
IOP PUBLISHING CLASSICAL AND QUANTUM GRAVITY

Class. Quantum Grav. 25 (2008) 222001 (8pp) doi:10.1088/0264-9381/25/22/222001

FAST TRACK COMMUNICATION

The inner Cauchy horizon of axisymmetric and
stationary black holes with surrounding matter*

Marcus Ansorg and Jörg Hennig

Max Planck Institute for Gravitational Physics, Am Mühlenberg 1, D-14476 Golm, Germany

E-mail: mans@aei.mpg.de and pjh@aei.mpg.de

Received 6 August 2008, in final form 23 September 2008
Published 23 October 2008
Online at stacks.iop.org/CQG/25/222001

Abstract

We investigate the interior of regular axisymmetric and stationary black holes
surrounded by matter and find that for non-vanishing angular momentum of the
black hole the spacetime can always be extended regularly up to and including
an inner Cauchy horizon. We provide an explicit relation for the regular
metric at the inner Cauchy horizon in terms of that at the event horizon. As
a consequence, we obtain the universal equality (8πJ)2 = A+A− where J is
the black hole’s angular momentum and A− and A+ denote the horizon areas
of inner Cauchy and event horizons, respectively. We also find that in the limit
J → 0 the inner Cauchy horizon becomes singular.

PACS numbers: 04.70.Bw, 04.40.−b, 04.20.Cv

1. Introduction

An interesting feature of the well-known Kerr solution is the existence of a Cauchy horizon H−

inside the black hole. While outside the black hole the two Killing vectors ξ and η, describing
stationarity and axisymmetry, can always be linearly combined to form a time-like vector,
any such non-trivial linear combination inevitably leads to a space-like vector when performed
in some interior neighborhood of the event horizon. As a consequence, the axisymmetric and
stationary Einstein equations, being elliptic in the black hole’s exterior, become hyperbolic in
its interior. Hence, for the Kerr solution a boundary of the future domain of dependence of
the event horizon H+ can be identified, and this is the inner Cauchy horizon in question. As
far as the mathematical form of the field equations is concerned, H− is completely equivalent
to H+. However, from a physical point of view, the inner Cauchy horizon is a future horizon
whereas the event horizon is a past one. While the spacetime is always regular at H+, it is
regular at H− only if the black hole’s angular momentum J does not vanish, i.e. for J → 0
the horizon H− becomes singular.

* This paper is dedicated to Reinhard Meinel on the occasion of his 50th birthday.
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In this communication, we find that this picture also holds true for the black hole’s
interior of general axisymmetric and stationary spacetimes which contain a regular black hole
and surrounding matter1. We are able to provide an explicit relation between the metric at the
inner Cauchy horizon and that at the event horizon. Moreover a universal equality

(8πJ)2 = A+A− (1)

results where A− and A+ denote the horizon areas of inner Cauchy and event horizons,
respectively.

This is organized as follows. In section 2, we recall Weyl’s coordinates which cover
an exterior vacuum vicinity of the black hole. In order to describe the black hole interior
we introduce Boyer–Lindquist-type coordinates. We revisit the formulation in terms of the
complex Ernst potential for which the Einstein equations can be combined in the complex
Ernst equation. In section 3, we use this formulation to write the Ernst potential f , describing
the exterior vicinity of a black hole, as a Bäcklund transform of another Ernst potential f0

which corresponds to a spacetime without a black hole, but with a regular central vacuum
region2. In section 4, we take the Bäcklund representation in order to expand f into the
interior of the black hole. It turns out that by utilizing appropriate symmetry properties of f0,
an explicit formula of the Ernst potential f at the inner Cauchy horizon H− in terms of that at
the event horizon H+ can be derived. Finally, from this formula we are able to conclude the
universal equality (1), see section 5.

