Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Advanced LIGO detector performance in the fourth observing run

MPG-Autoren
/persons/resource/persons206562

Bode,  N.
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons231141

Meylahn,  F.
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons40511

Willke,  B.
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

2411.14607.pdf
(Preprint), 4MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Capote, E., Jia, W., Aritomi, N., Nakano, M., Xu, V., Abbott, R., et al. (2025). Advanced LIGO detector performance in the fourth observing run. Physical Review D, 111: 062002. doi:10.1103/PhysRevD.111.062002.


Zitierlink: https://hdl.handle.net/21.11116/0000-0010-F220-8
Zusammenfassung
On May 24th, 2023, the Advanced Laser Interferometer Gravitational-Wave
Observatory (LIGO), joined by the Advanced Virgo and KAGRA detectors, began the
fourth observing run for a two-year-long dedicated search for gravitational
waves. The LIGO Hanford and Livingston detectors have achieved an unprecedented
sensitivity to gravitational waves, with an angle-averaged median range to
binary neutron star mergers of 152 Mpc and 160 Mpc, and duty cycles of 65.0%
and 71.2%, respectively, with a coincident duty cycle of 52.6%. The maximum
range achieved by the LIGO Hanford detector is 165 Mpc and the LIGO Livingston
detector 177 Mpc, both achieved during the second part of the fourth observing
run. For the fourth run, the quantum-limited sensitivity of the detectors was
increased significantly due to the higher intracavity power from laser system
upgrades and replacement of core optics, and from the addition of a 300 m
filter cavity to provide the squeezed light with a frequency-dependent
squeezing angle, part of the A+ upgrade program. Altogether, the A+ upgrades
led to reduced detector-wide losses for the squeezed vacuum states of light
which, alongside the filter cavity, enabled broadband quantum noise reduction
of up to 5.2 dB at the Hanford observatory and 6.1 dB at the Livingston
observatory. Improvements to sensors and actuators as well as significant
controls commissioning increased low frequency sensitivity. This paper details
these instrumental upgrades, analyzes the noise sources that limit detector
sensitivity, and describes the commissioning challenges of the fourth observing
run.