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The minimally immersed 4D supermembrane
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In this note we summarize some of the properties found in [1], and its relation with [2]. We comment on the
construction of the action of the 11D supermembrane with nontrivial central charges minimally immersed
on a 7D toroidal manifold is obtained (MIM2).The transverse coordinates to the supermembrane are maps
to a 4D Minkowski space-time. The action is invariant under additional symmetries in comparison to the
supermembrane on a 11D Minkowski target space. The hamiltonian in the LCG is invariant under conformal
transformations on the Riemann surface base manifold. The spectrum of the regularized hamiltonian is dis-
crete with finite multiplicity. Its resolvent is compact. Susy is spontaneously broken, due to the topological
central charge condition, to four supersymmetries in 4D, the vacuum belongs to an N = 1 supermultiplet.
When assuming the target-space to be an isotropic 7-tori, the potential does not contain any flat direction,
it is stable on the moduli space of parameters. Moreover due to the discrete symmetries of the hamiltonian,
there are only 7 possible minimal holomorphic immersions of the MIM2 on the 7-torus. When these sym-
metries are identified on the target space, it corresponds to compactify the MIM2 on a orbifold with G2
structure. Once the singularities are resolved it leads to the compactification of the MIM2 on a G2 manifold
as shown in [2].
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1 Introduction

There have been interesting advances towards the quantization [3–9] of a sector of M-theory, the 11D min-
imally immersed supermembrane (MIM2), that may also provide tools to attack the more general problem
of M-theory quantization. The goal to achieve is, departing from 11D, to obtain a consistent quantum theory
in 4D with an N = 1 or N = 0 supersymmetries, moduli free, in agreement with the observed 4D physics.
Attempts to formulate the theory in 4D have been done mainly in the supergravity approach [10,11], includ-
ing fluxes [12, 13], but so far no exact formulation has been found. An effective theory when compactified
to a 4D model contains many vacua due to the presence of moduli fields. Stabilizacion of these moduli is an
important issue to be achieved. For some interesting proposals from M-theory see [12,14]. In the following
we will consider the 11D M2-brane with irreducible wrapping on the compact sector of the target manifold
[1–9] (MIM2). This implies the existence of a non trivial central charge in the supersymmetric algebra. Its
spectral properties have been obtained in several papers [5–9]. The MIM2 contains the information about
bound states of Dbranes, for example when compactified on 9D, it is equivalent to a bundle of D2-D0
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branes. The MIM2 also contains inside its spectrum nonperturbative string states like (F,Dp) branes and it
has been proved in [15] to be the 11D origin of the SL(2,Z) multiplets of IIB theory and it may also be the
11D origin of the nonperturbative dyonic states of type IIA [15] that cannot be seen at perturbative level.
This fact may be of relevance since Dp-branes are interesting since they allow to obtain nonabelian gauge
groups and are able to reproduce semirealistic models of phenomenology and cosmology. Recently bound
states of Dbranes have also enter into the game since they are able to capture nonperturbative effects that
could explain very tiny effects inside MSSM in a natural way, i.e. smallness of neutrino masses or Yukawa
couplings. The purpose of this note is to show the main aspect of the construction of the action for the
supermembrane with nontrivial central charges compactified on a T 7 realized through all of the allowed
holomorphic minimal immersions and analyze its physical properties.

2 D = 11 Supermembrane with central charges on a M5 × T 6 target
manifold

The hamiltonian of the D = 11 Supermembrane [16] may be defined in terms of maps XM , M =
0, . . . , 10, from a base manifold R × Σ, where Σ is a Riemann surface of genus g onto a target manifold
which we will assume to be 11 − l Minkowski × l-dim Torus. The canonical reduced hamiltonian to the
light-cone gauge has the expression