2. Weyl coordinates and Ernst equation

In the vacuum vicinity of the black hole’s event horizon3 the Ernst potential is most easily
introduced by utilizing the line element in Weyl coordinates (�, ζ, ϕ, t):

ds2 = e−2U [e2k(d�2 + dζ 2) + �2 dϕ2] − e2U(dt + a dϕ)2, (2)

where the metric potentials U, k and a are functions of � and ζ alone. Along the rotation
axis, � = 0, |ζ | � 2rh, the axial Killing vector η vanishes identically. The event
horizon H+ is a degenerate surface when considered in Weyl coordinates. It is located at
� = 0,−2rh � ζ � 2rh, see figure 1, left panel.

The constant rh > 0 describes a coordinate radius of the event horizon in the Boyer–
Lindquist-type coordinates (R, θ, ϕ, t) which are introduced via

�2 = 4
(
R2 − r2

h

)
sin2 θ, ζ = 2R cos θ. (3)

These coordinates allow us to expand the metric coefficients into the interior of the black
hole4. The horizons H± are located at R = ±rh, see figure 1, right panel.

The complex Ernst potential f combines metric functions,

f = e2U + ib, (4)

where the twist potential b is related to the coefficient a via

a,� = � e−4U b,ζ , a,ζ = −� e−4U b,�, (5)

or, in terms of R and θ ,

a,R = −2 sin θ e−4U b,θ , a,θ = 2
(
R2 − r2

h

)
sin θ e−4U b,R. (6)

1 Note that we concentrate here on pure gravity (i.e. no electromagnetic fields) with vanishing cosmological constant.
2 A well-known example for this procedure is the construction of the Kerr solution from the Minkowski space f0 = 1,
see e.g. [13].
3 For a stationary black hole spacetime, the immediate vicinity of the event horizon must be vacuum, see, e.g. [4].
4 The interior (−rh < R < rh) corresponds to negative values of �2.
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Figure 1. Sketch of a part of a black hole spacetime in Weyl coordinates (left panel) and Boyer–
Lindquist-type coordinates (right panel). We study a vacuum region in an exterior vicinity of the
event horizon and the interior of the black hole (gray areas).

The vacuum Einstein equations are equivalent to the Ernst equation [7], which reads in Weyl
coordinates as

(�f )

(
f,�� + f,ζζ +

1

�
f,�

)
= f 2

,� + f 2
,ζ (7)

and in Boyer–Lindquist-type coordinates:

(�f )
[(

R2 − r2
h

)
f,RR + 2Rf,R + f,θθ + cot θf,θ

] = (
R2 − r2

h

)
f 2

,R + f 2
,θ . (8)

Note that k can be calculated by a line integral once f is known, see e.g. [2].
For convenience we introduce the following metric functions that are, for a regular black

hole, positive and analytic in terms of R and cos θ in the black hole vicinity, see [4, 10]:

μ̂ := 4 e2k−2U
(
R2 − r2

h cos2 θ
)
, û := 4

(
R2 − r2

h

)
e−2U − a2

sin2 θ
e2U . (9)

At H+, the gravito-magnetic potential ω, likewise analytic in R and cos θ and defined through

ω := a e4U

4
(
R2 − r2

h

)
sin2 θ − a2 e4U

, (10)

assumes the constant value ω+ describing the angular velocity of the event horizon.
Because of the degeneracy of H+ in Weyl coordinates, the potential f is, for � = 0, only

a C0-function in terms of ζ . However, as the functions μ̂, û and ω, also f is analytic with
respect to the Boyer–Lindquist-type coordinates R and cos θ .

In the following sections we shall see that our conclusions only work if (i) ω+ �= 0 and
(ii) b(� = 0, ζ = 2rh) �= b(� = 0, ζ = −2rh). However, both situations may occur. If a
rotating black hole with J �= 0 is dragged along by the motion of a surrounding, sufficiently
relativistic counter-rotating torus then (i) the horizon angular velocity or (ii) the black hole’s
Komar mass may vanish (see [3]) which would correspond to the two situations in question.
Nevertheless, in such a case our considerations can still be applied if one uses the Ernst
formulation in a rotating frame of reference ϕ′ = ϕ + 
t,
 = constant. It can be shown that
any such rotating system with 
 �= ±κ+A+/(8πJ) (‘±’ for the cases (i) and (ii) respectively)
and 
 �= 0 could then be taken, where κ+ is the black hole’s surface gravity of the event
horizon. Therefore, without loss of generality we shall henceforth assume that ω+ �= 0 and
b(� = 0, ζ = 2rh) �= b(� = 0, ζ = −2rh).
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3. Bäcklund transformation

