The Gradient Flow of the Mobius
Energy Near Local Minimizers
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In this article we show that for initial data close to local minimizers
of the Mobius energy the gradient flow exists for all time and converges
smoothly to a local minimizer after suitable reparametrizations. To prove
this, we show that the heat flow of the M&bius energy possesses a quasi-
linear structure which allows us to derive new short-time existence results
for this evolution equation and a Yojasiewicz-Simon gradient inequality for
the Mobius energy.
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1. Introduction

The search for nice representatives of a given knot class led to the invention of a variety
of new energies which are subsumed under the term knot energies. These new energies
were needed basically due to the fact that other well known candidates like the elastic
energy cannot be minimized within a given knot class [14] or at least their gradient
flow can leave the given knot class (which can be seen for the elastic energy along the
lines in [3]).

This article deals with the gradient flow of the Mobius energy proposed by Jun
O’Hara in [12]. For curves v : R/Z — R"™ this energy is defined as

200~ [ (R - mg) MOl @l
(

R/Z)?

where d (u,v) denotes the distance of the points y(u) and v(v) along the curve . E is
called Mobius energy due to the fact that it is invariant under Mébius transformations.

Michael Freedman, Zheng-Xu He, and Zhenghan Wang showed in [6] that the dif-
ferential of the MGbius energy can be represented as

B = [ (Hyw).hw) -1 (0)ldu
R/Z

for all imbedded regular curves v € H3*(R/Z,R") and h € H*(R/Z,R"), where

L Py =) 1 d (A (u) Y (v)|dv
H~(u) =2 lim 2 3 - p 5
N0 Y(©) = (u)] [y (W)l du \|v'(w)| ) ) Iy(v) = 7(u)]
[v—u|>e
and P,#(u)(w) =w — <u), %> % for all w € R™ (for a rigorous argument for

the fact that this is the L?- gradient of E see [13, Chapter 1])
In this paper we will investigate time dependent families of curves () which move
in the direction of Hy(t), i.e. for which

Oy = —H~, (1.1)
or whose normal velocity is given —H~, i.e. for which
Oty = —Hn. (1.2)

where ;- = P,jﬂﬂ.

The key to the results in this article is the observation that the evolution equation
(1.1) can be written in a quasilinear form. To formulate this result let Cf',. for a > 1
denote the set of all embedded and regular curves in C'* and

vt = iy [ (1E D= 0] )

N0 |w]? jw[?”
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for I. := [~1/2,1/2]\[~¢,¢]. The functional Q is well-defined for f € C3t*(R/Z) for
a > 0. Note that C}", is an open subset of C*.

Theorem 1.1 (Quasilinear structure). There is a mapping

Fe () Cc¥(CH*(R/Z,R™),CP(R/Z,R™))
a>B>0

such that

2 L1
for all v € H3(R/Z,R"). 1

Here, C“ stands for real analytic mappings.
In [8], He calculated the linearization of H around curves parametrized by arc-length

and found that 9
T ~
T8+ Ly(h)

where L is a differential operator of order < 2 and A = 88722 Unfortunately, in He’s

ViH(y) =

calculations the symbol of the operator L depends on the third derivatives of v and thus
he could show short time existence only for smooth initial data using the Nash-Moser
implicit function theorem.

The structure in Theorem 1.1 enables us to show the following short time exis-
tence result which contains smoothing effects for C2*¢ initial data. To state it, let
hk+*(R/Z) for k € N, a € (0,1) denote the little Holder spaces, i.e. the closure of
C*(R/Z) under ||-||gr+a, and let hﬁj”‘(R/Z, R™) denote the set of all injective and reg-
ular curves in h*t*(R/Z,R"). Given a curve v € C} (R/Z,R™), let h***(R/Z,R™)>-
denote the space of all vector fields in h*T%(R/Z, R™) that are normal to .
Theorem 1.2 (Short time existence). For every a > 0, a ¢ N there is a strictly
positive, upper continuous function r : h>T*(R/Z,R") — (0,00) with the following
property:

Let o € CR.(R/Z,R™). Then for every

Ny € Vr(’)/o) = {f € (h2+a(R/Z’Rn))’JY_o : Hf”Cl < T("yo)}

there is a constant T = T(No) > 0 and a neighborhood of U C V(7o) of No such
that for every No € U there is a unique solution Ny, € C([0,T),h***(R/Z);,) N
CH((0,T7),C*(R/Z)y,) of

{a#wo +N)=—H(y+N) tel0,7], 13)

N(0) = No.

