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1. Introduction, main result, and open problem

The perhaps most interesting subset of all local composite quantum operators of planar
N = 4 supersymmetric gauge theory is formed by the sector of sl(2) twist operators. The
reason is that these bear many similarities with the twist operators of QCD. They may
be symbolically written as

Tr(DMZL) + · · · , (1.1)

which is a shorthand notation for intricate linear superpositions of all states where the M
covariant derivatives D act in all possible ways on the L complex scalar fields Z. Here L is
an su(4)R-charge, frequently denoted as J in the literature, and M is a Lorentz spin, often
called S. Our labeling refers to the magnetic spin chain picture of these operators, where
L is the length of the chain, and M is the ‘magnon number’. The twist of an operator is
defined as the classical dimension minus its Lorentz spin, so the length L equals the twist
in the case of (1.1).

N = 4 gauge theory is a superconformal field theory. Therefore proper superpositions
of the operators (1.1) must carry a definite charge Δ under dilatations. It generically
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is, in contradistinction to the R-charge L and the Lorentz charge M , coupling constant
dependent: Δ = Δ(g). Its anomalous part γ(g) is defined as4

Δ(g) = M + L + γ(g), (1.2)

where M + L is the classical dimension of the operators (1.1). In the case of the
operators (1.1) γ(g) behaves in a very interesting way as the spin M gets large at fixed
twist L. It grows logarithmically with M at all orders of the coupling constant g defined
as

g2 =
g2

YM
N

8π2
=

λ

16π2
, (1.3)

where λ is the ’t Hooft coupling. The prefactor of the logarithm is a function of g. We
call it the universal scaling function f(g):

Δ − M − L = γ(g) = f(g) logM + · · · . (1.4)

This behavior is a special case of so-called Sudakov scaling; see [1]. In the twist L = 2
case it equals twice the cusp anomalous dimension of light-like Wilson loops [2]. The
independence or ‘universality’ of the function f(g) as regards the twist L, with L arbitrary
but finite, or even L → ∞ as long as L � log M , was first pointed out at one-loop order
in [3], and conjectured to hold at arbitrary loop order in [6]. It would be very interesting
to rigorously prove that the twist-2 (L = 2, M → ∞), twist-L (L fixed, M → ∞), and
universal (L, M → ∞, L � log M) scaling functions f(g) of the operators (1.1) indeed
all coincide for arbitrary values of g: f(g) = f (2)(g) = f (3)(g) = · · · = f (L)(g) = · · · =
f (∞)(g).

On the basis of the conjectured all-loop integrability of planar N = 4 theory [4],
the weak coupling expansion of f(g) is known from the solution of an integral equation
obtained from the asymptotic Bethe ansatz for these operators [5]–[7]. It agrees to four
orders5 with field theory [8]:

f(g) = 8g2 − 8
3
π2g4 + 88

45
π4g6 − 16

(
73
630

π6 + 4ζ(3)2
)
g8 ± · · · . (1.5)

Testing the Bethe ansatz to five orders in field theory might not be out of reach [9].
The strong coupling expansion may also be obtained from the same integral

equation [7] which generates the small g expansion (1.5). After the initial studies [10, 11],
an impressive analytical expansion method to any desired order was worked out in [12].
The starting point of this systematic approach was an important decoupling method
discovered by Eden [13]; see also [10]. The series starts as

f(g) = 4g − 3 log 2

π
− K

4π2

1

g
− · · · , (1.6)

where K = β(2) is Catalan’s constant. The first two terms on the rhs agree, respectively,
with the classical and one-loop [14, 15] results from semi-classical string theory, and the

4 The anomalous dimension γ(g) is related to the energy E(g) of the integrable long range spin chain describing
the operators (1.1) through γ(g) = 2 g2 E(g). It should not be confused with the energy of string states which
equals Δ(g) via the AdS/CFT correspondence.
5 To be precise, the four-loop field theory result of [8] agrees numerically with the analytic Bethe ansatz prediction
in (1.5) to 0.001%. An analytic proof would be most welcome.
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third term is the two-loop correction very recently obtained in [17, 18]. It would be very
interesting to also check the three-loop term in string theory6.

So it appears that f(g) is the first example of an exactly known, via the solution
of a linear integral equation [7], function which smoothly interpolates between a gauge
theory and a string theory observable in the AdS/CFT system. A natural question
is whether further interesting examples may be found, and whether the function f(g)
may be generalized. A major obstacle is the fact that we currently only know the
asymptotic spectrum of the planar N = 4 model, as was recently unequivocally established
in [19]. Important clues come from both taking a closer look at the scaling law (1.4) in
the one-loop gauge theory [3], and intriguing string theory results [20, 21] generalizing
the expansion (1.6). Put together, these suggest that at weak coupling an interesting
generalized scaling limit might exist, where7

M → ∞, L → ∞, with j :=
L

log M
= fixed. (1.7)

We will prove in this paper that this is indeed the case, first at one-loop order, and then
beyond. More precisely, we will show that a generalized scaling function f(g, j) exists to
all orders in perturbation theory

Δ − M − L = γ(g) = f(g, j) logM + · · · , (1.8)

where f(g, 0) = f(g) in (1.4). This extends the one-loop results in [3], and the all-loop
result at j = 0 of [6, 7]. The latter is possible since in the limit (1.7) L → ∞, and we may
therefore use the asymptotic Bethe ansatz methodology of [5]–[7].

The final result of our analysis, presented in detail in the ensuing sections, is the
following integral equation:

σ̂(t) =
t

et − 1

(
K̂(t, 0) − 4

∫ ∞

0

dt′K̂(t, t′)σ̂(t′)

)
. (1.9)

It is essentially identical in form to the ‘ES’ (no dressing phase) [6] and ‘BES’ (with
proper dressing phase) [7] equations. The kernel corresponding to the generalized scaling
limit is quite involved as it contains various contributions. It reads

K̂(t, t′) = g2K̂(2gt, 2gt′) + K̂h(t, t
′; a) − J0(2gt)

t

sin at′

2πt′
et′/2

− 4g2

∫ ∞

0

dt′′t′′K̂(2gt, 2gt′′)K̂h(t
′′, t′; a). (1.10)

Here

K̂(t, t′) = K̂0(t, t
′) + K̂1(t, t

′) + K̂d(t, t
′) (1.11)

6 However, one important fact to keep in mind is that the weak coupling expansion (1.5) has a finite radius of
convergence, while the strong coupling series (1.6) is asymptotic, and, apparently, not even Borel-summable [12].
So (1.6) follows from knowing all terms in (1.5), but, conversely, knowing all terms of the string expansion (1.6) does
not allow one to reconstruct the gauge-theoretic perturbation series (1.5) without further input. Unfortunately,
it is currently not even known what the nature of this input might be.
7 The variable j was first explicitly introduced (up to a factor of 1/2) in equation (3.1) of [21].
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is the kernel of the ‘BES’ equation, where