∫
Σ

√
W

(
1
2

(
PM√
W

)2

+
1
4
{XM , XN}2 + Fermionic terms

)
(1)

subject to the constraints

φ1 := d

(
pM√
W

dXM

)
= 0 (2)

and

φ2 :=
∮

Cs

PM√
W

dXM = 0, (3)

where the range of M is now M = 1, . . . , 9 corresponding to the transverse coordinates in the light-cone
gauge, Cs, s = 1, . . . , 2g is a basis of 1-dimensional homology on Σ,

{XM , XN} =
εab√
W (σ)

∂aXM∂bX
N . (4)

a, b = 1, 2 and σa are local coordinates over Σ. W (σ) is a scalar density introduced in the light-cone gauge
fixing procedure. φ1 and φ2 are generators of area preserving diffeomorphisms. That is

σ → σ
′ → W

′
(σ) = W (σ).

The SU(N) regularized model obtained from (1) [17] was shown to have continuous spectrum from
[0,∞), [17–19]. In what follows we will impose a topological restriction on the configuration space. It
characterizes a D = 11 supermembrane with non-trivial central charges generated by the wrapping on the
compact sector of the target space [5–7, 9]. Following [8] we may extend the original construction on a
M9 × T 2 to M7 × T 4, M5 × T 6 target manifolds by considering genus 1, 2, 3 Riemann surfaces on the
base respectively. We are interested in reducing the theory to a 4 dimensional model, we will then assume
a target manifold M4 × T 6 × S1. The configuration maps satisfy:

∮
cs

dXr = 2πSr
sRr r, s = 1, . . . , 6,

∮
cs

dXm = 0 m = 8, 9 (5)

c© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.fp-journal.org



Fortschr. Phys. 56, No. 7 – 9 (2008) 917

and ∮
cs

dX7 = 2πLsR, (6)

where Sr
s , Ls are integers and Rr, r = 1, . . . , 6 are the radius of T 6 = S1 × · · · ×S1 while R is the radius

of the remaining S1 on the target. We now impose the central charge condition

Irs ≡
∫

Σ

dXr ∧ dXs = (2πRrRs)ωrsn (7)

where ωrs is a symplectic matrix on the T 6 sector of the target and n denotes an integer representing the
irreducible winding. The topological condition (7) does not change the field equations of the hamiltonian
(1). In addition to the field equations obtained from (1), the classical configurations must satisfy the con-
dition (7). In the quantum theory, the space of physical configurations is also restricted by the condition
(7) [3, 4].

We consider now the most general map satisfying condition (7):

dXr = M r
s dX̂s + dAr (8)

where dX̂s, s = 1, . . . , 2g is a basis of harmonic one-forms over Σ and impose the constraints (2),(3).
It turns out that M r

s can be expressed in terms of a matrix S ∈ Sp(2g, Z), [1]. The natural election for√
W (σ) in this geometrical setting is define

√
W (σ) =

1
2

∂aX̂r∂bX̂
sωrs. (9)

√
W (σ) is then invariant under the change

dX̂r → Sr
sdX̂s, S ∈ Sp(2g, Z) (10)

We thus conclude that the theory is invariant not only under the diffeomorphisms generated by φ1 and
φ2 but also under the diffeomorphisms, biholomorphic maps, changing the canonical basis of homology
by a modular transformation. The theory of supermembranes with central charges in the light cone gauge
(LCG) we have constructed depends then on the moduli space of compact Riemanian surfaces Mg only.
In addition when compactify in 9D there has been proved in [15] the hamiltonian is also invariant under
a second SL(2,Z) symmetry associated to the T 2 target space that transform the Teichmuller parameter of
the 2-torus.T 2.