Furthermore, the flow (No,t) — Ny, (t) is in C*((U x (0,T)), C*(R/Z)).

n fact, one can even exchange Q by ﬁ(fA)?’/2 using [8, Lemma 2.3] and regularity results for
pseudo-differential operators. We do not prove this here, since we do not need it, but this relation

is the motivation for many manipulations we make.



As for every v € hi‘ﬁa(R/Z,R") there is a 70 € CPO(R/Z,R™), N € V.(y0) and
a diffeomorphism ¢ € C?T*(R/Z,R/Z) such that v o = 49 + N, (cf. Lemma
3.1), Theorem 1.2 gives us a solution to the gradient flow for every initial data in
hito‘(]R/Z,R”) (cf. Corollary 3.2 for a precise statement). Due to the uniqueness
mentioned in this result, it makes even sense to speak of maximal solution of (1.1) in
the sense that the time of existence is maximal. Such a maximal solution is unique up
to reparametrizations.

Using the analyticity of the term F' in Theorem 1.1, we will then derive the following
Y.ojasiewicz-Simon gradient estimate for the Mobius energy

Lemma 1.3 (Lojasiewicz-Simon gradient estimate). Let vy € C{N.(R/Z,R™) be a
stationary point of the Mobius energy. Then there are constants 6 € [0,1/2], o,¢ > 0,
such that every v € H? (R/Z,R™) with ||y — yu| gs < o satisfies

1/2
£0) - Boa = <o ([ 1 @PR @las)

R/Z

Combining Theorem 1.2 with Lemma 1.3, we get the main result of this article -
long time existence for (1.1) near local minimizers

Theorem 1.4 (Long time existence). Let vy € C°(R/Z,R™) be a local minimizer of
the Mdbius energy in C*(R/Z,R™) for some k € Ny, i.e. let there be a neighborhood
U of yur in C*(R/Z,R™) such that

E(y) > E(ym), VyeU.

Then for every B > 0 there is a neighborhood V' of var in C**3(R/Z,R™) such that
for all vg € V' the heat flow (1.1) with initial data vy exists for all times and converges
after suitable reparametrizations to a stationary point v satisfying

E(vs0) = E(vm)-

In [6], Freedman, He, and Wang showed that there are in fact minimizers of the
Mobius energy in all prime knot classes. As He showed that all these minimizers are
smooth (cf. [8]), the above theorem tells us that the gradient flow converges to such a
minimizer if we start near to one.

Please note, that the precise value of constants in the proofs may change from line
to line and that the summation convention is used in this article.

2. Quasilinear Structure

The proof of Theorem 1.1 basically relies on Taylor approximation and estimates for
the multilinear Hilbert transform which can be found in the appendix (Lemma A.5).
Furthermore, it uses the relation of H to the operator H we will introduce now.



Using I. = [-1/2,1/2]/[—¢, €] we can write

Hry(u)

ot [ (20w —a@) d(wu)) ' (u + w)|dw
N0 [v(u+w) —y(u)? [ (W) du \ |/ ()] ) ] |v(u+w) —~y(uw)]?

€

— 9 lim Y(utw) —y(w) —wy'(w)  "(u) [ (u + w)|dw
o 2g\01 (2 1y (u 4 w) —y(u)[? Iv’(U)IZ’) [y (u+w) —y(u)[?
one easily sees that R
H(y) = PyH(v). (2.1)

The first step in the proof of Theorem 1.1 is to show that the difference between H~
and %QW — which is well-defined for v € C3+%(R/Z,R"), a > 0 — can be extended

to an analytic operator from C?T® to C? for all a > f.

Lemma 2.1. There is a map F € Nasp>0 C“(CZ?“(R/Z,R"),O@(R/Z, R™)) such

that
1y = Qe+ F) Yy € B (R/ZR),

Proof. We have

1~ 1

iHW(U) - WQW(U)

=0 ! - 1 u+w) —y(u) —wy (u

2/(wm+wwumm2 el () =200 w0
Nutw)

(w4 w) =~ (w)?
Y(utw) —y(w) —wy'(w) — y"(u) 1 o1
+I/ (2 [y () [Pw? 7’(U)2> <7(U+w)—7(U)I2 IV’(U)I%Q)

€

! ( + w)du
Pt w) = () — ey () ") \ Bt w) =@l
*/(2 7 (w)[Pw? www) P

€

Let us denote the first integral on the right hand side of the last equation by I (y;e),
the second integral by I(v;¢), and last one by I3(v;e).



