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1. Introduction

How do test particles move under the influence of the gravita-
tional field? In the context of the theory of General Relativity (GR)
this question was attacked nearly over seventy years ago [1–3].
Since then the relation between the field equations and the equa-
tions of motion within gravitational theories has been subject to
many investigations [4–12]. The intimate link between these equa-
tions is the feature of General Relativity which distinguishes it
from other physical theories.

As it is well known, the Riemannian geometry of spacetime
can be tested with structureless particles (with or without rest
mass). An interesting physical question is whether the latter can
also probe more general non-Riemannian geometries that possi-
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bly could arise on a spacetime manifold. There are claims in the
literature that the answer is positive. In [13], for example, the de-
tectability of the spacetime torsion is discussed in the context of
the satellite experiment Gravity Probe B.

In this Letter, we demonstrate that structureless particles can
only test the Riemannian geometry, and that they are not af-
fected by the non-Riemannian geometrical structures of spacetime.
In order to prove this, we systematically derive the equations of
motion of matter in the metric-affine gravity (MAG) theory [14],
which provides a proper physical and mathematical framework for
gravitational models with non-Riemannian structures of spacetime.
We thereby confirm and extend earlier results in the context of
Riemann–Cartan geometries [15–19], for which it was shown that
only the intrinsic spin of test matter couples to spacetime torsion.
Note that we consider macroscopic classical matter in this Letter.
The analysis of the dynamics of quantum particles with spin in the
Riemann–Cartan spacetime can be found in [20–24].

In GR, the mass, or more precisely the energy–momentum of
matter is the only physical source of the gravitational field. The
energy–momentum current corresponds to the local translational
(or the diffeomorphism) spacetime symmetry. In MAG, this sym-
metry is extended to the local affine group that is a semi-direct
product of translations times the local linear spacetime symme-
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try group. Via the Noether theorem, such a symmetry gives rise to
additional conserved currents that describe microscopic character-
istics of matter. In continuum mechanics [25–30], such matter is
known as a medium with microstructure. In physical terms, this
means that the elements of a material continuum have internal
degrees of freedom: spin, dilation and shear. These three micro-
scopic sources are irreducible parts (that correspond, respectively,
to the Lorentz, dilational and shear-deformational subgroups of the
general linear group) of the hypermomentum current.

The geometry that arises on the spacetime manifold is non-
Riemannian, with nontrivial curvature, torsion, and nonmetricity.
The resulting general scheme of MAG embeds a wide spectrum of
gauge gravitational models based on the Poincaré, conformal, Weyl,
de Sitter, and other spacetime symmetry groups (for an overview,
see [14], for example).

The energy–momentum current and the hypermomentum cur-
rent (spin + dilaton + shear current) are the sources of the grav-
itational field in MAG. Accordingly, test bodies, that are formed of
matter with microstructure, have two kinds of physical properties
which determine their dynamics in a curved spacetime. The prop-
erties of the first type have microscopic origin, they arise directly
from the fact that the elements of a medium have internal degrees
of freedom (microstructure). The properties of the second type are
essentially macroscopic, they arise from the collective dynamics of
matter elements characterized by mass (energy) and momentum.
Hence, the qualitative picture is as follows: The averaging of the
microscopic hypermomentum current yields the integrated spin,
dilaton, and shear charge of a test body. In addition, the averaging
of the energy–momentum and of its multipole moments gives rise
to the orbital integrated momenta. The well known first moment
is the orbital angular momentum. It describes the behavior of a
test particle as a rigid body, that is, its rotation. In addition, there
are first orbital moments that describe deformations of a body.
These are the orbital dilation momentum (that describes isotropic
volume expansion) and the orbital shear momentum (that deter-
mines the anisotropic deformations with fixed volume). The three
together (orbital angular momentum, orbital dilation momentum,
and orbital shear momentum) comprise the generalized integrated
orbital momentum. In this Letter, we compare the gravitational
interaction of the integrated hypermomentum to that of the in-
tegrated orbital momentum of a rotating and deformable test body.
Thereby, we generalize the previous analysis [18] in which the ef-
fects of the integrated spin were compared to the effects of the
orbital angular momentum of a rotating rigid test body.