The Bäcklund transformation is a particular soliton method, which creates a new solution from
a previously known one. For the Ernst equation this technique can be applied to construct
a large number of axisymmetric and stationary spacetime metrics [1, 2, 8, 12, 13]. In this
communication, we consider the Bäcklund transformation in order to write an arbitrary regular
axisymmetric, stationary black hole solution f in terms of a potential f0, which describes a
spacetime without a black hole, but with a completely regular central vacuum region.

Theorem 3.1. Consider a regular axisymmetric and stationary black hole solution f

describing a sufficiently small exterior vacuum vicinity V of the event horizon H+. Then
an Ernst potential f0 = e2U0 + ib0 of a spacetime without a black hole can be identified with
the following properties:

(i) f0 is defined in the vicinity of the axis section � = 0, |ζ | � 2rh.
(ii) In this vicinity, f0 is an analytic function of � and ζ and an even function of �.

(iii) The axis values of f0 in terms of those of f for � = 0, |ζ | � 2rh are given by

f0 = i
[
2rh

(
b+

N + b+
S

) − (
b+

N − b+
S

)
ζ
]
f + 4rhb

+
Nb+

S

4rhf − i
[
2rh

(
b+

N + b+
S

)
+

(
b+

N − b+
S

)
ζ
] , (11)

where b+
N = b(� = 0, ζ = 2rh) and b+

S = b(� = 0, ζ = −2rh) (twist potential values at
the north and south poles of H+).

From this Ernst potential f0 the original potential f can be recovered in all of V by means of
an appropriate Bäcklund transformation of the following form:

f =

∣∣∣∣∣∣
f0 1 1
f̄ 0 α1λ1 α2λ2

f0 λ2
1 λ2

2

∣∣∣∣∣∣∣∣∣∣∣∣
1 1 1

−1 α1λ1 α2λ2

1 λ2
1 λ2

2

∣∣∣∣∣∣
, (12)

where

λi =
√

Ki − iz̄

Ki + iz
, i = 1, 2, K1 = −2rh, K2 = 2rh (13)

with the complex coordinates z = � + iζ, z̄ = � − iζ , and α1, α2 are solutions to the Riccati
equations

αi,z = −(
λiα

2
i + αi

) f0,z

2 e2U0
+ (αi + λi)

f̄ 0,z

2 e2U0
, (14)

αi,z̄ = −
(

1

λi

α2
i + αi

)
f0,z̄

2 e2U0
+

(
αi +

1

λi

)
f̄ 0,z̄

2 e2U0
(15)

with

αiᾱi = 1. (16)

Proof. First we show that the axis values of f0 as given in (11) form an analytic function with
respect to ζ . Using the analyticity of û (being strictly positive) and ω with respect to cos θ as
well as equations (9) and (10), we may express e2U and b on H+ as

e2U = −(ω+)2û sin2 θ, b = 1
2

[
b+

N + b+
S +

(
b+

N − b+
S

)
cos θ

]
+ A sin2 θ, (17)
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with A also being an analytic function in cos θ . Then (11) leads to

f0 =
(
b+

N − b+
S

)2

4[(ω+)2û − iA]
+

i

2

[
b+

N + b+
S − (

b+
N − b+

S

)
cos θ

]
, (18)

which is analytic in cos θ (and hence in ζ ) and has a strictly positive real part (recall that,
without loss of generality, ω+ �= 0 and b+

N �= b+
S, see the end of section 2). Starting from the

boundary values (11), we can expand f0 analytically and uniquely into some neighborhood of
the axis part � = 0, |ζ | � 2rh by virtue of the Ernst equation, see [9, 14]. This means that
in contrast to f the Ernst potential f0 is analytic with respect to the Weyl coordinates (�, ζ )

within this neighborhood. Most important for later use, this axisymmetric expansion of f0 is
even in �.