We define

(1 —t)y"(u + tw)dt,

s )
() () = <7( Tt |>dt

1
/
(Bun)lu) = (1= 00w+ tw) =" ()dt = (aun)(a) " (a)
0
/ |7/ (u + tw)
0

’LU(Xw")/)(U) =1- w2|'y’(u)|2
¢ [y (u +w) —y(u)?
o) =

for regular injective curves vy € Czjo‘(R/Z,R”) and w € [-1/2,1/2]. Taylor approxi-
mation of v yields

2

7+ ) — A () = ‘wv’(U) u? [ ottt
0

1

L 2
= )2 + 2wy (u /lft W (u+ tw)dt + w? (/ 'y’/(qutw)d)
0 0

w2
= wy (u)? <1+| 20 () () (u >+W~<aw><u>2>~

7 (w)
=’y (u)*(1 - w(Xy7)(w).

We will also need this in the version

2w 2

(X (1) = 1=w(Xuy) () = 1+ =" (u) (@) (w) +

1Y ()] 5 (o) (0)?. (2.3)

7' ()]

Using
1 x?
l-z)"" =142+ -

we get

1 1 1 2((Xw7)(u)Jr (Xwy)(u)® )

o) —v@f  P@Pe?  p@P\ w I eX)@)
(2.4)



for all w > 0 as the injectivity of the curve v implies

[y (u + w) = y(u)?
w?|y' (u)[?

(X)) (w) =1 —wX (v;u,w) = > 0.

Together with

Y(u+w) = y(u) — wy'(u) = w? /(1 — )" (u + tw)dt = w?(awy)(u),
0

1
1) Z 900 =0T iy = [(1-0) (0t ) = 7 @) = (Bu) @)
0
and
s )l = @l = w [ (R 0) ) de = (b))
0
we get
a2 Xe@) ,  Xe))@? N
O / (B2 i) e
(1 + w(Xyy)(u) + %) 17 (u + w)|dw,
M) K)@? |,
and
Bw'}/ M u)dw
Hoe) = 2 / ! (1wt + 72 COY (5,0

After factoring out these expressions using Equation (2.3) and |y (u+w)| = wd,y(u)+
|7/ (u)], Lemma 2.2 together with Lemma A.2 tell us that these integrals define analytic
operators from C?+%(R/Z,R") to C#(R/Z,R") for all a > 3. O

Lemma 2.2. Let ly,ls,13,l4 € Ng and M : (R™)2 — R* be a ly-linear mapping. Then

[T (@) (). (00 ) ) () ),
(T7)(w) := lim, 1= w(Xur) (W) ‘

IE

defines an analytic map in C“’(Czja(R/Z,R"), CP(R/Z),R¥) for all a > 3> 0.



Proof. We will use the shorthand M (v) for M (v,...,v).
Step 1: The non-singular case [; > 0:

Let o be fixed. For w € [—1/2,1/2] we define the function Ty, : sz(R/Z,R”) —
C*(R/Z,R) by

hi—1 My (@) 0wy (u))
(Xwy(u))h

Twy(u) :=

for all u € R/Z.
Since the function «,, is linear, we get a C' < oo such that

[Daw (V)| Licrte,coy = llwllLcrre,coy < C Vw € [-1/2,1/2],

(2.5)
D"oa = VYm > 2.

We write d,, as

g R"xR" =R

qi(z,y) = <l'a |z|>

is analytic away from {0} x R™, we get that Jy is analytic on the set CZ’T“ (R/Z,R™).
Hence, there is an open neighborhood U of 7y and a constant C' < co such that

D™ 80 (N L(cot2,0) = ID™00(N) || L(cos2,00) < C™ml Wy € Ut € [0,1].
Applying Lemma A.3, we get

D™ 6w (V)| L(ca+2,00) = D™ 00 (V)| L(cat2,cay < C™ml ¥y € U. (2.6)

To get an estimate for X,, we first observe that

_ (Jy (1) dt)

(Xwy)(u) = Iv O = g2((Xuwy) (1), (u))

where go(z,y) 1= ‘ly\IZ and (X, fo (u+ tw)dt. Since X, is linear from C+1
to C* and with operator norm bounded by 1, we get using Lemma A.2 again that
there is a neighborhood U’ C U of vy and a constant C' < oo such that

D™ XN L(cot2,coy < C™m! (2.7)



for all v € U’

Using that  — 27! is analytic on (0,00) and that there is an open neighborhood
U" C U’ such that 0 < inf ey uweryz(Xwy)(u) and sup.,cpr yer/z(Xwy) (1)) < o0,
we see that there is a constant C' < oo such that

ID™ (X)) (W)l (2,00 < C™ml - Yy € U (2.8)
Combining Equations (2.5), (2.6), and (2.8) with Lemma A.2, we get
D™ To(V)l| L(0at2,00) < MPC™ml - Wy € U”

and hence by Lemma A.3 T is analytic on U” from C?** to C°.
Step 2: The singular case [; = 0.

