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1. Introduction and overview

Integrable spin chains constitute a fascinating topic of theoretical physics: their Hilbert
space grows exponentially with the length of the chain and the Hamiltonian eigenstates
are usually in a linear combination of almost all states in a canonical basis. Nevertheless,
owing to integrability, the eigenstates can be determined efficiently by solving a system
of algebraic equations, the so-called Bethe equations [1], whose number of unknowns
typically grows linearly with the length.

The best-studied integrable spin chains are the nearest-neighbour chains whose
Hamiltonians act on pairs of spins at adjacent sites. The prime example in this class is the
Heisenberg model [2]. The only widely known examples of spin chains with interactions
of well-separated spin sites, so-called long-range chains, are the Haldane–Shastry and the
Inozemtsev chains [3, 4].

The discovery and investigation of integrable structures in planar maximally
supersymmetric gauge theory in four spacetime dimensions [5]–[7] (see [8] for a review)
introduced a novel exciting long-range chain. Its interactions are more general than those
on which the Haldane–Shastry and Inozemtsev models are based: they involve more than
two spins at a time. A subsequent study [9] has revealed a large class of long-range models.
However in all of these models complete integrability was merely shown to be plausible
and it has not yet been proven.

In this letter we provide a proof of existence for a very large class of integrable long-
range spin chains including those proposed in [9]. Specifically, we present a recursion
relation for explicitly constructing long-range Hamiltonians which manifestly preserves
integrability.

2. Integrable long-range chains

We start by reviewing the notion of perturbatively long-range integrable spin chain
models [6].
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General definition

A perturbatively long-range integrable spin chain is defined as a deformation of an
infinitely long homogeneous nearest-neighbour integrable spin chain. This means that
the model has a set of local homogeneous commuting charges Qr(λ), r ≥ 2,

[Qr(λ),Qs(λ)] = 0, (1)

which are deformations of the commuting charges QNN
r of the nearest-neighbour model

at λ = 0. For simplicity we shall identify the Hamiltonian H with the lowest charge Q2.
The charges are composed from local operators

Qr(λ) =
∑

k

cr,k(λ)Lk, (2)

where the Lk form a basis of operators acting locally and homogeneously on the chain

Lk :=
∑

a

Lk(a). (3)

Here and in the following Lk(a) is some operator which acts on several consecutive spin
sites starting with site a. The number of interacting sites is called the range [Lk] of the
operator Lk. The coefficients cr,k(λ) are defined as series expansions around λ = 0 such
that the range of Qr grows at most by one step per order in λ, i.e.

cr,k(λ) = O(λ[Lk]−r). (4)

In other words, Qr(λ) at order λ� must consist of operators Lk of range [Lk] at most r+ �.

Fundamental gl(N) chain

The existence of interesting non-trivial integrable long-range models was suggested by the
construction in [6]. In fact, the hyperbolic Inozemtsev chain [4] can be understood as one
particular example [10]. However, a general survey [9] of long-range chains with gl(N)
symmetry and spins transforming in the fundamental representation has revealed a much
larger moduli space: the starting point was the ansatz (2) and (4) for the charges Qr(λ),
r = 2, 3, up to order O(λ4). The coefficients cr,k(λ) were then constrained by demanding
commutativity (1). The resulting first few charges at the leading few orders read

Q2 = [1] − [2, 1] + α3(λ)(−3[1] + 4[2, 1] − [3, 2, 1]) + O(λ2),

Q3 =
i

2
([3, 1, 2] − [2, 3, 1]) +

i

2
α3(λ)(6[2, 3, 1]− 6[3, 1, 2] + [4, 1, 3, 2]

+ [4, 2, 1, 3]− [2, 4, 3, 1]− [3, 2, 4, 1]) + O(λ2),

Q4 =
1

3
(−[1] + 2[2, 1] − [3, 2, 1] + [2, 3, 4, 1]− [2, 4, 1, 3]− [3, 1, 4, 2] + [4, 1, 2, 3]) + O(λ).