K̂0(t, t
′) =

tJ1(t)J0(t
′) − t′J0(t)J1(t

′)

t2 − t′2
, (1.12)

K̂1(t, t
′) =

t′J1(t)J0(t
′) − tJ0(t)J1(t

′)

t2 − t′2
, (1.13)

and the kernel encoding the effects of the dressing phase is given by the convolution

K̂d(t, t
′) = 8g2

∫ ∞

0

dt′′K̂1(t, 2gt′′)
t′′

et′′ − 1
K̂0(2gt′′, t′). (1.14)

For a possible mechanism generating this type of convolution structure see [22]. The novel
contributions generated by a non-vanishing j are encoded in the kernel

K̂h(t, t
′; a) =

1

2πt
e−t/2 t cos(at′) sin(at) − t′ cos(at) sin(at′)

t2 − t′2
et′/2, (1.15)

as well as the explicit, rightmost term of the first line of (1.10), and the further convolution

in the second line of that equation. The index h of K̂h(t, t
′; a) stands for ‘hole’; its meaning

will become clear below. The corrections of the refined limit depend on a ‘gap’ parameter
a whose interpretation will also be explained. Its relation to j is fixed by the constraint

j =
4a

π
− 16

π

∫ ∞

0

dtσ̂(t)et/2 sin at

t
. (1.16)

Lastly, the generalized scaling function of (1.8) is given by

f(g, j) = j + 16σ̂(0). (1.17)

It is determined by first solving the integral equation (1.9) with the kernel (1.10) for
the fluctuation density σ̂(t) = σ̂(t; g, a) as a function of g and a. Then a is found as a
function of j by inverting the relation (1.16), i.e. by computing a(j). This then yields
σ̂(t) = σ̂(t; g, a(j)) as a function of g and j, and the generalized scaling function f(g, j)
is finally obtained by evaluating the latter at t = 0, see (1.17).

As in [6, 7], in practice it appears impossible to produce a closed-form solution of
the equation (1.9). In fact, we did not even find an explicit solution at one-loop order,
i.e. for g = 0. It is however possible to solve it iteratively in a double expansion in small
g and small j. Excitingly, the function obtained appears to be ‘bi-analytic’, i.e. analytic
in g around g = 0 at arbitrary finite values of j, and vice versa. We therefore believe
that our equations actually hold for arbitrary values of g and j. The beginning of this
double expansion may be found in (4.17), (4.19), (4.20), (4.21), which we have displayed
by giving the four-loop result of the functions f1(g) · · ·f4(g) defined through

f(g, j) = f(g) +

∞∑

n=1

fn(g)jn. (1.18)

Our truncation at four-loop order, O(g8) and O(j4), is due to space limitations, and one
easily generates many more orders in g2 and j if needed. A curious fact is the absence of
any terms of O(j2), i.e. the function f2(g) is zero. We will come back to this point shortly.

A very interesting question is how f(g, j) behaves at strong coupling. Indeed we would
like to make contact with the results already known from string theory [15, 16, 3, 20, 21, 23].
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A potential problem is that in the semi-classical computations pioneered by Frolov and
Tseytlin [15] the coupling constant g is intricately entangled with the, respectively, AdS5

and S5 charges M and L. In [3] the strong coupling limit of the dimension Δ of the
operators (1.1) was predicted from the results of [15, 16] on the energy of a folded string
soliton (see also the discussion in [20, 21, 23, 24]). The prediction reads

Δclassical = M + L
√

1 + z2 + · · · , (1.19)

where8

M → ∞, L → ∞, g → ∞, with M � L and fixing
M

g
,
L

g
, z := 4g

logM/Λ

L
, (1.20)

and Λ is some scale9. The result (1.19) was derived in [24] from the asymptotic Bethe
ansatz [5, 7] with the approximate strong coupling (AFS [25] only) dressing phase. While
this constitutes an important check of the Bethe ansatz method, this had to work in
the sense that the dressing phase [25] was extracted from the integrable structure of
classical string theory [26, 27]. What is missing is a derivation from a solution of the exact
ansatz [5, 7] which interpolates between weak and strong coupling. Now it is tempting to
identify, in view of (1.7),

z =
4g

j
. (1.21)

Certainly the condition M � L with M, L → ∞ is satisfied in the weak coupling limiting
procedure (1.7). The more questionable assumptions in semi-classical string theory, as far
as extrapolating weak coupling results is concerned, are the fixing of M/g, L/g (see also
footnotes 6 and 9). Proceeding under this caveat we could then rewrite (1.19) as

Δclassical − M − L =

⎛

⎝4g

√

1 +

(
j

4g

)2

− j

⎞

⎠ log M + · · · . (1.22)

If we now also expand in small j we find

Δclassical − M − L =

(
4g − j +

j2

8g
+ O(j4)

)
log M + · · · . (1.23)

The leading term 4g agrees with the first term in (1.6). The one-loop string correction
to (1.19) was computed in [20]:

Δ1−loop =
L√
λ

1√
1 + z2

{
z
√

1 + z2 − (1 + 2z2) log
[
z +

√
1 + z2

]

− z2 + 2(1 + z2) log(1 + z2) − (1 + 2z2) log
[√

1 + 2z2
]}

. (1.24)

8 The contemporaneously appearing work [23] uses the notation � = 1/z and Λ = 4πg.
9 The scale Λ actually being used in the string theory calculations in [15, 16, 3, 20, 21, 23] seems to be somewhat
unclear. Is the proper scale (1) Λ = 4πg or (2) Λ = L or (3) Λ = 1? Since these calculations start from fixing
M/g and L/g it would seem that they require either (1) or (2). At weak coupling we definitely have (3), as we
are proving to all orders in this paper. Understanding the crossover of scales as one moves from weak to strong
coupling, or vice versa, should be very interesting.

doi:10.1088/1742-5468/2008/07/P07015 6

http://dx.doi.org/10.1088/1742-5468/2008/07/P07015


J.S
tat.M

ech.
(2008)

P
07015

A generalized scaling function for AdS/CFT

Taking z → ∞ it produces the second term on the rhs of (1.6). If we were to again expand
in small j via (1.21) we would find j2 log j terms. The result (1.24) was fully derived
in [24] from the asymptotic Bethe ansatz [7, 5] with the approximate strong coupling
(AFS + HL [28]) dressing phase. Once again, this is an important cross-check on the
consistency of the extraction of the one-loop correction of the dressing phase from one-
loop string theory [28, 29]—see also the very recent derivation [30]—but does not answer
the question of how the dimensions of the gauge theory states in (1.1) ‘flow’ to the energies
of string theory states as the coupling increases.

An interesting insight into the structure of further quantum corrections, i.e. two-loop
order and higher, to (1.19), (1.24) was obtained in [21] in the limit z → ∞. In a paper
contemporaneous with ours [23], an impressive direct two-loop string calculation, in this
limit, is performed which agrees with the results of [21]. However, Roiban and Tseytlin
argue in [23] that after resumming infinitely many terms of the form j2 logk j all terms of
the form j2 might vanish. They furthermore noticed that some initial support for these
considerations is provided by a fascinating and curious by-product of our derivation: the
function f2(g) in the expansion1.18 is exactly zero! This suggests that extrapolation
between the result at small g and the result at large g might indeed work out.