Using the Taylor expansion
1
(1—az)" —1+l4x+l4l4+1x2/1—t —l=2gy
0

for x = wX,, (7)(u), we get

Tow(y)u = w™ M (awy(w)) (duy(u))" (1 +lwXo (7)(w) + la(ls + Dw? X (7) (u)?

/ (1— (1 thw(fy)(u))l42dt>
0
= (T, () + (T2y) (u) + (T7) (w),

where

Ty (w) = w™' M (awy () (w7(
Ty (u) = LM (uy (w)) (3 ()" X (7) (w)
(

T3y(u) = la(ls + D)wM (cwy(u)) (607(1)" X (7) (1)

: /(1 — £)(1 — twX o () (w) "1 ~2dt.

0

Plugging in the definition of «,, and J,, and interchanging the order of integration we



get

[ [ ] e

[0,1]*2 [0,1]'s
/M(’y”(u—khu}),...,'y”(u+tlzw))
I
"(u+ s;w)
It "(u 4+ s;w ,’y(uiz dwds' dt'?
(1t (b,

/ // Y)Wt tlz,sl,313)olwdslddtmﬁ'1

[0,1]*2 [0,1]¢8 Ie

where

(T%u)(w, t1y .. iy 81, 815) i=

I (1) (M6 ot e (5 s, T
;

_ am "(u /(u) I3
M) 6w, )

Form the Holder regularity of v we deduce that T%u is integrable and hence

- 1
il\l% T, v (u)dw
/ / ( lim / w)(w, b, .ty s1, 313)dw> ds's dt?2 !
e\0
[0,1]*2 [0,1]'s

Applying Lemma A.6 for the inner integral and then Lemma A.3, we get (T17)(u) =
limeyo f; T (7)(w)dw is analytic fromm C*** to CF for all a > 8 > 0.

Step 1 implies that the term (7%v)(u) := lim.\ f] ~)(u)dw is an analytic op-
erator from C?T® to C* for all a > 0.

The term T3 can be written using Equation (2.3) as a sum of expressions of the

form
1 51 1
3
cw/ aw’y / (1 = t) Iy q,dt
(1- th
0 0

where l~2 € N. Since X,, is analytic and

inf {1 — tw(Xyy)(u) iy € U" w e [-1/2,1/2),u € R/Z,t € [0,1]} > 0,

10



there is a constant C' such that
HDm,ILwHL(Cz*Q,CO‘ < C™m! Vte [O, 1],’UJ S R/Z

Using Lemma A.3 twice, we get that T° is analytic from C’Zja to C'*. This finishes
the proof of the statement for T,,.
O

Proof of Theorem 1.1. From Lemma 2.1 we get an F € [ Cv(C*e CP) such

that for all v € H} (R/Z,R")

a>pB>0

. 1 -
H(v) = WQ(W) + F (7).
Hence,
~ 1
H(y) = Py(H(7)) = WP#/Q(W) +F(y),
where , ,
- : 2oy 1\
P = PHFO) = o) = (PO )
From F € Nas =0 C(C*T*,CP) we hence deduce that F € ), 55, C*(C*T*,CP).

O

3. Short Time Existence

In this section we derive short time existence results for the gradient flow of the M6bius
energy. For this we will work with families of curves that are normal graphs over a
fixed smooth curve. We show that for initial data o that can be written as this fixed
smooth reference curve plus a vector field that belongs to a certain open neighborhood
around 0 in the space of h2T® vector fields, there is a family v; of curves with normal
velocity —H (7y;) and converging to 7o in h%< as ¢t \, 0.

To describe these neighborhoods, note that there is a strictly positive, lower semi-
continuous function r : C?, (R/Z,R™) — (0, 00) such that

7+ (N € CHR/ZRYE | N]ior < r(7)} € G2 (R/Z,R)
for all v € CZ?“(R/Z,R”) and
< i "(z)]. :
r) <12 inf /(@) (3.1)

Here, C*(R/Z,R™); denotes the space of all vector fields N € C*(R/Z,R™) which are
normal to v, i.e. for which (v'(u), N(u)) = 0 for all u € R/Z. Letting

Vr(7) = {N € *T*(R/Z,R"); : [Nllcr < r(7)}

11



we have for all v € b} (R/Z,R")
v+ Vely) C B2 (R/Z,R™). (3.2)