2. Metric-affine gravity

For a review of the MAG theory see [14,31], and references
therein. In this theory, besides the usual “weak” long-range
Newton–Einstein type gravity, described by the metric gij of space-
time, an additional “strong” short-range gravity piece is mediated
by the independent linear connection Γi j

k . It is different from
the Riemannian (Christoffel) connection, and the difference is de-
scribed in terms of the tensors of nonmetricity Q ijk := −∇i g jk and
of the torsion Sij

k := Γi j
k − Γ ji

k which are also manifest in the
non-Riemannian pieces of the curvature Rijk

l .
The matter currents, which are the sources of the gravitational

field, are obtained by variation of the matter Lagrangian with re-
spect to the gravitational potentials (metric gij , coframe hα

j , con-

nection Γi j
k). This yields the canonical energy–momentum Ti

j :=
hα

i δLmat/δhα
j , the metrical energy–momentum ti j := 2δLmat/δgij ,

and the hypermomentum �i
j
k := δLmat/δΓki

j current.
The conservation laws of the theory, cf. [32] for a recent re-

view, serve as starting point for the derivation of the propagation
equations for the multipole moments of the matter currents.
3. Energy–momentum conservation

The Noether theorem for the diffeomorphism invariance of
the matter action yields the conservation law of the energy–
momentum

{ }
∇ j

(
Ti

j − Nikl�
klj) = ({ }

Rijkl −
{}
∇ i N jkl

)
�klj . (1)

Here, and in the following, curled braces “{ }” denote objects which
are based on the symmetric Riemannian connection (Christoffel

symbols), and Nij
k := { }

Γ i j
k − Γi j

k represents the so-called distor-
sion tensor. Eq. (1) can be identically rewritten as

{ }
∇ j T i

j = R̂ i jkl�
klj + Nikl

{ }
∇ j�

klj, (2)

where we introduced R̂ i jkl := { }
Rijkl −

{}
∇ i N jkl +

{}
∇ j Nikl .

4. Hypermomentum conservation

The Noether theorem for the invariance of MAG under the lo-
cal general linear group yields (on the “mass shell”, i.e., when the
matter satisfies the field equations):

{ }
∇ j �

klj − Nij
k� jli + N jli�k

i j + T lk − tkl = 0. (3)

5. Propagation equations

Denoting the densities of objects by a tilde “˜” the conservation
equations for the canonical energy–momentum current (2) and hy-
permomentum current (3), take the following form

∂ j T̃ i
j = Rijk

l�̃k
l

j + Γi j
k T̃k

j + Nij
kt̃ j

k, (4)

∂ j�̃
k

l
j = Γ jl

m�̃k
m

j − Γmj
k�̃ j

l
m − T̃l

k + t̃k
l. (5)

Note that Γi j
k represents the full connection, the last two equa-

tions should be compared to (42) and (43) in [18].

6. Conservation equations integrated

We introduce the integrated multipole moments as follows:

�b1···bni
j
k :=

∫ (
n∏

α=1

δxbα

)
�̃i

j
k,

T b1···bn
i

j :=
∫ (

n∏
α=1

δxbα

)
T̃ i

j, tb1···bni
j :=

∫ (
n∏

α=1

δxbα

)
t̃ i

j . (6)

The integrals are taken over a 3-dimensional slice Σ(t), at a time t ,
of the world tube of a test body. We use the condensed notation∫

f =
∫

Σ(t)

f (x)d3x. (7)

With these definitions the integrated conservation laws (4) and (5)
take the following form (an inverted circumflex, e.g. “b̌β ”, indi-
cates the omission of an index from a list and va := dY a/dt , cf.
Fig. 1)

d

dt
T b1···bn

i
0

=
n∑

β=1

(
T b1···b̌β ···bn

i
bβ − vbβ T b1···b̌β ···bn

i
0)

+
∫ (

n∏
δxbα

)(
Rijk

l�̃k
l

j + Γi j
k T̃k

j + Nij
kt̃ j

k
)
, (8)
α=1
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Fig. 1. Sketch of the hypersurface Σ , i.e., the world tube of the test particle. A con-
tinuous curve through the tube is parametrized by Y a . Coordinates within the world
tube with respect to a coordinate system centered on Y a are labeled by xa . The ve-
locity along the world line is denoted by ua := dY a/ds with u0 = dt/ds.

d

dt
�b1···bnk

l
0

=
n∑

β=1

(
�b1···b̌β ···bnk

l
bβ − vbβ �b1···b̌β ···bnk

l
0)

+
∫ (

n∏
α=1

δxbα

)(
Γ jl

m�̃k
m

j − Γmj
k�̃ j

l
m − T̃l

k + t̃k
l
)
. (9)

Eqs. (8) and (9) should be compared to Eqs. (51) and (52) in
[18].