(5)

The symbols Lk = [· · ·] represent local homogeneous interactions such that Lk(a) in (3) is
the indicated permutation of consecutive spins; cf [11]. For example, [2, 1] represents the
nearest-neighbour permutation

∑
a Pa,a+1. The commuting charges turned out to depend

on a set of parameters αr, βr,s, γr,s and εk whose individual roles can be identified in the
resulting Bethe ansatz. The asymptotic Bethe equations for this model [9] are a special
case of the form presented at the end of this letter.
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Clearly this construction is sufficient neither to prove integrability at a certain
perturbative order nor to show that the deformation can be continued to higher orders
without having to spoil integrability. The first problem was overcome in [11] by showing
that gl(N) symmetry extends to a Yangian algebra. A perturbative Yangian generator
Y(λ) was constructed, shown to commute with Q2(λ) and to satisfy the Serre relations of
the Yangian.

It is the aim of the present letter to overcome both problems, namely to show that
the long-range integrable model can be constructed to all orders (and how).

3. General construction

In the following we shall present the construction of long-range integrable spin chains from
an arbitrary conventional integrable spin chain.

Generating equation

Consider a one-parameter family of charges Qr(λ) which obeys the differential equation

d

dλ
Qr(λ) = i[X (λ),Qr(λ)]. (6)

Here X is some operator with well-defined commutation relations with Qr at all λ. The
differential equation guarantees that the algebra of the Qr is independent of λ

d

dλ
[Qr(λ),Qs(λ)] = i[X (λ), [Qr(λ),Qs(λ)]]. (7)

In particular, if the algebra of charges is Abelian anywhere, e.g. at λ = 0, it is Abelian
everywhere

[Qr(0),Qs(0)] = 0 =⇒ [Qr(λ),Qs(λ)] = 0. (8)

Given a conventional nearest-neighbour integrable system QNN
r and some operator X (λ),

the differential equation (6) defines an integrable deformation Qr(λ) of Qr(0) = QNN
r , at

least as a formal series in λ.
The integrable charges Qr(λ) of the long-range model discussed above are local and

homogeneous. Consequently, if (6) is to describe the above model we have to make sure
that the equation violates neither of these properties. More explicitly, [X ,Qr] must be
local and homogeneous for all λ. In the following we shall discuss suitable choices for X .

Local operators

Obviously, the commutator of any two local operators is again local. Thus any local
operator is admissible as a deformation and we can set

X (λ) =
∑

k

εk(λ)Lk + · · · , (9)

where the Lk form a basis of local operators. This deformation changes eigenstates only
locally and has no impact on the spectrum. The ε’s are thus unphysical. Note that for a
correct enumeration of deformation degrees of freedom one has to take into account that
the local charges Qr(λ) generate trivial deformations.
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Boost charges

Consider boost operators defined by

B[Lk] :=
∑

a

aLk(a). (10)

In contradistinction to the Lk defined in (3) a boost acts locally, but inhomogeneously
along the chain. Recall [12] that the boost B[Q2] can be used to generate all the higher
charges of a conventional integrable system through the recursive relation i[B[Q2],Qr] �
−rQr+1.

In general, the commutator of some boost operator with some local operator is again a
boost operator, [B[Lk],Ll] = B[Lm]. However, if the underlying local operators commute,
the commutator becomes homogeneous

[Lk,Ll] = 0 =⇒ [B[Lk],Ll] = Lm. (11)

Consequently the boosts of commuting charges are admissible as deformations

X (λ) = · · ·+
∞∑

r=3

α̃r(λ)B[Qr(λ)] + · · · . (12)

Note that the definition of B[Lk] is ambiguous modulo local operators Ll. This is not
troublesome because we have already accounted for all local operators in (9), i.e. the
unphysical parameters εk can absorb the ambiguity.