Therefore an exciting open problem not addressed in this paper is how to now solve
our equations at strong coupling g → ∞ in order to see whether any of the above string
results are reproduced, and whether the extrapolation works out. In fact, our derivation
does not assume j to be small, so we are hopeful that under the identification (1.21) the
full strong coupling expansion of f(g, j), i.e. (1.19), (1.24) and all further corrections, in
generalization of the beautiful expansion of [12] at j = 0, will be obtained. As already
mentioned this is however not assured, as we might run into an order-of-limits problem,
namely (1.7) versus (1.20). It would also be important to gain an understanding how the
states corresponding to the generalized scaling function fit into the general classification
of classical integrable curves [27, 31] and their quantum fluctuations. It should be very
interesting to see how the parameter j in (1.7) relates to the ‘filling fractions’ of the
classical curve.

This paper is organized as follows. In section 2 we extend the study in [3] and take a
close look at the fine structure of the large spin M anomalous dimensions of (1.1) at one-
loop order. We derive our results using both traditional techniques and more sophisticated
ones involving so-called non-linear integral (or also ‘Destri–DeVega’) equations; see [32]
and references therein. In section 3 we generalize the methodology of the non-linear
integral equations to all orders in the coupling constant and compute some novel finite
size O(M0) corrections to the scaling behavior (1.4). In section 4 we extend our one-loop
results to all loop orders, prove the existence of the novel generalized scaling function
in (1.8), and derive the above equations determining it.

2. One-loop theory

2.1. Magnons and holes

The one-loop diagonalization problem of the operators (1.1) is equivalent to that of an
integrable spin chain with sl(2) symmetry. This was first discovered in [33, 34] and more
specifically in the N = 4 context, extending the discovery of [35], in [36]. The allows us
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to apply the Bethe ansatz, which then leads to the following one-loop Bethe equations:
(

uk + i/2

uk − i/2

)L

=

M∏

j=1
j �=k

uk − uj − i

uk − uj + i
, (2.1)

where L is the length (=twist in this case) and M is the number of magnons; see (1.1).
The cyclicity constraint and the one-loop anomalous dimension γ1 (see (1.2)) are

M∏

k=1

uk + i/2

uk − i/2
= 1 and γ1 =

γ(g)

g2

∣∣
∣
∣
g=0

= 2
M∑

k=1

1

u2
k + 1/4

. (2.2)

With the help of the Baxter function

Q(u) =

M∏

k=1

(u − uk) (2.3)

one can write down an off-shell version of these equations:
(

u +
i

2

)L

Q(u + i) +

(
u − i

2

)L

Q(u − i) = t(u)Q(u), (2.4)

where

t(u) = 2uL +
L∑

i=2

qiu
L−i (2.5)

is the transfer matrix given in terms of the charges. The ground state for arbitrary L
and M is unique and thus the corresponding charges are fixed. Clearly setting u = uk

in equation (2.4) brings us back to (2.1). However one of the advantages of (2.4) is the

possibility of identification of solutions u = u
(k)
h complementary to (2.1) [3]. They are

found as the zeros of the transfer matrix, i.e. from t(u) = 0 and describe ‘holes’. We thus
have

t(u) = 2
L∏

k=1

(u − u
(k)
h ). (2.6)

We can intuitively think of the hole roots as rapidities describing the motion of the Z-
particles in the spin chain interpretation of the operators (1.1). For a general value of L
the equation (2.6) has L solutions and thus there are L holes. One can prove that for any

state all magnon roots uk and all hole roots u
(k)
h are real. It is possible to find the q2 charge

analytically by matching the three highest powers of u in the Baxter equation (2.4):

q2 = −1
4
L(L − 1) − LM − M(M − 1). (2.7)

Because q2 and all higher charges explicitly depend on M the roots of t(u) will also,
generically, depend on M . One can argue, however, that for the ground state, and in the
case L � M , two of them are special; see [3]: their magnitude is larger than those of any
other (hole or magnon) Bethe roots, and scales with M as the magnon number M gets
large; see [3]. To identify these roots one recalls that the mode numbers for magnons for
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the ground states, when L � M , are given by [6]

nk = k +
L − 3

2
sgn(k) for k = ±1,±2, . . . ,±M

2
. (2.8)

The absolute value of the roots grows monotonically with |nk|. It follows from (2.8) that
the rapidities of the magnons and holes are parity invariant. Among the holes there are
two ‘universal holes’ which occupy the highest allowed mode numbers

nu,1
h =

L + M − 1

2
nu,2

h = −L + M − 1

2
. (2.9)

The corresponding hole roots are precisely the ones that scale with M . The remaining
holes fill the gap in the mode numbers of magnons

nr
h ∈

{
−L − 3

2
, . . . ,

L − 3

2

}
. (2.10)

For the ground state, when L � M , the magnitudes of the roots are thus ordered as

|u(1,2)
h | > |uk| > u

(j)
h (j �= 1, 2). (2.11)

2.2. The counting function and the NLIE

A nice way to exploit the existence of the hidden hole degrees of freedom employs the
so-called counting function; see [32] and references therein. It is defined as

Z(u) = Lφ

(
u,

1

2

)
+

M∑

k=1

φ(u − uk, 1) where φ(u, ξ) = i log

(
iξ + u

iξ − u

)
. (2.12)

Its name stems from the fact that, as one immediately sees from the definition (2.12),
Z(±∞) = ±π(L + M) while the Bethe equations for the magnons and holes may be,
respectively, expressed as

Z(uj) = π(2nj + δ − 1) j = 1, . . . , M, (2.13)

Z(u
(k)
h ) = π(2n

(k)
h + δ − 1) k = 1, . . . , L, (2.14)

where

δ = L + M mod 2. (2.15)

So Z(u) is a smooth function which yields the corresponding mode number (times π)
whenever u equals a hole or magnon root. The mode numbers clearly ‘label’ or ‘count’
the solutions of the Bethe equations, and the counting function smoothly interpolates
between them.

To write down the one-loop non-linear integral equation, we recall [32] that for an
arbitrary function f(u), which is analytic within a strip around the real axis, the following
identity holds:

M∑

k=1

f(uk) +
L∑

j=1

f(u
(j)
h ) = −

∫ ∞

−∞

du

2π
f ′(u)Z(u) +

∫ ∞

−∞

du

π
f ′(u)Im log[1 + (−1)δeiZ(u+i0)].