3 Compactification on the remaining S1

We will discuss two approaches for the analysis of the compactification on the remaining S1. In the first
case, we may solve the condition (6), we obtain

dX7 = RLsdX̂s + dφ̂ (11)

where dφ̂ is an exact 1-form and dX̂s as before are a basis of harmonic 1-forms over Σ. We may analyze
the contribution of the dX7 field to the potential of the hamiltonian, we call it V7. It is bounded from below

V7 ≥ 〈
(Drφ)2 + {Xm, X7}2

〉
(12)

which directly shows that the winding corresponding to dX7 does not affect the qualitative properties
of the spectrum of the hamiltonian [8]. The inequality (12) will ensure that the discretness property of
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the latest is also valid for the original complete hamiltonian. We will assume the dual formulation to the
hamiltonian [1] when dX7 is restricted by the condition (6) ensuring that X7 takes values on S1. We
follow [21]. We notice that As is not a connection in a line bundle over Σ. In fact the condition

∫
Σ

Fabdσa ∧ dσb = 2πn (13)

is not necessarily satisfied. In order to have a connection on line bundle over Σ one should require a periodic
euclidean time on the functional integral formulation. In that case the condition (6), ensures that Fμν is the
curvature of a one-form connection over the three dimensional base manifold. Under this assumption the
condition (6) for any Ls implies summation over all U(1) principle bundles.

The final expression of the dual formulation of the hamiltonian when X7 is wrapped on a S1, condition
(6), is

Hd =
∫ √

wdσ1 ∧ dσ2

[
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Pm√
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1
2
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Πr

√
W

)2

+
1
4
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2
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+
1
4
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1
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√
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1
8
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√
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1
8
[Πc∂c(X̂r + Ar)]2

]

+ Λ

({
Pm√
W

, Xm

}
−DrΠr − 1

2
Πc∂c

(
Fab

εab

√
W

))
+ λ∂cΠc] + susy

where DrX
m = DrX

m + {Ar, X
m}, Frs = DrAs − DsAr + {Ar, As},

Dr = 2πRr εab√
W

∂aX̂r∂b and Pm and Πr are the conjugate momenta to Xm and Ar respectively. Dr and
Frs are the covariant derivative and curvature of a symplectic noncommutative theory [4, 6], constructed
from the symplectic structure εab√

W
introduced by the central charge. The integral of the curvature we take

it to be constant and the volume term corresponds to the value of the hamiltonian at its ground state. The
physical degrees of the theory are the Xm, Ar, X7 together with its supersymmetric extension. They are
single valued fields on Σ.

4 N = 1 supersymmetry

The topological condition associated to the central charge determines an holomorphic minimal immersion
from the g-Riemann surface to the 2g-torus target manifold. This minimal immersion is directly related to
the BPS state that minimizes the hamiltonian. When we start with the g = 1 and T 2 on the target space
the ground state preserves 1

2 of the original supersymmetry with parameter a 32-component Majorana
spinor. When we consider our construction for a g = 2, 3 and T 4, T 6 torus on the target, the analysis of
the SUSY preservation becomes exactly the same as when considering orthogonal intersection of 2-branes
with the time direction as the intersecting direction [22]. The SUSY of the ground state preserves 1

4 , 1
8 of

the original SUSY. The preservation of the ground state implies the breaking of the supersymmetry. In the
light cone gauge, we end up, when g = 3, with 1

8 of the original SUSY, that is one complex grassmann
parameter corresponding to a N = 1 light-cone SUSY multiplet. The action is invariant under the whole
light-cone SUSY. However when the vacuum is spontaneously fixed to one of them, the SUSY is broken
at the quantum level up to N = 1 when the target is M5 × T 6. There is no further breaking when we
compactify the additional S1, to have a target M4 × T 6 × S1.
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5 Discretness of the spectrum

We consider a gauge fixing procedure on a BFV formulation of the theory. We consider, in the usual way,
a decomposition of all scalar fields over Σ in terms of an orthonormal discret basis YA(σ1, σ2) and

∫
Σ

{YA, YB}YC = fABC ,

fABC is consequently completely antisymmetric. We then replace those expressions into the hamiltonian
density and integrate the σ1, σ2 dependence. We obtain then a formulation of the operator in terms of the
τ dependent modes only. We now consider a truncation of the operator, that is we restrict the range of the
indices A, B, C to a finite set N and introduce constants fN C