Bi-local charges

Next, consider bi-local operators

[Lk|Ll] :=
∑

a≤b

1
2
(1 − 1

2
δa,b){Lk(a),Ll(b)}. (13)

The commutation properties of bi-local operators [Lk|Ll] are reminiscent of those of boost
operators discussed above. A commutator of a bi-local with a local operator yields a bi-
local operator in general. However, for commuting charges it remains local

[Lk,l,Lm] = 0 =⇒ [[Lk|Ll],Lm] = Ln. (14)

Therefore bi-local combinations of the charges are admissible as deformations

X (λ) = · · ·+
∞∑

s>r=2

β̃r,s(λ) [Qr(λ)|Qs(λ)]. (15)

Note that also bi-local operators are uniquely defined only modulo local operators which
is acceptable due to (9).

Shifts

The above operators exhaust all admissible operators that we can think of. In fact they
almost agree with the proposed moduli space of the Bethe ansatz [9]. The only missing
parameters correspond to taking linear combinations of the charges. We introduce them
by adding another term to the equation (6) which obviously does not spoil integrability

d

dλ
Qr(λ) = i[X (λ),Qr(λ)] +

∞∑

s=2

γ̃r,s(λ)Qs(λ). (16)
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Yangian generators

The Yangian generators are deformed in the same way as the integrable charges

d

dλ
Y(λ) = i[X (λ),Y(λ)]. (17)

This guarantees that the algebra among the Yangian generators and the integrable charges
is the same for all values of λ. In particular it is the same as for the conventional integrable
chain at λ = 0 in line with the results [11] on the Yangian of gl(N) long-range chains.

4. Range

The above definition of long-range chains (4) sets the bound r + � to the range of
interactions in Qr at O(λ�). A superficial consideration of the range of commutators

in (6) shows that each power α̃r increases the range of a charge Q by r− 1. Likewise, β̃r,s

naively increases the range by r + s − 2. However, we observe [9] (cf (5)) that αr merely
increases the range by r − 2 and βr,s by s − 1.

Boost charges

Let us consider boost charges first, which superficially generate terms too long by one
site. We observe that the contributions of leading range agree precisely with those in
some conserved charge

i(s − 1)[B[Qs(λ)],Qr(λ)] � −(s + r − 2)Qs+r−1. (18)

Consequently we can reduce the range by one site by fixing γ̃r,s appropriately (γ̃r,s = 0
for s < r + 2)

γ̃r,s(λ) =
s − 1

s − r
α̃s−r+1(λ). (19)

Furthermore, combinations of multiple α̃’s lead to a range which is longer than
expected. This problem can apparently be cured by choosing the α̃’s as follows:

∞∑

r=3

α̃r(λ)

(r − 1)xr−2
=

du (x)

dλ

/
du (x)

dx
= −dx (u)

dλ
, (20)

where u(x) is a function of refined α’s

u(x) = x +
∞∑

r=3

αr(λ)

xr−2
, αr(λ) = O(λr−2), (21)

and x(u) = u+O(λ) is its inverse. At present, we have no good understanding of why the
subtraction (19) and the function (20) and (21) reduce the range or how to prove these
observations.
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Bi-local charges

Similarly, the range of the terms due to bi-local charges depends on the definition of β̃’s.
The correct choice seems to be (with βr,s = −βs,r)

β̃r,s(λ) = 2β ′
r,s(λ) +

r−2∑

r′=2

2 βr′,s(λ) γ̃r′,r(λ) +
s−2∑

s′=2

2 βr,s′(λ) γ̃s′,s(λ). (22)

Furthermore the regularization of bi-local operators in (13) apparently reduces the range
as far as possible, i.e.

βr,s(λ) = O(λs−1). (23)

5. Bethe ansatz

We would now like to apply the coordinate Bethe ansatz in order to derive the asymptotic
Bethe equations.