(2.16)
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Applying this identity to Z(u) and adapting the steps of [32] to the present case, we find10

Z(u) = iL log
Γ(1/2 + iu)

Γ(1/2 − iu)
+

L∑

j=1

i log
Γ(−i(u − u

(j)
h ))

Γ(i(u − u
(j)
h ))

+ lim
α→∞

∫ α

−α

dv

π
i

d

du
log

Γ(−i(u − v))

Γ(i(u − v))
Im log

[
1 + (−1)δeiZ(v+i0)

]
. (2.17)

The identity (2.16) may also be used to express all conserved charges in terms of the
counting function. The first charge (the momentum), however, needs to be regularized:

P = lim
α→∞

(
−

∫ α

−α

du

2π
p′(u)Z(u) −

L∑

j=1

p(u
(j)
h )

∫ α

−α

du

π
p′(u)Im log

[
1 + (−1)δeiZ(u+i0)

])
.

(2.18)

In the above formula p(u) denotes the momentum of a single particle

p(u) =
1

i
log

u + i/2

u − i/2
. (2.19)

Due to antisymmetry of Z(u) and p(u) one easily finds

P = 0. (2.20)

Similarly, the one-loop anomalous dimension γ1 (see (2.2)) may be rewritten as

γ1 = 4γEL + 2

L∑

j=1

{ψ(1/2 + iu
(j)
h ) + ψ(1/2 − iu

(j)
h )}

+ 2

∫ ∞

−∞

dv

π
i
d2

dv2

(
log

Γ(1/2 + iv)

Γ(1/2 − iv)

)
Im log

[
1 + (−1)δeiZ(v+i0)

]
, (2.21)

where γE is Euler’s constant.
Note that the NLIE (2.17) in conjunction with the Bethe equations for the hole

roots (2.14) is fully equivalent, for the ground state, to the algebraic Bethe equation (2.1)
for arbitrary finite values of M and L. (The generalization to the case of excited states is
fairly straightforward but will not be discussed in this paper.) Likewise, the expressions
for the one-loop anomalous dimension γ1 given in (2.2) and (2.21) are equivalent.

2.3. Magnon density

If the number of magnon roots M gets large we may expect, for the ground state, that
they form a dense distribution on the union of two intervals [−b,−a] and [a, b] on the real
axis. This allows us to introduce a distribution density ρm(u); see section 3.2. of [6] for

10 Due to superficial divergencies one needs to apply (2.16) to Z′(u) and then to integrate the resulting equation
twice. The constants of integration are fixed by antisymmetry of Z(u) and the condition

lim
u→∞

Z′(u) = 0.

doi:10.1088/1742-5468/2008/07/P07015 10

http://dx.doi.org/10.1088/1742-5468/2008/07/P07015


J.S
tat.M

ech.
(2008)

P
07015

A generalized scaling function for AdS/CFT

further details. It then follows from (2.8) and (2.13) that

1

M

d

du
Z(u) = 2πρm(u) + 2π

L − 2

M
δ(u) + O

(
1

M2

)
, with 2

∫ b

a

duρm(u) = 1, (2.22)

where the δ-function stems from the gap in the center of the magnon mode numbers (2.8).
Using this relation one can rewrite (2.12) as

2πρm(u) + 2π
L − 2

M
δ(u) − L

M

1

u2 + 1/4
− 2

(∫ −a

−b

dv +

∫ b

a

dv

)
ρm(v)

(u − v)2 + 1
= 0, (2.23)

where u ∈ [−b,−a] ∪ [a, b]. If there is a gap 2a > 0 we therefore may drop the term
involving the δ-function in (2.23). In principle, if interpreted appropriately, this equation
should hold for large M and arbitrary, small or large, L.

If in addition L stays finite (but arbitrary) we can apply the scaling procedure
ū = u/M of [6], as in this case the gap 2a closes (a → 0), and in addition b → M/2. Then
the non-singular integral equation (2.23 turns into a singular integral equation, and with
ρ̄0(ū) = Mρm(u) we find

−4πδ(ū) − 2 −
∫ −1/2

−1/2

dū′ ρ̄0(ū
′)

(ū − ū′)2
= 0. (2.24)

The solution is the (singular) density

ρ̄0(ū) =
1

π
log

1 +
√

1 − 4ū2

1 −
√

1 − 4ū2
=

2

π
arctan h(

√
1 − 4ū2), (2.25)

first derived in [37]. It should be considered as a distribution (in the mathematical sense)
rather than as a regular function. The reason is that the expression for the one-loop
anomalous dimension in (2.2) formally turns into 4π

∫
dūρ̄m(ū)δ(ū) = 4πρm(0) = ∞.

However, a more careful analysis [6] of the multiplication of the distributions ρm(ū) and
δ(ū) leads to

γ1 = 8 log M + O(M0). (2.26)

If instead L → ∞ along with M → ∞ such that β = M/L is kept finite, the gap 2a
does not close. We may then drop the δ-function term in (2.23) and obtain after rescaling
ū = u/M with ā = a/M , b̄ = b/M

− 1

β

1

ū2
− 2

(

−
∫ −ā

−b̄

dv̄ + −
∫ b̄

ā

dv̄

)
1

(ū − v̄)2
ρ̄m(v̄) = 0, (2.27)

which is essentially (up to a rescaling of ū by β) the derivative d/dū of the singular two-
cut integral equation first derived in [16]. The original equation is easily reconstructed
by integrating both sides of (2.27) w.r.t. ū, with a constant of integration of 2π/β on
the right-hand side. The explicit solution for the density ρ̄m(v̄) along with ā, b̄ was also
given in [16]. When β → ∞ the gap 2ā disappears and the limiting distribution (2.25)
is recovered. However, this procedure does not reproduce the correct behavior of the
anomalous dimension of the previous large M limit at fixed L, i.e. (2.26); instead, one
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finds

γ1 =
8

L
log2 M

L
+ · · · . (2.28)

See also the discussion in [6]. We notice that large M analysis is quite subtle if the gap
2a is very small but non-vanishing.

In fact, there is a very interesting perturbation on the scaling behavior (2.26)
first noticed in [3]. Let us understand this effect through a more refined analysis
of (2.22), (2.23). It is convenient to split the density ρm(u) into the singular, leading piece
ρ0(u) and a fluctuation correction σ̃(u): ρm(u) = ρ0(u)+σ̃(u) where ρ0(u) = 1/Mρ̄0(u/M);
see (2.25). The trick is to now add

2

∫ a

−a

dv
ρ0(v)

(u − v)2 + 1
=

4 log M

πM
(arctan(u + a) − arctan(u − a)) + O(M0) (2.29)

to (2.23), and to subsequently extend the domain of validity of the equation to the entire
real axis, after replacing on the lhs ρm by ρm + ρh. We then see that σ̃(u) scales as
log M/M and we should therefore define, in analogy with [6], a fluctuation density σ(u)
through

ρm(u) + ρh(u) = ρ0(u) − 8 log M

M
σ(u). (2.30)

It satisfies

2πσ(u) − 1

2π
(arctan(u + a) − arctan(u − a)) +

j

8

1

u2 + 1/4

− 2

(∫ −a

−∞
dv +

∫ ∞

a

dv

)
σ(v)

(u − v)2 + 1
= 0. (2.31)