Let N € V(7). Equation (3.1) guarantues that P(J,;+N),(u) is an isomorphism from
the normal space along v at u to the normal space along v+ N. Otherwise there would
be a v # 0 in the normal space of v at u such that

N)Y (u NY (u
0= P(+‘/+N)'(u)(v) =v— <U7 |EZ$N;/EU§|> SRRMELY

which would contradict

U_<U(V+NYW)>(V+NY
Ny +NY W)/ (v + NY

For v € C'((0,T),C}.(R/Z,R™)) we denote by
9y = Py (0v)

the normal velocity of the family of curves.
We prove the following strengthened version of the short time existence result men-
tioned in the introduction

| 2141

N ([
o o NG| 2 2>

Theorem 1.2 (Short time existence for normal graphs). Let vo € C*°(R/Z,R™) be
an embedded regular curve and o > 0, o ¢ N. Then for every Ny € V(7o) there is a
constant T = T(Ny) > 0 and a neighborhood of U C V, of Ny such that for every Ny €
U there is a unique solution Ng € C([0,T),*t*(R/Z);,) N CH((0,T),C>(R/Z)3,)
of

N(0) = Np. (3:3)

Furthermore, the flow (No,t) — Ny, (t) is in C*((U x (0,T)), C*(R/Z)).

The proof of Theorem 1.2 consists of two steps. First we show that (3.3) can be
transformed into an abstract quasilinear system of parabolic type. The second step is
to establish short time existence results for the resulting equation.

The second step can be done using general results about analytic semigroups, reg-
ularity of pseudo-differential operators with rough symbols [4], and the short time
existence results for quasilinear equations in [2| or [1]. Furthermore, we need contin-
uous dependence of the solution on the data and smoothing effects in order to derive
the long time existence results in Section 5.

For the convenience of the reader, we go a different way here and present a self-
contained proof of the short time existence that only relies on a characterization of the
little Holder spaces as trace spaces. In Subsection 3.1, we deduce a maximal regularity
result for solutions of linear equations of type dyu+ a(t)Qu+b(t)u = f in little Holder
spaces using heat kernel estimates. Following ideas from [2], we then prove short time
existence and differentiable dependence on the data for the quasilinear equation.

The following lemma (the proof of which we postpone till the end of the section),
will allow us to solve the gradient flow for all initial data in hf:" (R/Z,R™).

{(8#(70 +N)=—H(y +N) tel0T],

12



Lemma 3.1. Let r : hi’ra(R/Z, R™) — (0,00) be a lower semi-continuous function.
Then for every 7 € hit®(R/Z,R™) there is a v € CS(R/Z,R™), N € V() and a

7,7

diffeomorphism ¢ € C*T*(R/Z,R/Z) such that yo =~ + N
Combining Theorem 1.2 with Lemma 3.1 we immediately get

Corollary 3.2 (short time existence). Let vy € hi‘ﬁa(R/Z,R”), a >0, a ¢ N.
Then there is a constant T > 0 and a reparametrization ¢ € C***(R/Z,R/Z) such
that there is a solution v € C([0,T), h?;a(R/Z,R”)) NCY(0,T),C>®(R/Z,R™)) of the
initial value problem

Opy=—H(y) Vte[0,T],

7(0) =100 ¢.

This solution is unique in the sense that for each other solution

5 e C([0,T), h2t*(R/Z,R™)) N C*((0,T), C*(R/Z,R™))

s g

and each time t € (0, min(T, T)] there is a smooth diffeomorphism ¢, € C°°(R/Z,R/Z)
such that

vt ) =3, ¢ ())-
3.1. The Linear Equation

In this subsection we derive a priori estimates and existence results for linear equations
of the type

Ou+aQu+bu= fin R/Z x (0,T)

U(O) = Ug

where a(t) € h*(R/Z, (0,00)), b(t) € L(h*(R/Z,R™), C*(R/Z,R™)).

We will use the trace method of the theory of real interpolation theory (cf. [11,
Section 1.2.2]).