AB such that

lim
N→∞

fN C
AB = fC

AB (14)

fN C
AB are the structure constants of SU(N). In [7] the truncated supermembrane with central charges

compactified on a T 2 was shown to have a SU(N) a gauge symmetry. The algebra of first class constraints
is isomorphic to the algebra of a SU(N) gauge theory. We proceed to the analysis of the spectrum of the
truncated Schröedinger operator associated to Ĥ without further requirements on the constants fN :

i) The potential of the Schröedinger operator only vanishes at the origin of the configuration space,
ii) There exists a constant M > 0 such that

V (X, A, φ) ≥ M ||(X, A, φ))||2 (15)

The Schröedinger operator is then bounded by an harmonic oscillator. Consequently it has a compact
resolvent. We now use Theorem 2 [23] to show that: i) The ghost and antighost contributions to the effective
action assuming a gauge fixing condition linear on the configuration variables, ii) the fermionic contribution
to the susy hamiltonian, do not change the qualitative properties of the spectrum of the hamiltonian. The
regularized hamiltonian compactified on the target space M4 × T 6 × S1 has then a compact resolvent and
hence a discrete spectrum with finite multiplicity. We expect the same result to be valid for the exact theory.

6 Physical properties

Another of the characteristics of the theory is that due to the topological condition the fields acquire mass.
In here, the fields of the theory Xm, Ar, φ acquire mass via the vector fields X̂r defined on the superme-
mbrane. There is no violation of Lorentz invariance. It is important to point out that the number of degrees
of freedom in 11D and in 4D is preserved, but just redistributed. This fact has the a advantage for many
phenomenological purposes of mantaining the number of fields small. At classical level, generically the
analysis of moduli fields have been performed in a supergravity approach [12–14]. Since our approach is
exact these terms do not appear, however the action posseses scalars that may lead to flat directions in the
potential. We are going to analyze the two types of classical moduli. This decoupling approach is only
justified iff the scales of stabilization (the masses of the moduli) are clearly different, otherwise the mini-
mization with respect to the whole set of moduli (geometrical and of matter origin) should be performed.
The theory does not contain any string-like configuration, this is because the scalar fields parametrizing
the position of the supermmbrane gets all mass, so these type of moduli gets fixed. With respect to the
geometrical moduli parametrizing the manifold if we assume that we compactify on a 7 isotropic tori it
can be rigurosuly proved that all of the moduli gets fixed. An heuristical argument to understand better
this effect of moduli stabilization is the following: We are dealing in our construction with nontrivial gauge
bundles that can be represented as worldvolume fluxes [25]. Since for construction the mapping represent a
minimal immersion on the target space they induce a similar effect that the one induced by the generalized
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calibration, that is, there is an associated flux effect on the target space. Minimal immersions take also into
account the dependence on the base manifold, the Rieman surface chosen Σ. The condition of the gen-
eralized calibration -which shows the deformation of the cycles that are wrapped by the supermembrane-
represent a condition for minimizing the energy [26]. It happens the same with the minimal inmersions.
For a given induced flux, one may expect the volume to be fixed [27].

7 Conclusion

We obtained the action of the D = 11 supermembrane compactified on T 6 × S1 with nontrivial central
charge induced by a topological condition invariant under supersymmetric and kappa symmetry transfor-
mations. The hamiltonian in the LCG is invariant under conformal transformations on the Riemann surface
base manifold. The susy is spontaneously broken, by the vacuum to 1/8 of the original one. It corresponds
in 4D to a N = 1 multiplet. Classicaly the hamiltonian does not contain singular configurations and at the
quantum level the regularized hamiltonian has a discrete spectrum, with finite multiplicity. Its resolvent is
compact. The potential does not contain any flat direction on configuration space nor on the moduli space
of parameters. The hamiltonian is stable on both spaces. It is stable as a Schrodinger operator on config-
uration space and it is structurable stable on the moduli space of parameters. The discrete symmetries of
the theory restrict the allowed minimal immersions to those corresponding to an orbifold with G2 struc-
ture. When the symmetries are identified on the target space they lead to a compactification on a true G2
manifold [2].
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