This integral equation fully determines the fluctuation density σ(u), as the edge parameter

a may be determined from the normalization condition (
∫ −a

−∞ +
∫ ∞

a
)du ρm(u) = 1, which

implies

j =
4a

π
− 8

∫ a

−a

duσ(u). (2.32)

The one-loop anomalous dimension is then given from (2.2) by

γ1(j)

log M
= 8 − 16

π
arctan 2a − 16

(∫ −a

−∞
du +

∫ ∞

a

du

)
σ(u)

u2 + 1/4
. (2.33)

2.4. Fourier space equation

It is very instructive to change from u-space to Fourier space. After rewriting (2.31) as

σ(u) =
1

4π2
(arctan(u + a) − arctan(u − a)) − j

16π

1

u2 + 1/4

+

∫ ∞

−∞

dv

π

σ(v)

1 + (u − v)2
−

∫ a

−a

dv

π

σ(v)

1 + (u − v)2
(2.34)
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and Fourier transforming11

σ̂(t) = e−t/2

∫ ∞

−∞
du e−ituσ(u) (2.35)

one obtains

σ̂(t) =
t

et − 1

(
K̂h(t, 0; a) − j

8t
− 4

∫ ∞

0

dt′K̂h(t, t
′; a)σ̂(t′)

)
, (2.36)

where the kernel is given by

K̂h(t, t
′; a) =

e(t′−t)/2

4πt

∫ a

−a

du cos(tu) cos(t′u), (2.37)

which leads to the expression (1.15) in the introduction. Likewise, Fourier transforming
the normalization condition (2.32) yields the relation (1.16) between the physical
parameter j and the fluctuation density σ̂(t) in Fourier space stated already in the
introduction. The one-loop anomalous dimension is then given by

γ1(j)

log M
= 8

[
1 − 2

π
arctan 2a − 4

∫ ∞

0

dt

(
σ̂(t) − 4t

∫ ∞

0

dt′K̂h(t, t
′; a)σ̂(t′)

)]
. (2.38)

2.5. Hole density

The Bethe roots corresponding to the small holes lie inside some interval [−c, c]. In the
‘thermodynamic’ limit L → ∞, where the number of small holes tends to infinity, their
one-loop root distribution density ρh(u) is related to the counting function through

1

L

d

du
Z(u) = 2πρh(u) + O

(
1

L

)
, with

∫ c

−c

duρh(u) = 1, (2.39)

as one easily derives from (2.10) to (2.14). Using (2.17), we may then derive a non-linear
integral equation for the distribution of holes

ρh(u) =
1

L
(ψ(i(u − u

(1)
h )) + ψ(−i(u − u

(1)
h ) + ψ(i(u + u

(1)
h )) + ψ(−i(u + u

(1)
h )))

+
1

L

d

du
I(u) − 1

2π

(
ψ

(
1

2
+ iu

)
+ ψ

(
1

2
− iu

))

+

∫ c

−c

dv

2π
(ψ(i(u − v)) + ψ(−i(u − v)))ρh(v), (2.40)

where the term (1/L)(d/du)I(u) denotes the derivative of the last line in (2.17). The
terms on the rhs of the first line of (2.40) are the contributions of the two large holes with

rapidities u
(1)
h , u

(2)
h = −u

(1)
h (cf (2.11)), where we have also implicitly assumed L � M .

Then the two rapid holes behave as12u
(1,2)
h 
 ±M/

√
2, while the term (1/L)(d/du)I(u)

in (2.40) yields merely an additive 2 log 2; see the appendix for a discussion of this point.

11 We have included a factor of e−t/2 in this definition for convenience. For all other Fourier transformed quantities
in this paper, in particular all kernels K̂, we do not include such a factor.
12 Extensive numerical studies indicate that for the ground state at large M all charges qi in (2.5) are small

except q2. Then one finds from t(u) = 0 and (2.7) u
(1,2)
h � ±M/

√
2. See also [3].
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The four terms on the rhs of the first line of (2.40) thus behave like 4 log M/
√

2. Using (1.7)
we thus derive a linear integral equation

ρh(u) =
2

πj
− 1

2π

(
ψ

(
1

2
+ iu

)
+ ψ

(
1

2
− iu

))
+

∫ c

−c

dv

2π
(ψ(i(u − v))

+ ψ(−i(u − v)))ρh(v). (2.41)

One then finds the generalized one-loop scaling function (cf (1.8)) from (2.21):

γ1(j)

log M
= 8 + 2j

∫ c

−c

duρh(u)

(
ψ

(
1

2
+ iu

)
+ ψ

(
1

2
− iu

)
− 2ψ(1)

)
. (2.42)

In order to easily generate the series expansion of (2.42) in powers of j, defined in (1.7),
it is useful to rescale u and define

ū =
u

c
and ρ̄h(ū) = jcρh(u). (2.43)

Defining the non-singular kernel

K(ū, v̄) =
c

2π

(
ψ(ic(ū − v̄)) + ψ(−ic(ū − v̄)) − ψ

(
1

2
+ icū

)
− ψ

(
1

2
− icū

))
, (2.44)

the integral equation (2.41) becomes

ρ̄h(ū) =
2

π
c +

∫ 1

−1

dv̄K(ū, v̄)ρ̄h(v̄). (2.45)

It is of Fredholm type and may be immediately expanded in the small parameter c and
iteratively solved as a power series in c. The relation to the parameter j is then determined
through the normalization condition in (2.39) which becomes

j =

∫ 1

−1

dvρ̄h(ū). (2.46)

This yields j as a series in c. The generalized one-loop scaling function (2.42) becomes

γ1(j)

log M
= 8 + 2

∫ 1

−1

dūρ̄h(ū)

(
ψ

(
1

2
+ icū

)
+ ψ

(
1

2
− icū

)
− 2ψ(1)

)
. (2.47)

This yields the one-loop scaling function as a series in c. Inverting the series (2.46) and
substituting into the expansion of (2.47) gives the desired series of the scaling function in
terms of j. It starts out as

γ1(j)

log M
= 8 − 8j log 2 +

7

12
j3π2ζ(3)− 7

6
j4π2 log 2ζ(3)

+ 2j5
(

7
8
π2 log2 2ζ(3) − 31

640
π4ζ(5)

)
+ O(j6). (2.48)

Note that by analytic continuation the density of the holes is related to σ(u) via

jρh(u) =
2

π
− 8σ(u) u ∈ (−c, c), (2.49)
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which may be rewritten as

jρh(u) =
2

π
− 8

π

∫ ∞

0

dtσ̂(t)et/2 cos tu. (2.50)

The preceding derivation proceeds from the counting function; cf (2.39). We will
closely follow this procedure in section 3, where we will treat the higher loop case. It
should be noted, however, that our solution (2.45), (2.46), (2.47) may also be immediately
recovered by Fourier analyzing the results of the previous section 2.4. The reader should
multiply (2.36) with et/2 cos tu, integrate in t over the positive real semi-axis and use the
integral representation of the kernel (2.37). Subsequently rewriting j in terms of σ̂(t) with
the help of (1.16) and finally using the relation (2.50) it is straightforward to derive (2.41).
We thus conclude that

a = c. (2.51)

This equation tells us that the gap [−a, a] in the distribution of magnon roots is densely
filled by the (small) hole roots.