For the precise statements, we need for 6 € (0,1), @ > 0, and T > 0 the space

X% = {g € C((0,7),h*T*(R/Z,R™)) N C*((0,T), h*(R/Z,R") :
sup 17 ([Bgllcm + l9(t)osse) < oo}

t€(0,T)

equipped with the norm

lgll o0 := sup =7 ([|0.g(t)llco + [lg(t)llcs+e)
r t€(0,T)

and the space

Yo = {g € C((0,7), h*(R/Z,R™)) = sup t'=°|g(t)]|ce < oo}
t€(0,T)

13



equipped with the norm

lgllyg.e = tes(‘épT)tl_gHg(t)llca-

Note that ng’ c C%(0,T),C*(R/Z,R")). From the trace method in the theory of

interpolation spaces (cf. [11, Section 1.2.2]), it is well known that for all u € X%a the
pointwise limit u(0) of u(t) for ¢t — 0 satisfies u(0) € h**3¢(R/Z, R™) and

[u(0)[[gasso < Cllullxg (3.4)

ifa+30¢N.
The aim of this subsection is to prove that for

a € CY([0,T],h*(R/Z,R™)),  be C°((0,T),L(h*(R/Z,R"), h*(R/Z,R"))
with supcpo 7] t700b(t) || L(ho ey < 0o the map
J:u = (u(0), 0ru 4+ aQu + bu)

is an isomorphism between X% and ho*t3¢(R/Z,R™) x Y2*. That J is a bounded
linear operator follows from Equation (3.4). That it is onto will be shown using a
priori estimates together with the method of continuity.

To derive these estimates, we will freeze the coefficients and use a priori estimates
for dyu + A(—A)3/?u = f on R where A > 0 is a constant. We will use the formula

2 3. u(r + w) — u(z) — wu'(x) "y dw
(=A)3/ 2y = ;il{l(l) (2 mE —u (x)) B (3.5)

weR
|w|>el

observed by He in [9] for u € H3(R,R"). Using the Taylor expansion

N[ =

1
uw(xr +w) =y(x) + wu'(x) + %wQU’”(x) + /(1 — )2 (z + tw)dt
0

and the Hilbert transform #, one can derive this formula for u € C®%(R) with compact

14



support sptu calculating
(—2)*?u = H(u")(x)

1
3

*/(1 —1)? / i}( "z + tw) —u" (z)) dwdt

™
weR

_ / /1_15 0" (3 + tw) — o () dbdw

weR
=— hm / / )% (x + tw)dtdw
T eN\o0
weR
|w|>e
_3 lim 2u(aﬂ +w) —u(z) —wu'(z) o () dw '
T eN\O |w]? |w|?
‘ZJ)‘E;RE

Using the boundedness of the Hilbgrt transform, we furthermore deduce that the
operator (—A)3/2 is bounded from C3T*(R,R") to C*(R,R™).
Let us consider the heat kernel of the equation d;u + (—A)%/?u = 0 which is given
by
1 : :
Gi(z) = —/ezmmefﬂ%kpdk. (3.6)

2
R

for all t > 0 and = € R.

Note that since k — e~t127*° is a Schwartz function, its inverse Fourier transform
G, is a Schwartz function as well. Furthermore, one easily sees using the Fourier
transformation that

Gy + (-A)*2G, =0 onR Vt>0. (3.7)
The most important property for us is the scaling
Ge(z) =t 3G (t713e), (3.8)
from which we deduce
kG (z) = =R/ gkG ) (7 3x) (3.9)
and hence
10F G|l i r) < Crut /31|08 G || 11y < Crt™F/3. (3.10)

Combining these relations with standard interpolation techniques, we get the fol-
lowing estimates for the heat kernel

Lemma 3.3 (heat kernel estimates). For all 0 < a3 < g, and T > 0 there is a
constant C' = C(aq,aa,T) < 0o such that

1Ge % fllom < CH@ =003 fllca, Vf € C™ (R,R),t € (0,T)
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Proof. Let k; € Ny and &; € [0,1) be such that a; = k; + &; for i = 1,2.
For | > m and a € (0,1), we deduce from [, 04"™Gy(y)dy = 0 and that Gy is a
Schwartz function

10L(Gy  f)(@)] = / MG () (O f(z — y) — O f(2))dy

R
2 / £ U= 3) (LM G )y /£1/3)] - (O f (2 — ) — O f () |y
R
z=y/t/3
' / £ 0m3| (0 G (2)] - 10 £ — £/32) — O f () d
R

< ¢~ (=(m+a))/3 héla(a;"f)/|(5§fmG1)(Z)||Z|adZ
R

< C(l,m, a)t~E=m+a)/By5] (97 f).
For all I > m, a € (0,1) we have
hola (95, (Gr * f) < C(1—m)t' =" hole (9" f)

as for all 1,22 € R

|04(Ge * f)(21) — 0 (Ge * f)(2)] = /3i_mGt(y)(3£“f(x1 —y) = 0" (w2 —y))dy

R
< |OL ™Gl 1 héla (95" )|y — 22|
(3.10)
<Ol —m)t~ =B Ra1, (0T f) |2 — o]
In a similar way we obtain for all [ > m

105(Ge * il < CU—m)t= ™30 £ .