7. Propagation equations for pole–dipole particles

From the general expressions (8) and (9) we can derive the
propagation equations for pole–dipole particles. For such bodies
the following moments are non-vanishing: �i

j
k, T i

j, T i
j
k, ti

j , and
ti j

k . The expansion of geometrical quantities around the worldline
Y (t) of the body, cf. Fig. 1, into a power series in δxa = xa − Y a ,
reads

Rijk
l
∣∣
x = Rijk

l
∣∣

Y +δxa Rijk
l
,a
∣∣

Y + · · · ,
Γi j

k
∣∣
x = Γi j

k
∣∣

Y +δxaΓi j
k
,a

∣∣
Y + · · · ,

Nij
k
∣∣
x = Nij

k
∣∣
Y +δxa Nij

k
,a
∣∣

Y + · · · . (10)

The general form of the integrated conservation laws (8) and (9)
then yields the following set of propagation equations:

d

dt
T i

0 = Rijk
l�k

l
j + Γi j

k T k
j + Γi j

k
,a T a

k
j

+ Nij
kt j

k + Nij
k
,ata j

k, (11)

d

dt
T a

i
0 = T i

a − va T i
0 + Γi j

k T a
k

j + Nij
kta j

k, (12)

0 = T b
i
a + T a

i
b − va T b

i
0 − vb T a

i
0, (13)

d

dt
�k

l
0 = Γ jl

m�k
m

j − Γmj
k� j

l
m − T l

k + tk
l, (14)

0 = �k
l
a − va�k

l
0 − T a

l
k + tak

l. (15)

Here we suppressed the dependencies on the points at which cer-
tain quantities are evaluated. The set (11)–(15) represents the gen-
eralization of the propagation equations for pole–dipole particles
to metric-affine gravity.

8. Analyzing the propagation equations

Before we study the propagation of massive bodies in the grav-
itational field, it is worthwhile to recall some well-known facts
about the dynamics of the electrically charged bodies in the elec-
tromagnetic field. The electric 4-current density J̃ i is the primary
object then, with ρ̃ = J̃ 0 the electric charge density. When the size
of the body is much smaller than the typical length over which the
fields change significantly, it can be treated as a test particle. The
motion of the latter is conveniently described by the interaction of
the particle’s multipole moments J b1···bnk = ∫

δxb1 · · · δxbn J̃ k with
the electric and magnetic fields. Normally, the lowest moments are
most important and they sufficiently well determine the behav-
ior of the body. In particular, the zeroth moment Q = J 0 = ∫

ρ̃
is just the total electric charge of the body, the first moment
Di = J i0 = ∫

δxiρ̃ is the electric dipole, and so on.
We proceed along the same lines for the dynamics of gravitat-

ing particles by replacing the electromagnetic field with the gravi-
tational one, and the electric current with the energy–momentum
and hypermomentum currents. Then, we naturally define the inte-
grated quantities as follows: P i := T i

0 is the total 4-momentum of
the body (recall that pi = T̃ i

0 is the density of the energy T̃0
0 and

momentum T̃a
0, a = 1,2,3, of matter), Lk

l := T k
l
0 = ∫

δxk pl the
total orbital canonical energy–momentum. The antisymmetrized
(over the indices k and l) quantity is the most familiar orbital mo-
mentum which naturally arises for rigid bodies. However, since we
study the general case of deformable bodies, the symmetric part of
the first moment is now relevant too. Furthermore, we introduce
Y k

l := �k
l
0 as the integrated intrinsic hypermomentum, and define

Pi := P i − Nik
lY k

l −
{}
Γ ik

l Lk
l, (16)

the generalized total 4-momentum. Albeit this definition appears
to be “natural” in the context of MAG—and actually prolongs the
one known from [18]—one should be clear about the fact that it
does not necessarily correspond to a directly measurable quan-
tity. In addition, we introduce a shorter notation for the “convec-

tive currents”: For the intrinsic hypermomentum we have
(c)
�k

l
m :=

�k
l
m − vm �k

l
0, and for the orbital canonical energy–momentum

(c)
T k

l
m := T k

l
m − vm T k

l
0. The fluid derivative is defined as follows

∇v Y i
k := d/dt Y i

k + vmΓmj
i Y j

k − vmΓmk
j Y i

j . With this notation,
we recast the propagation equations (11)–(15) into

{ }
∇ vPi = ({ }

Rijk
l − {}

∇ i N jk
l)�k

l
j + {}

Rijk
l
(c)
T k

l
j, (17)