3. All-loop theory

3.1. The asymptotic non-linear integral equation (NLIE)

Let us now extend the one-loop results of the last section to the higher loop case. We will
use the asymptotic Bethe ansatz for AdS/CFT, based on the S-matrix approach [38]. In
the sl(2) subsector the asymptotic all-loop Bethe equations [5, 7] read

(
x+

k

x−
k

)L

=

M∏

j �=k

uk − uj − i

uk − uj + i

(
1 − g2/x+

k x−
j

1 − g2/x−
k x+

j

)2

e2iθ(uk,uj). (3.1)

We define the all-loop asymptotic counting function as

Z(u) = iL log
x(i/2 + u)

x(i/2 − u)
+ i

M∑

k=1

log
i + u − uk

i − (u − uk)

− 2i
M∑

k=1

log
1 + g2/(x(i/2 + u)x(i/2 − uk))

1 + g2/(x(i/2 − u)x(i/2 + uk))
+

M∑

k=1

θ(u, uk). (3.2)

As in the one-loop case, one finds the corresponding non-linear integral equation

Z(u) = iL log
x(i/2 + u)

x(i/2 − u)
+

∫ ∞

−∞

dv

2π
φ′(u − v, 1)Z(v)

−
L∑

j=1

φ(u − u
(j)
h , 1) −

∫ ∞

−∞

dv

π
φ′(u − v, 1)Im log

[
1 + (−1)δ eiZ(v+i0)

]

+

∫ ∞

−∞

dv

2π

(
2i

d

dv
log

1 + g2/(x(i/2 + u)x(i/2 − v))

1 + g2/(x(i/2 − u)x(i/2 + v))
− θ(u, v)

)
Z(v)

+

L∑

j=1

(

2i log
1 + g2/(x(i/2 + u)x(i/2 − u

(j)
h ))

1 + g2/(x(i/2 − u)x(i/2 + u
(j)
h ))

− θ(u, u
(j)
h )

)
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−
∫ ∞

−∞

dv

π

(
2i

d

dv
log

1 + g2/(x(i/2 + u)x(i/2 − v))

1 + g2/(x(i/2 − u)x(i/2 + v))
− θ(u, v)

)

× Im log
[
1 + (−1)δ eiZ(v+i0)

]
. (3.3)

The counting function defined in (3.2) satisfies a relation similar to (2.22), but with the
all-loop density on the rhs.

3.2. The NLIE in Fourier space

In Fourier t-space equation (3.3) becomes

Ẑ(t) =
2πLet/2

it(et − 1)
J0(2gt) −

L∑

j=1

2π cos
(
tu

(j)
h

)

it(et − 1)
− 2

et − 1
L̂(t)

+ 8g2 et/2

et − 1

∫ ∞

0

dt′e−t′/2K̂(2gt, 2gt′)

(

t′L̂(t′) +
π

i

L∑

j=1

cos(t′u
(j)
h )

)

− 4g2 et/2

et − 1

∫ ∞

0

dt′e−t′/2t′K̂(2gt, 2gt′)Ẑ(t′), (3.4)

where L̂(t) denotes the Fourier transform of the ‘Im log’ term. Note that the Ẑ(t) has a
first order pole at t = 0. This is in accordance with (3.2), since the Fourier transform of
this expression must be understood in the principal value sense. Note that we have not
made any approximations. Therefore (3.4) is still fully equivalent to the original set of
discrete asymptotic equations, (3.1).

3.3. Large parameter integrals

Let us now investigate the effects of taking the large M limit with L � M . It will be
important to understand the large M expansion of integrals of the form

f(M) =

∫ ∞

0

dxh(x) sin(u(M)x), (3.5)

where h(x) is a smooth integrable function on [0,∞) and u(M) → ∞ when M → ∞.
We first note that because of the relation to the Fourier transform (Plancherel’s theorem)
limM→∞ f(M) = 0. Since f(M) is meromorphic and vanishes at infinity we have

f(M) =

∞∑

j=0

cj

u(M)1+j
. (3.6)

To find c0 it is sufficient to note that

c0 = lim
M→∞

u(M)f(M) = lim
M→∞

∫ ∞

0

dxh(x)

(
− d

dx
cos (u(M)x)

)
= h(0), (3.7)

since the integral after a partial integration vanishes again. By subsequent integrations
by parts one finds that

cn = lim
M→∞

u(M)n+1

(

f(M) −
n−1∑

j=1

cj

u(M)1+j

)

= (−1)n/2h(n)(0) for even n. (3.8)

The odd cn coefficients vanish, as follows from (3.5).
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3.4. The leading order equation

To derive from (3.4) an equation reproducing the leading contribution to the scaling
function in the limit where M → ∞ and L is kept fixed, it is sufficient to observe, on the
basis of the results of the previous subsection, that upon iterating (3.4) only terms of the
form

2πet/2

it(et − 1)
−

2π cos
(
tu

(1,2)
h

)

it(et − 1)
, (3.9)

where u
(1,2)
h 
 ±

√
1
2
q2 
 ±M/

√
2 represent the universal holes, will give the leading

(logarithmic) contribution. This is because we have

u
(j)
h 
 0 j = 3, . . . , L (3.10)

at leading order, and the terms involving L̂(t) do not contribute at this order; see the
appendix. Thus the leading all-loop equation reads

Ẑ(t) =
4πet/2

it(et − 1)
− 4π cos(tu

(1)
h )

it(et − 1)
− 4g2 et/2

et − 1

∫ ∞

0

dt′e−t′/2t′K̂(2gt, 2gt′)Ẑ(t′). (3.11)

Upon subtracting the one-loop part of this equation

Ẑ(t) = Ẑ0(t) + δẐBES(t) (3.12)

and identifying δẐ(t) with the fluctuation density

δẐBES(t) = 16πig2et/2 σ̂BES(t)

t
log(M) (3.13)

one rederives the equation of [7]:

σ̂BES(t) =
t

et − 1

(
K̂(2gt, 0) − 4g2

∫ ∞

0

dt′K̂(2gt, 2gt′)σ̂BES(t
′)

)
. (3.14)

3.5. Subleading corrections to the twist operator dimensions

The large M expansion of the anomalous dimensions of twist operators is expected to
have the following form:

γ = f(g) logM + fsl(g, L) + O
(

1

(log M)2

)
, (3.15)

where fsl(g, L) denotes the subleading effects of O(M0). These are easily obtained
from (3.4), and we may compute fsl(g, L) to arbitrary order of perturbation theory:

fsl(g, L) = (γ − (L − 2) log 2)f(g) − 8(7 − 2L)ζ(3)g4

+ 8

(
4 − L

3
π2ζ(3) + (62 − 21L)ζ(5)

