearly extrapolated part of the time series). For
TVC location, see Fig. 2.
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Figure A5. Subset of digitized land-cover features: left with WorldView-3 image as background map and right with αDDT.

Figure A6. αDDT values for different land-cover features at the Tazovsky study region.

Figure A7. Difference in the median values depicted in Fig. 5 of unfiltered minus GACOS-corrected values for each year, differentiated by
study site.
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