T k
i = vi Pk + d

dt
Li

k − {}
Γ kj

l T i
l

j + Nkj
l
(c)
� j

l
i, (18)

(c)
T (a

i
b) = 0, (19)

∇v Y i
k = − T k

i + ti
k − Γ jl

i
(c)
�l

k
j + Γ jk

l
(c)
�i

l
j, (20)

(c)
�k

l
a = T a

l
k − tak

l. (21)

The propagation equation (17) for the generalized total 4-momen-
tum should be compared to (53) in [18]. Eq. (18) describes the
canonical energy–momentum in terms of the usual combination
of the “translational” plus “orbital” contributions (the first two
terms), plus the additional contribution of the first moments.

Eq. (19) simply tells us that the convective current
(c)
T a

i
b is an-

tisymmetric in the upper indices a and b. The next Eq. (20) is
actually an equation of motion for the intrinsic hypermomentum.
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Its form closely follows the Noether conservation law of the hy-
permomentum, cf. (3). Finally, Eq. (21) expresses the convective
intrinsic hypermomentum current in terms of the first moments
of the energy–momentum.

9. Physical consequences

From the set (17)–(21) we notice a general feature that charac-
terizes the coupling between the physical objects (currents) with
the geometrical objects (metric, connection, and the derived quan-
tities). Namely, the intrinsic current (the one that is truly micro-
scopic, which arises from the averaging over the medium with the
elements with microstructure, i.e., that possess internal degrees of
freedom) couples to the non-Riemannian geometric quantities, see
the second term on the r.h.s. of (16) and the first term on the r.h.s.
of (17). In contrast to this, the orbital canonical energy–momentum
(which is induced by the macroscopic dynamics of the rotating
and deformable body) is only coupled to the purely Riemannian
geometric variables and never couples to the non-Riemannian ge-
ometry, see the last terms on the right-hand sides of (16) and (17).

This observation demonstrates that the possible presence of the
non-Riemannian geometry (in particular, of torsion and nonmetric-
ity) can only be tested with the help of bodies that are constructed
from media with microstructure (spin, dilaton charge and intrinsic
shear). This confirms and generalizes the result in [18]. Test parti-
cles, composed from usual matter without microstructure, are not
affected by the non-Riemannian geometry, and they thus cannot
be used for the detection of the torsion and the nonmetricity.

These results should be taken into account in the design of fu-
ture experiments aimed to test the geometric nature of spacetime.
Such experiments necessarily have to use microstructured test
bodies (a spin-polarized sphere or a polarized beam of elementary
particles, e.g.) in order to be able to detect non-Riemannian space-
time features. Technological challenges in this context concern the
construction of suitable devices, most importantly, replacing the
mechanical gyroscopes with, for example, nuclear magnetic reso-
nance gyroscopes which—since the 1960’s (see [33], e.g.)—utilize
the spin of nuclei for the purpose of inertial navigation.

10. Special case: Hayashi–Shirafuji model

Our conclusions are very general and apply to all gravitational
models that belong to the framework of MAG. The tetrad gravity
models studied in [13] are special MAG theories, and the measure-
ment of the torsion by means of usual gyroscopes is strictly ruled
out for these models: There is no way to detect and/or place lim-
its on the spacetime torsion with the Gravity Probe B mission (see
also the relevant analysis in [34]).

This point seems to be unclear to and underestimated by the
authors of the recent paper [13], who claim that the gravitational
model of Hayashi and Shirafuji [35] may have special properties
that allow for the detection of the torsion with the help of usual
gyroscopes. Here we explicitly demonstrate that this claim is un-
substantiated.