)
g6

− 8

15
((13 − 3L)π4ζ(3) + 5(32 − 11L)π2ζ(5) + 75(127 − 46L)ζ(7))g8

± · · · . (3.16)

Notice that the ‘universality’, i.e. independence of L of the scaling function f(g), is lost
when one computes these O(M0) terms. They contain L-independent terms and terms
linear in L.
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4. The generalized scaling function

4.1. Derivation

Let us now finally treat the novel scaling limit (1.7), i.e. we consider the limit L, M → ∞
with j = L/ log M kept fixed. In this limit, in contradistinction to section 3.4, also
the L − 2 remaining holes contribute. Although individual hole terms separately do not
develop logarithmic behavior in M , their collective contribution will be proportional to
L = j log M . Furthermore, in this limit all terms involving L̂(t) can be dropped; see the

appendix. Thus (3.4) for the counting function Ẑ(t) in Fourier space linearizes in this
limit to the form

Ẑ(t) =
2πLet/2

it(et − 1)
J0(2gt) −

L∑

j=1

2π cos
(
tu

(j)
h

)

it(et − 1)

+ 8π g2 et/2

i(et − 1)

L−2∑

j=1

∫ ∞

0

dt′e−t′/2K̂(2gt, 2gt′) cos(t′u
(j)
h )

− 4g2 et/2

et − 1

∫ ∞

0

dt′e−t′/2t′K̂(2gt, 2gt′)Ẑ(t′). (4.1)

Note that in the above formula only quantum corrections to uj
h for j = 3, . . . , L need to

be taken into account, since the corrections to the universal holes are, upon the iteration,
subleading. Like in section 3.4 we strip off the one-loop part by defining

Ẑ(t) = Ẑ0(t) + δẐ(t). (4.2)

We relate δẐ(t) to the fluctuation density σ̂(t) through

δẐ(t) = 16πiet/2 σ̂(t)

t
log M, (4.3)

and derive to the desired order

σ̂(t) =
t

et − 1

[
g2K̂(2gt, 0)− j

8

J0(2gt)

t
+

1

8 log M

L∑

j=3

e−t/2 cos(tu
(j)
h )

t

− g2

2

1

log M

L∑

j=3

∫ ∞

0

dt′K̂(2gt, 2gt′)e−t′/2 cos(t′u
(j)
h )

− 4g2

∫ ∞

0

dt′K̂(2gt, 2gt′)σ̂(t′)

]
. (4.4)

The corresponding anomalous dimension can be easily shown to be given by

γ = 8g2 log M

(

1 − 1

log M

L∑

j=3

∫ ∞

0

dt
J1(2gt)

2gt
e−t/2 cos(tu

(j)
h ) − 8

∫ ∞

0

dt
J1(2gt)

2gt
σ̂(t)

)

.

(4.5)
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The distribution of the small holes is found from

Z(uj
h) = π(2nj

h + δ − 1), (4.6)

which in Fourier space reads

i

π

∫ ∞

0

sin(tuj
h)Ẑ(t) = π(2nj

h + δ − 1). (4.7)

Plugging (4.2) into (4.7) and observing that (see section 3.3)

F ′(x, y) ≡
∫ ∞

0

dt cos tx
et/2 − cos ty

et − 1

= 1
4
(ψ(i(x − y)) + ψ(−i(x − y)) + ψ(i(x + y)) + ψ(−i(x + y))

− 2ψ
(

1
2
− ix

)
− 2ψ

(
1
2

+ ix
)
), (4.8)

one easily derives from (4.7)

2πn
(k)
h = 4F (u

(k)
h , u

(1)
h ) − 16 logM

∫ ∞

0

dt
σ̂(t)

t
et/2 sin(tu

(k)
h ). (4.9)

Introducing the density of holes ρh(u) it follows from (4.9) that

jρh(u) =
2

π log M
F ′(u, u

(1)
h ) − 8

π

∫ ∞

0

dtσ̂(t)et/2 cos(tu). (4.10)

Note that (2/π)(1/M)F ′(u, u
(1)
h ) is at large values of M essentially the Korchemsky density

ρ0(u), i.e. (2.25) after scaling back u = Mū, ρ0(u) = 1/Mρ̄0(ū), up to small corrections
at the boundaries of the distribution of the roots. Since the small holes occupy a finite
interval (−a, a) one can safely take the large M limit13

F ′(u, u
(1)
h ) = log M + O(M0) u ∈ (−a, a). (4.11)

After replacing the sum in (4.4) by an integral and using the above density we find

σ̂(t) =
t

et − 1

[
− j

8t
J0(2gt) + K̂h(t, 0; a) − 4

∫ ∞

0

dt′K̂h(t, t
′; a)σ̂(t′)

+ g2K̂(2gt, 0) − 4g2

∫ ∞

0

dt′K̂(2gt, 2gt′)σ̂(t′)

− 4g2

∫ ∞

0

dt′t′K̂(2gt, 2gt′)

(
K̂h(t

′, 0; a) − 4

∫ ∞

0

dt′′K̂h(t
′, t′′)σ̂(t′′)

)]
, (4.12)

where K̂h(t, t
′; a) is the one-loop kernel given in (1.15). The endpoints can be obtained

from the normalization condition∫ a

−a

duρh(u) = 1, (4.13)

which implies (1.16). Inserting (1.16) into (4.12) we find the final integral equation (1.9)
announced in the introduction. Likewise, the anomalous dimension (4.5) may be re-

13 The magnon density is related to σ̂(t) by a similar formula:

ρm(u) =
2

π

1

M
F ′(u, u

(1)
h ) − 8 log M

πM

∫ ∞

0

dt σ̂(t)et/2 cos(tu).
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expressed and simplified as

γ = 8g2 log M

[
1 − 8

∫ ∞

0

dt
J1(2gt)

2gt
tK̂h(t, 0; a)

− 8

∫ ∞

0

dt
J1(2gt)

2gt

(
σ̂(t) − 4t

∫ ∞

0

dt′K̂h(t, t
′; a)σ̂(t′)

)]

= 16 log M

(
σ̂(0) +

j

16

)
. (4.14)

This concludes our derivation of the equations determining the generalized scaling function
f(g, j) in (1.8). Let us now apply them to obtain the first few terms in the double
expansion of this function in powers of g and j.

4.2. Weak coupling expansion

The equation (4.12) is solved iteratively with relative ease in a double-perturbative series
in g and the gap parameter a. As in the one-loop case in section 2 one then inverts (1.16)
to obtain a(j) as a power series in j. This then yields the fluctuation density σ̂(t) as a
series in g and j. It starts out as

σ̂(t) = g2σ̂BES(t) + j

(
−1

8

1

et/2 + et
+

g2

8

t(t − 4 log 2)

et − 1

+ g4 t

et − 1

1

96

(
−3t3 − 4π2t + 16π2 log 2 + 24t2 log 2 + 96ζ(3)

)
+ · · ·

)

+ j2 × 0 + j3

(
− π2

1536
t2e−tcsch(t/2) +

g2π2

384

t(14ζ(3) − π2te−t/2)

et − 1

+
g4π2

2304

t

et − 1
(3π4t − π4te−t/2 + 140π2ζ(3) − 42ζ(3)t2 − 2232ζ(5)) + . . .