Combining these three estimates, we get

HGt * f‘|ck2+&1 < Cti(hikl)/g”fuc’“ﬁf’lv (3-11>
||Gt * f”C’“z+l < Ct_((k2+1)_(kl+&l)/3||f||C’€1+&17 (3'12)

and if ko > kq
IG: # fllews < CtmRem it B £ s, (3.13)

Furthermore, we will use that for 0 <a <<y <1, a#~,and f € C* we have the
interpolation inequality

B=a =8
[fllce < 20 f 11" Lflléa”- (3.14)
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which can in the case of o > 0 be obtained from

y=8

1F(@1) = fl@2)] < |f(21) = f(@2)| 5 | flar) — fla2)
< (0BL, (f) 1 — 2[) 75 (Wa (f) 1 — 2] %) 7=

and in the case that o = 0 from

f(@1) = f(@)| < (1) = fl@2)|3 | f(@r) = fla)| 5

< (holy (f)|zr — z2|7)7 2/ fllLe) 7

For as > a1 we get
Gy * flloraras < C (1052 (Gr* fllose + 1Gr  fllz=)
1—ag &g —&

(3.14) 1= 2=
< C102(Gex Dl gay 107271 (Gex Pl ™+ 11lz=)

(3.11)&(3.12)
< OB L )| fll g

For &1 > @y and hence k1 < kg, we obtain

IG¢ * flloraraz < C (11032 (Ge * flleas + 1Ge * f)lL)
(

3.14) . G2 & —ay
< O(10:2(Ge * Ol o5, 1022 (Gex f)llco ™+ 1Ge * fllne)
(3.11)&(3.13)
< o L )| fllce

O

3/2

To derive a representation formula for the solution of dyu + (—A)%/?u = f, we need

Lemma 3.4. For all t we have

/Gt(:v)dx —1

Furthermore, for all f € h*(R,R™), a ¢ N we have

Gix f 2% F  in h*(R,R").

Proof. For g € L*(R) let § denote the Fourier transform of g.
For t > 0 and f € L?(R) we obtain from Lebesgue’s theorem of dominated conver-
gence

(G )" = e—t2ml® f o, f inL>

Hence, Plancherel’s formula shows

Gy f— f in L2

17



Setting f = x[_1,1) and observing

lin(Gy « f)(@) = lim / Gudy = [ Gudy, Vo€ (-L1),
[t=1/3(2—1),¢1/3 (241)] R

/Gldy =1
R

To prove the second part, let f € h%(R,R"). From convergence results for smoothing
kernels we get for all f € C*°(R)

limsup || f — Gy * fllce <limsup||(f — f) — Gy * (f — f)llca +|If — Gy * fllce
t10 t10

zhm%mWf—f%%%*U—me

we deduce that

t)
Lemma 3.3 ~
ClI(f = Pllee-
Since h*(R,R™) is the closure of C*°(R,R™) under || - ||c«, this proves the statement.

O

Linking the heat kernel G, to the evolution equation d; + A(—A)%/2 = f for constant
A > 0 we derive the following a priori estimates

Lemma 3.5 (Maximal regularity for constant coefficients). For all o > 0, 6 € (0,1)
with « +30 ¢ N, and 0 < T < o0, A > 0 there is a constant C = C(«,0,T,\) such
that the following holds:

Letu € CY((0,T), h*(R/Z,R™))NC°((0,T), h3+*(R/Z,R"))NCO([0, T), h* 3 (R /Z,R™))
such that u(t) has compact support for allt € (0,T). Then

sup 170 (|0l oe + [luflsta)
t€(0,T]

<C ( sup 700w + A(=A)*?)ul|ce + ||u(0)||ha+3s) (3.15)
te(0,T]

Proof. Setting @(t,z) := u(t,\'/3z) and observing that 0,i(z,t) + (—A)3 %a(x,t) =
Opu(t, \32) + N(—A)3/2u(t, \/3z), one sees that it is enough to prove the lemma for

A=1
To this end, we first show that u can be written as

u(t, ) = /Gt,s x f(s,-)ds + Gy * u(0) (3.16)
0
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where f = du + (=A)3?u. For fixed t > 0 we decompose the integral in Equa-
tion (3.16) into

t
I, = / Gi_s x f(s,-)dxds
t—e

and

t—e

J. = / Gi_s x f(s,-)dxds

0

and see
Lemma 3.3 €0
[l < Ce sup |[|f(s,)[[L= — 0.
SE(t—e,t)