The Hayashi–Shirafuji model is naturally embedded into the
MAG scheme as follows (see also [36]). Of the three variables
(hα

i ,Γiβ
α, gαβ), the tetrad (coframe) field hα

i is treated as a trans-
lational gauge potential of the gravitational field, whereas the local
linear connection Γiβ

α and the metric gαβ play a secondary role
due to the geometrical (teleparallelism) constraints imposed on the
spacetime manifold. The torsion Sij

α = Dihα
j − D jhα

i is interpreted
as the translational gauge field strength. The covariant derivative
is defined here as Dihα

j = ∂ihα
j + Γiβ

αhβ

j , and the operator Di acts
in a similar covariant way on all tetrad indices (denoted by Greek
letters).
The action of the Hayashi–Shirafuji model I = ∫
Ld4x is deter-

mined by the Lagrangian density L = √−gL which is quadratic in
torsion,

L = −1

4

(
c1 Sij

α Sij
α + c2 Si Si + c3 Sij

α Si
α

j). (22)

Here c1, c2, c3 represent three coupling constants. The torsion trace
vector is defined as Si := Sij

αh j
α , and we convert freely the Greek

(tetrad) indices into the Latin (coordinate) ones and vice versa by
transvection with tetrads.

As usual, g := det gij . In general the tetrad legs are not or-

thonormal, hence the metric gαβ = hi
αh j

β gij—which describes the
scalar products of the tetrad vectors—is not a constant matrix but
a function of the spacetime coordinates.

The Lagrangian is a function of the three variables, L =
L(hα

i ,Γiβ
α, gαβ), and accordingly we have three variational deriva-

tives that we denote by

Eα
i := δL

δhα
i

, C iβ
α := δL

δΓiβ
α

, Gαβ := 2
δL

δgαβ

. (23)

In Appendices A, B, and C we show that for the Hayashi–Shirafuji
model (22) these derivatives satisfy two strong identities

hα
k DiEα

i ≡ Ski
αEα

i + Rkiβ
α C iβ

α − 1

2
Q kαβ Gαβ, (24)

DiC iβ
α + hβ

i Eα
i − Gβ

α ≡ 0. (25)

The total system of the interacting gravitational and matter
fields is described by the Lagrangian L + Lmat. With the matter
sources defined by

T̃α
i := δLmat

δhα
i

, �̃β
α

i := δLmat

δΓiβ
α

, t̃αβ := 2
δLmat

δgαβ

, (26)

the gravitational field equations then read

Eα
i + T̃α

i = 0, C iβ
α + �̃β

α
i = 0, Gαβ + t̃αβ = 0. (27)

Using these equations in the identities (24) and (25), we obtain
the two conservation laws (4) and (5), after taking into account
that hk

α Dihα
j = Γi j

k and Q iαβ = −2Niαβ .
In other words, contrary to the claim of [13], the Hayashi–

Shirafuji gravitational theory does not have any special properties.
The matter source currents in the Hayashi–Shirafuji model, just
like in all other MAG models, satisfy the conservation laws (4) and
(5) which were the starting point for our multipole–moment anal-
ysis of the propagation equations.

11. Conclusions

In [13], the propagation equations are not derived from first
principles but are arbitrarily postulated instead. As we have shown
explicitly in the previous sections, such an ad-hoc procedure is not
compatible with the equations of motion as derived with the help
of a multipole method. Like in Einstein’s general relativity theory,
in the gauge-theoretic models that belong to the MAG scheme the
propagation equations need not (and cannot) be postulated sep-
arately. They follow directly from the conservation laws of the
energy–momentum (for structureless matter) and from the con-
servation law of the hypermomentum (for matter with microstruc-
ture).

We consistently derived the propagation equations from (4) and
(5) using the systematic multipole expansion method. The con-
servation laws (4) and (5) hold for all MAG models, and for the
Hayashi–Shirafuji tetrad gravity, in particular. Hence, all mathe-
matical derivations and physical conclusions are valid for the latter
model as well. Our analysis shows that the non-Riemannian space-
time geometry can be detected only with the help of matter with
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microstructure. We thus confirm and generalize the earlier obser-
vations of Yasskin and Stoeger [18].

In connection with our results, it seems interesting to reanalyze
the axiomatic schemes of Marzke–Wheeler [37] and Ehlers–Pirani–
Schild [38,39] in which the geometrical structure of the spacetime
is operationally deduced from assumptions about the behavior of
primitive measuring devices (test bodies and light) in the gravita-
tional field. Such axiomatics leads to a Weyl geometry that is
characterized by vanishing torsion but has a nontrivial nonmetric-
ity Q ijk = Q i g jk (with the so-called Weyl covector Q i ). How can
this fact be understood in the light of the results obtained here?
In order to find an answer to this question, one needs to inspect
more carefully the definition of the primitive devices. In [38, p. 76]
they are described very generally as a “. . . class of test particles
(neutral, spherically symmetrical ones) . . .”. It thus appears that
despite the absence of an explicit notice, the axiomatics of Ehlers–
Pirani–Schild tacitly assumes the use of test bodies with a spe-
cial type of microstructure, namely, of the dilationally deformable
bodies. The dilation (isotropic expansion/contraction without dis-
torsion) is clearly compatible with the spherical symmetry of the
particles. On the other hand, in the gauge approach of MAG, the
generator of dilations is associated precisely with the nonmetric-
ity of the Weylian type. Hence, this would rather naturally explain
why the axiomatic scheme leads to the non-Riemannian geometry
of Weyl. Of course, a more detailed analysis is needed in order to
check whether this holds for all possible devices described in [38].