Now we show that a Bäcklund transformation, applied to f0, returns our original Ernst
potential f . To this end we need to choose appropriate integration constants for the above
Riccati equations.

Equations (14) and (15) can be solved explicitly on the horizon H+, where λi = ±1 holds.
We are free to choose the sign convention λ1 = −1, λ2 = 1. Then on H+ equations (14) and
(15) reduce to

αi,ζ = αi + λi

2 e2U0
(−λiαif0,ζ + f̄ 0,ζ ) (19)

with the solution

α1(ζ ) = − f̄ 0(ζ ) + iγ1

f0(ζ ) − iγ1
, α2(ζ ) = f̄ 0(ζ ) + iγ2

f0(ζ ) − iγ2
. (20)

The integration constants γi are real numbers in order to guarantee (16).
In terms of the coordinates R and θ , the above Bäcklund transformation equation (12)

reads generally as follows:

f = [α1(R + rh cos θ) − α2(R − rh cos θ)]f0 + 2rhf̄ 0

α1(R + rh cos θ) − α2(R − rh cos θ) − 2rh
. (21)

On the horizon H+ (R = rh), equations (20) and (21) lead to an Ernst potential with the values
iγ1 and iγ2 at the north and south poles of H+ respectively. Now, if we choose consistently
γ1 = b+

N and γ2 = b+
S, then (21) becomes equivalent to (11). Since in the vicinity of H+ the

Ernst potential f is uniquely determined by its horizon values (due to a theorem by Hauser
and Ernst [9]), we recover the original solution f in this vicinity. �

4. The Ernst potential on the Cauchy horizon

In this section we expand the exterior Ernst potential f into the interior of the black hole, i.e. to
the region R ∈ [−rh, rh]. As mentioned in section 2, for regular black holes the Ernst potential
f is analytic with respect to R and cos θ in an exterior vicinity of H+. Hence we can expand it
analytically into an interior vicinity of H+. Then, due to a theorem by Chruściel (theorem 6.3
in [6]5), the potential f exists as a regular solution of the interior Ernst equation for all values
(R, cos θ) ∈ (−rh, rh] × [−1, 1], i.e. within a region that only excludes the Cauchy horizon
H− (R = −rh). In the following we obtain an explicit formula for f on H− in terms of the
boundary data on H+, which shows that f is also regular on H− provided that J �= 0 holds.

5 We note that the interior spacetime region of axisymmetric and stationary black holes is closely related to Gowdy
spacetimes. In particular, we obtain Chruściel’s form of the Gowdy spacetime metric by substituting R = rh cos T

and θ = ψ . More information will be presented in [11].
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Figure 2. The seed function f0 can regularly be defined in at least the gray areas.

A crucial role for our consideration is played by the fact that f0 is even in �, see the
discussion in section 3. Hence, in terms of the Boyer–Lindquist-type coordinates (3), f0 is an
analytic function of

(
R2 − r2

h

)
sin2 θ and R cos θ . The analytic expansion of f0 into the region

R < rh retains this property. As a consequence we find that the interior boundary values
f0(R, cos θ = ±1),−rh � R � rh, as well as f0(−rh, cos θ) are given in terms of the values
at R = rh. Also it follows that f0 is regularly defined in a sufficiently small vicinity of the
boundary of the interior region, see figure 2. Specifically we obtain

f0(R = −rh, cos θ) = f0(R = +rh,− cos θ). (22)

These properties allow us to construct f on H− from f0 via the Bäcklund transformation (12).
As done for the proof of theorem 3.1, we solve the Riccati equations (14) and (15), now on
H− and for cos θ = ±1 in accordance with the solution on H+, thereby obtaining a unique
continuous function f defined on the entire boundary of the interior region. In particular we
find the following.