Dispersion relations

First we prepare a one-magnon eigenstate |p〉 with definite momentum p along the chain
in order to measure the dispersion relations of the charges. Applying the recursion
relation (16) to the state yields an equation in the charge eigenvalues qr

dqr

dλ
= −

∞∑

s=3

α̃sqs
dqr

dp
+

∞∑

s=2

γ̃r,sqs. (24)

A solution with integration constant t reads (cf [13])

qr(t, u) =
i

r − 1

(
1

x(u + it/2)r−1
− 1

x(u − it/2)r−1

)
. (25)

The rapidity u(p) is defined implicitly by

exp(ip(t, u)) =
x(u + it/2)

x(u − it/2)
. (26)

Dressing phase

To understand how the S-matrix S depends on λ we consider two-magnon eigenstates

|u, u′〉 = |u < u′〉 + S(u, u′)|u′ < u〉 + |local〉. (27)

The magnon momenta p, p′ are implicitly defined through the rapidities u, u′. The
recursion relation (16) implies the following dependence:

S(u, u′) = exp(−2iθ(u, u′))S0(u, u′), (28)

where S0(u, u′) is the scattering matrix at λ = 0. The dressing phase takes the form
proposed in [14, 9]

θ(u, u′) =

∞∑

s>r=2

βr,s(qr(u) qs(u
′) − qr(u

′) qs(u)). (29)
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Bethe equations

On the basis of the above results for the dispersion relations and the scattering matrix
we can write the deformed Bethe equations. The Bethe equations for an integrable spin
chain based on an R-matrix with Yangian symmetry Y(g) have been developed in [15].
The Lie (super)algebra g of rank R is specified by the symmetric Cartan matrix Cab,
a, b = 1, . . . , R. The closed spin chain consists of L identical Yangian modules with
Dynkin labels ta, a = 1, . . . , R. Periodic eigenstates of the spin chain are described by the
Bethe roots ua,k, k = 1, . . . , Ka, satisfying the Bethe equations

exp(ip(ta, ua,k)L) =

R∏

b=1

Kb∏

j=1

(b,j)�=(a,k)

ua,k − ub,j + iCab/2

ua,k − ub,j − iCab/2
exp(2iθ(ta, ua,k; tb, ub,j)). (30)

The charge eigenvalues then take the form

eiP =

R∏

a=1

Ka∏

k=1

exp(ip(ta, uk,a)),

Qr =
R∑

a=1

Ka∑

k=1

qr(ta, ua,k).

(31)

Note that these Bethe equations are merely asymptotic [16]: the charge eigenvalues Qr

are valid only up to terms of order O(λL−r+1) for which the range of Qr exceeds L and
where it is thus not properly defined.

6. Conclusions and outlook

In this note we have presented a recursion relation for constructing integrable long-range
spin chains from an arbitrary short-ranged model; cf [17] for further details. These models
have appeared in the context of N = 4 supersymmetric gauge theory, but their existence
and all-orders consistency was largely conjectural so far.

The method applies to generic Lie (super)algebras and spin representations and it
explains the set of allowed deformation parameters. The deformation parameters control
the range of interactions and by taking suitable combinations of some parameters we were
able to decrease the range systematically and in accordance with planar gauge theory.
This observation, however, lacks a proof. Our construction method applies to infinitely
long chains, but using the coordinate Bethe ansatz and earlier quantum algebra results
we have derived asymptotic Bethe equations for closed chains.

Several aspects deserve further scrutiny: it would be important to have a better
understanding of how and why the range is decreased for boost deformations. In
particular, does the reduction apply to all algebras, to all representations and to quantum
deformations? For example, we find [17] that it apparently applies to alternating spin
chains such as the ones recently found [18] (see also [19]) in N = 6 superconformal
Chern–Simons theory [20].

The moduli space of open long-range integrable chains is slightly different [21]; e.g. a
phase associated with the boundaries appears. Can such open chains including new
degrees of freedom be constructed in a similar fashion?
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In our model the Lie algebra symmetry is manifest, whereas for N = 4 gauge theory
only the compact part of psu(2, 2|4) acts canonically. The other generators are deformed
much like the Hamiltonian, which is an inseparable part of the algebra. Recently a very
similar recursion relation to ours has appeared for such systems [22] and it would be highly
desirable to join the two structures to construct the complete psu(2, 2|4) representation.
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