There remain several theoretical questions that need to be ad-
dressed in the context of the multipole approximation of the equa-
tions of motion in metric-affine gravity. In particular, theoretical
challenges concern: the specification of a world line of the body,
the invariant definition of multipole moments, the identification
of objects which have well-defined classical limits, the control of
higher orders in the multipole expansion, and the role of supple-
mentary or constitutive relations. Regarding the last point, pre-
vious analyses [11,40–42] in metric theories of gravitation have
shown that one needs—already at the dipole level—to impose a
supplementary condition in order to obtain a closed set of prop-
agation equations. Since—in contrast to metric theories as well as
theories on a Riemann–Cartan background—the spectrum of pos-
sible supplementary conditions in MAG is greatly enhanced, we
hope to be able to present a systematic analysis of different condi-
tions in a future work.

The works of Babourova and Frolov [43,44] make a preliminary
step in this direction by analyzing the supplementary conditions in
the model of matter with a particular constitutive structure—the
ideal fluid with microstructure. Their conclusions agree completely
with our results and confirm the impossibility to detect the non-
Riemannian geometry by means of the ordinary matter.
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Appendix A. Basic geometrical identities

We recall that the curvature arises (can be defined) from
the commutator of the covariant derivatives, (Di D j − D j Di)V α =
Rijβ

α V β . Since the torsion is Sij
α = Dihα

j − D jhα
i , and the non-

metricity is Q iαβ = −Di gαβ , one can straightforwardly verify the
Bianchi identities:
Di R jkβ
α + D j Rkiβ

α + Dk Rijβ
α ≡ 0, (A.1)

Di S jk
α + D j Ski

α + Dk Sij
α ≡ Rijk

α + R jki
α + Rkij

α, (A.2)

Di Q jαβ − D j Q iαβ ≡ 2Rij(αβ). (A.3)

Appendix B. Algebraic identities

We now turn to the specific tetrad theory which was discussed
in [13].

The Lagrangian density L of the Hayashi–Shirafuji model (22) is
a function of the torsion, metric, and the tetrad. The partial deriva-
tives with respect to these arguments are easily computed:

Hij
α = −2

∂L
∂ Sij

α
(B.1)

= √−g
(
c1 Sij

α + c2 S[ih j]
α + c3 S[i

α
j]), (B.2)

∂L
∂ gαβ

=
√−g

2

[
c1

(
Sαk

γ Sβ
k
γ − 1

2
Skl

α Sklβ
)

+ c2

2
Sα Sβ + c3

2
Sα

γ
δ Sβ

δ
γ + Lgαβ

]
, (B.3)

∂L
∂hα

i

= √−g

[
c1 Sαk

γ Sik
γ + c2

2

(
Sα Si + Skα

i Sk)
+ c3

2

(
Si

γ
k Sαk

γ + Sk
γ

i Skα
γ
) + Lhi

α

]
. (B.4)

The direct check shows that these three quantities satisfy the two
following algebraic identities:

hα
k

∂L
∂hα

i

−Lδi
k − Hij

α Skj
α ≡ 0, (B.5)

2gαγ
∂L

∂ gβγ
− hβ

i

∂L
∂hα

i

+ 1

2
Hij

α Sij
β ≡ 0. (B.6)

It is worthwhile to stress that these relations hold identically, with-
out taking into account the field equations.