Theorem 4.1. Any Ernst potential f of a regular axisymmetric and stationary black hole
spacetime with angular momentum J �= 0 can regularly be extended into the interior of
the black hole up to and including an interior Cauchy horizon, described by R = −rh in
the Boyer–Lindquist-type coordinates (R, θ). The values of f on the Cauchy horizon are
given by

f (R = −rh, cos θ) = i[δ1 + δ2 − (δ1 − δ2) cos θ ]f0(R = rh,−cos θ) + 2δ1δ2

2f0(R = rh,−cos θ) − i[δ1 + δ2 + (δ1 − δ2) cos θ ]
(23)

with6

δ1 = b+
S

(
b+

N − b+
S

)
+ 2b+

N(b,θθ )
+
N

b+
N − b+

S + 2(b,θθ )
+
N

, δ2 = b+
N

(
b+

N − b+
S

)
+ 2b+

S(b,θθ )
+
N

b+
N − b+

S + 2(b,θθ )
+
N

, (24)

where the scripts ‘+’ and ‘N/S′ indicate that the corresponding value of b or its second θ -
derivative has to be taken at the event horizon’s north or south pole respectively. The values
of the seed solution f0 for R = rh follow via (11) from f on the event horizon. For J → 0 the
Cauchy horizon becomes singular.

6 As we shall see in (29), δ1 and δ2 are well defined because b+
N − b+

S + 2(b,θθ )
+
N �= 0 for J �= 0. For J → 0 we have

|δ1/2| → ∞ and f |H− diverges.
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5. A universal equality

With the relation between f |H+ and f |H− we are able to prove the equality (1). Angular
momentum J and horizon areas A± are given as follows in terms of the Ernst potential:

J = 1

8π

∮
H±

ηa;bdSab = − 1

16

∫ π

0
û2ω,R

∣∣
H± sin3 θ dθ = 2

b+
S − b+

N(
b2

,R

)+
N

− rh

4
(b,R)+

N, (25)

A± = 2π

∫ π

0

√
μ̂û

∣∣
H± sin θ dθ = 4πû±

N = ± 32πrh

(e2U
,R)±N

. (26)

Here we used (9), (10) and equation (18) of [10] (together with a corresponding version
valid on H−). The derivative f,R on H± can be calculated from f and its θ -derivatives by
considering the Ernst equation (8) which becomes degenerate at R = ±rh. In particular, at
the north and south poles where e2U = 0 and f,θ = 0, we obtain via L’Hospital’s rule

f,R = ±i
f,θθb,θθ

rh e2U
,θθ

for R = ±rh, sin θ = 0. (27)

With the formula (23) for the Ernst potential on the Cauchy horizon, we finally arrive
after some calculation at

A+ = −32πr2
h

e2U
,θθ

b2
,θθ

∣∣∣∣∣
+

N

, A− = −8πr2
h

(
b+

N − b+
S + 2(b,θθ )

+
N

)2(
e2U

,θθb
2
,θθ

)+
N

, (28)

J = −2r2
h
b+

N − b+
S + 2(b,θθ )

+
N(

b2
,θθ

)+
N

, ω+ = (b,θθ )
+
N

4rh
�= 0. (29)

Note that e2U
,θθ < 0 as A+ > 0 for regular black holes. Together with the results in [10] we

thus find the following.

Theorem 5.1. Every regular axisymmetric and stationary black hole with non-vanishing
angular momentum J satisfies the relation (8πJ)2 = A+A− where A± are the horizon areas
of event (H+) and Cauchy horizon (H−). If in addition the black hole is sub-extremal (i.e. if
there exist trapped surfaces in every sufficiently small interior vicinity of H+, see [5]), then
the following inequalities hold: A− < 8π |J | < A+. Moreover, sub-extremal black holes with
J �= 0 have no trapped surfaces in sufficiently small interior vicinities of H−.

Acknowledgments

We would like to thank Vincent Moncrief and Alan Rendall for many valuable discussions.
This work was supported by the Deutsche Forschungsgemeinschaft (DFG) through the
Collaborative Research Centre SFB/TR7 ‘Gravitational wave astronomy’.

References

[1] Ansorg M 2001 Gen. Rel. Grav. 33 309
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