)

+ · · · . (4.15)

The generalized scaling function at weak coupling is simply given via (1.17) by evaluating
the fluctuation density at t = 0. Let us define an infinite set of functions {fn(g)} as

f(g, j) = f(g) +
∞∑

n=1

fn(g)jn. (4.16)

The first one, f1(g), is

f1(g) = −8g2 log 2 + g4

(
8

3
π2 log 2 + 16ζ(3)

)
− g6

(
88

45
π4 log 2 +

8

3
π2ζ(3) + 168ζ(5)

)

+ g8

(
584

315
π6 log 2 +

8

5
π4ζ(3) + 64 log 2ζ(3)2 +

88

3
π2ζ(5) + 1840ζ(7)

)
+ · · · .

(4.17)

Note that f1(g) is special as it can be obtained from (3.16) by keeping only terms
proportional to L. To this order the hole momenta are set to zero. Only at orders
higher than linear in j does one need to take into account the ‘dynamics’ of the holes.
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We then find for f1(g), . . . , f4(g)

f1(g) = −f(g) log 2 + 16g4ζ(3) − g6(8
3
π2ζ(3) + 168ζ(5))

+ g8(8
5
π4ζ(3) + 88

3
π2ζ(5) + 1840ζ(7)) + · · · , (4.18)

f2(g) = 0, (4.19)

f3(g) = 7
12

g2π2ζ(3) + g4(35
36

π4ζ(3) − 31
2
π2ζ(5))

+ g6(− 73
540

π6ζ(3) − 155
6

π4ζ(5) + 635
2

π2ζ(7))

+ g8( 7
108

π8ζ(3) + 182
3

π2ζ(3)3 + 28
15

π6ζ(5) + 3175
6

π4ζ(7) − 17885
3

π2ζ(9))

+ · · · , (4.20)

f4(g) = −7
6
g2π2 log 2ζ(3) + g4

(
−77

18
π4 log 2ζ(3) + 49

6
π2ζ(3)2 + 31π2 log 2ζ(5)

)

+ g6
(
−767

270
π6 log 2ζ(3) + 385

18
π4ζ(3)2 + 341

3
π4 log 2ζ(5)

− 651
2

π2ζ(3)ζ(5)− 635π2 log 2ζ(7)
)

+ g8
(

307
270

π8 log 2ζ(3) + 91
15

π6ζ(3)2 − 252π2 log 2ζ(3)3 + 1184
15

π6 log 2ζ(5)

− 15011
18

π4ζ(3)ζ(5) + 2883π2ζ(5)2 − 6985
3

π4 log 2ζ(7)

+ 17780
3

π2ζ(3)ζ(7) + 35770
3

π2 log 2ζ(9)
)

+ · · · . (4.21)

At fixed j, we observe a constant degree of transcendentality [39] of all terms contributing
to a given order of perturbation theory in the coupling g. Interestingly, the converse is
not true, as may already be seen from the one-loop result (2.48).

As was announced earlier, the function f2(g) is identically zero, indicating that all
terms of order j2 in the j-expansion of f(g, j) are absent to all orders in the coupling
constant g. This is easily proven directly from our equations. Some potentially related
very interesting observations at strong coupling were made in [23]. Roiban and Tseytlin
found some intriguing evidence that terms of the form j2 logk j might upon resummation
indeed result in a vanishing j2 contribution; cf also the discussion in the introduction.

Acknowledgments

We would like to thank Vladimir Bazhanov, Andrei Belitsky, Nick Dorey, Volodya
Kazakov, Gregory Korchemsky, Lev Lipatov, Pedro Vieira, Stefan Zieme and, especially,
Radu Roiban and Arkady Tseytlin for useful discussions. MS thanks the INI Cambridge
and the organizers of the workshop Strong Fields, Integrability and Strings, N Dorey, S
Hands and N MacKay, for hospitality while working on parts of this paper. A Rej thanks
the INI Cambridge for hospitality during the final phase of the project.

doi:10.1088/1742-5468/2008/07/P07015 21

http://dx.doi.org/10.1088/1742-5468/2008/07/P07015


J.S
tat.M

ech.
(2008)

P
07015

A generalized scaling function for AdS/CFT

Appendix. The non-linear term

In this appendix we will discuss the integrals involving the non-linear term. For simplicity
we will confine ourselves to the one-loop case, where it is sufficient to consider

I(u) = lim
α→∞

∫ α

−α

dv

π
i

d

du
log

Γ(−i(u − v))

Γ(i(u − v))
Im log

[
1 + (−1)δeiZ(v+i0)

]
. (A.1)

We first note that the function

L(u) = Im log
[
1 + (−1)δeiZ(u+i0)

]
(A.2)

is smooth apart from at a finite number of points, namely when u is equal to the magnon
or the hole rapidity. A closer inspection reveals that

L(ui − ε) = π, L(ui + ε) = −π, (A.3)

where ui denotes either a hole or a magnon rapidity. We will assume that the small
holes and the magnons are densely distributed along the real axis, as this is the case for
the limits discussed in this paper. It is easy to convince oneself that the integral (A.1)
gets the dominant contribution from (−α,−M/2) ∪ (M/2, α). Because the small roots
and magnons are, at large values of M , densely and symmetrically distributed on
(−M/2, M/2) this part of the integral contributes starting at O(1/M2) only. Assuming
v ∈ (−α,−M/2)∪ (M

2
, α) we may expand the integrand in a power series in u. Because of

the antisymmetry of the counting function only odd powers of u survive the integration.
Thus we may write

i
d

du
log

Γ(−i(u − v))

Γ(i(u − v))
= i(ψ1(−iv) − ψ1(iv))u − i

6
(ψ3(−iv) − ψ3(iv))u3

+ O(u5) + even terms in v. (A.4)

On the other hand from the definition of the counting function we have

L(v) = −L + 2M

2v
+ O

(
1

v3

)
v >

M√
2
. (A.5)

Plugging (A.4) and (A.5) into (A.1) we find

I(u) = ξu + O
(

u3

M2

)
. (A.6)

To fix the constant ξ it is necessary to extend the expansion in (A.5) to the whole interval
v ∈ (M/2,∞). However there is a much simpler method. Since the above discussion is not
sensitive to the value of L we may set L = 2. Then we may compute the corresponding
anomalous dimension plugging (2.17) together with (A.1) into (2.16). Comparison with
the exact one-loop result γ1 = 8S1(M) fixes ξ to be

ξ = 2 log 2. (A.7)

Numerically we have checked that the expansion (A.6) breaks only in a small neighborhood
of ±M/2. This suggests that the radius of convergence of (A.6) lies close to the edge of
the magnon distribution.
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