The variational derivatives (23) with respect to the gravitational
potentials read explicitly:

Eα
i = ∂L

∂hα
i

− D j Hij
α, (B.7)

C iβ
α = ∂L

∂ Skl
γ

∂ Skl
γ

∂Γiβ
α

= −Hiβ
α, (B.8)

Gαβ = 2
∂L

∂ gαβ

. (B.9)

Appendix C. Differential identities

Using the chain rule for L=L(hα
i , gαβ, Sij

α), we have

∂kL= ∂L
∂hα

i

∂khα
i + ∂L

∂ gαβ

∂k gαβ + ∂L
∂ Sij

α
∂k Si j

α. (C.1)

Furthermore, by differentiating the identity (B.5) (apply the opera-
tor ∂i ), we find

∂i

(
hα

k
∂L
∂hα

i

)
≡ ∂kL+ (

Di Hij
α

)
Skj

α + Hij
α Di Skj

α. (C.2)

Contracting (B.6) with Γkβ
α yields

2
∂L

∂ gαβ

Γk(αβ) − ∂L
∂hα

i

Γkβ
αhβ

i + 1

2
Hij

α Sij
βΓkβ

α ≡ 0. (C.3)

Now we are ready to derive the main differential identities. The
covariant divergence of (B.7) reads:

DiEα
i = Di

∂L
∂hα − Di D j Hij

α. (C.4)

i
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Taking into account the skew symmetry Hij
α = −H ji

α , and the
fact that the commutator of the covariant derivatives, Di D j − D j Di ,
produces the curvature in the last term, after contracting (C.4) with
hα

k , we find

hα
k DiEα

i = ∂i

(
hα

k
∂L
∂hα

i

)
− ∂L

∂hα
i

Dih
α
k + 1

2
Rijk

α Hij
α. (C.5)

The first term was transformed with the help of the Leibniz rule.
For the second term on the right-hand side, we note that Dihα

k =
Dihα

k − Dkhα
i + Dkhα

i = Sik
α + Dkhα

i . As for the last term on the
right-hand side of (C.5), we transform it using the Bianchi identity
(A.2) into

1

2
Rijk

α Hij
α = −Rkiβ

α Hiβ
α − Hij

α Di Skj
α

+ 1

2
Hij

α Dk Sij
α. (C.6)

Taking this into account, and substituting (C.2), we recast (C.5) into

hα
k DiEα

i ≡ ∂kL− ∂L
∂hα

i

Dkhα
i + 1

2
Hij

α Dk Sij
α

− Rkiβ
α Hiβ

α + ∂L
∂hα

i

Ski
α − (

D j Hij
α

)
Ski

α. (C.7)

Furthermore, we have

− ∂L
∂hα

i

Dkhα
i + 1

2
Hij

α Dk Sij
α

= − ∂L
∂hα

i

∂khα
i + 1

2
Hij

α∂k Si j
α − ∂L

∂hα
i

Γkβ
αhβ

i + 1

2
Hij

α Sij
βΓkβ

α

= − ∂L
∂hα

i

∂khα
i + 1

2
Hij

α∂k Si j
α − 2

∂L
∂ gαβ

Γk(αβ). (C.8)

Here we used the identity (C.3). Recalling the definition of the non-
metricity, Q kαβ = −Dk gαβ = −∂k gαβ + 2Γk(αβ) , and the definition
of the field momentum (B.1), we get

− ∂L
∂hα

i

Dkhα
i + 1

2
Hij

α Dk Sij
α

= − ∂L
∂ gαβ

Q kαβ − ∂L
∂hα

i

∂khα
i − ∂L

∂ Sij
α

∂k Si j
α − ∂L

∂ gαβ

∂k gαβ. (C.9)

Substituting this into (C.7) and taking into account (C.1), we finally
arrive at

hα
k DiEα

i ≡ Ski
α

(
∂L
∂hα

i

− D j Hij
α

)
− Rkiβ

α Hiβ
α − ∂L

∂ gαβ

Q kαβ . (C.10)

Recalling the definition of the variational derivatives (B.7)–(B.9),
we finally recast this identity into (24).

The second differential identity is derived more straightfor-
wardly. We take (B.7) and contract it with hβ

i :

hβ

i Eα
i = hβ

i

∂L
∂hα

i

− hβ

i D j Hij
α

= hβ

i

∂L
∂hα

i

− D j Hβ j
α + (

D jh
β

i

)
Hij

α

= hβ

i

∂L
∂hα

i

+ Di Hiβ
α − 1

2
Sij

β Hij
α

= Di Hiβ
α + 2gαγ

∂L
∂ gβγ

. (C.11)

In the last equality we used (B.6). With the definitions (B.8) and
(B.9), we thus prove the identity (25).
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