As our assumptions imply that u(t) € H3(R,R"™), we get comparing the Fourier trans-
form of both sides

(Gros+ (=2)"2u(s, ) (2) = ((—A)2Gi-y) # us, )) (). (3.17)

We get using partial integration in time and Equation (3.17)

t—e t—e
J. = /Gt_s * Opu(s, )ds + / Gi_g * (—A)g/zu(s7.)ds

0 0
t—e

=G xu(t —e,-) — Gy u(0,-) + /(8S(Gt_s) + (—AP2G, ) * uds
0

G Ge xu(t —e,-) — Gy *u(0,-) Lemma 34, u(t,-) — Gy *u(0,-).

in C* as € \( 0. This proves Equation (3.16).
From Lemma 3.3 we get

HGt * 7.L0||Cs+a S CteilHuOHCo&s@ (318)

We decompose v(t) := fot Gi_s * f(s,-)ds = v1(t) + v2(t) where

t

vi(t) = Gt/2 *v(t/2) va(t) = / Gis* f(s,-)ds.

s=t/2
Then the definition of || - ||y.«.c and the estimates for the heat kernel in Lemma 3.3
T
lead to
t/2
lv1(®)lloase < CE/2)7H 1 fllya0 /Seflds < Ct/2)" | fllygeo- (3.19)
0
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For ¢ >0 and n € (0,1) we get

t

€1-7(Ge * va(t))llcora-an = €7 / (Giosre * f)ds|

t/2

C6+a—3n

t

Cetn [ (=547 s o

t/2
< Ct/2)" | £llygo

Lemma 3.3

and
t
€1 Gex v)llovrasn = €877 [ @Giwre S
df CB3+a—3n
t/2
t
<O [t s 2 | o
t/2
< C(t/2)" |y
as
t
€ [t =572 ds = e by« L
J 1—nq 2 “1-n
Hence, by the estimate (3.4)
[v2() || ca+e
<O sup €7 ([(Ge # va(t)llcwra-snl| + 196G # va(t)lcsean) (599,
£€(0,7/2) ’

< O flly e

From (3.16),(3.18), (3.19), and (3.20) we obtain the desired estimate for ||u||gs+a.
The estimate for dyu then follows from dyu = f — (—A)3/?u and the triangle in-
equality. O

Lemma 3.6 (Maximal regularity). For all AT >0, n € N, and « > 0, § € (0,1)
with o+ 30 ¢ N there is a constant C = C(A, «,0,n,T),< 0o such that the following
holds:

For alla € C1([0,T], h*(R/Z, [1/A, 0))), b € C((0, T), L(k*(R/Z, R™), h*(R/Z, R")))
with ||aHCl([0’T]’COt) + t1_9||b(t)“L(ha,ha) < A and all u € Ol((O,T),ha(R/Z,Rn)) N
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CO((0,T), h3*) N CO([0, T], h*+3%) we have

sup 170 {|0pu(t) | oo + [lu(t)]|care}
te[0,T)

<c ( sup £ [|9ru(t) + a(t)Qu(t) + b(t)u(®) |- + ||u<o>|ha+3s> |

t€[0,T]

Proof. Note that it is enough to prove the statement for small T'. Let us fix Ty > 0 and
assume that T < Tj. Furthermore, we use the embedding h*(R/Z,R™) — h*(R,R™)
and extend the definition of @ to functions f defined on R by setting

Qf() := lim / (2f<“+w>—f(U)—wf’(u)_ f,,(x)) dw

e\0 w? ﬁ
[—1/2,1/2]—[e,e]

Step 1: a € (0,1) and b=0

Let ¢,9 € C*(R) be two cutoff functions satisfying

XB1,2(0) < @ < XB,(0)
XB1(0) < ¥ < XBy(0)-
and ¢T(x) = ¢(q"/7a)7 wr(l‘) = w(x/’l") We set
f = 0w+ aQu.

Then for r < 1/8 we set ag = a(0,0) and calculate

0u(udy) + Za(0)(~A8)*(udy) = (D + aQu)d, — a(Qw)dr — Q(ud,))
— (a = a(0))Q(ue,) — ao(Q(uer) — (~Az)**(ug,)
=for—fi—fa—Js

where

f1:=a(Q(u)¢r — Q(udr))
fa = (a = a(0))Q(udr)

fs 1= a0(@Q(udy) = 5 (~Ar)*(ue)
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From Lemma 3.5 we get
0 (|1 0pu(t) drllon + [[u(t) | gsra)
< C< sup s ([ £(s)erllce + 1fa(s)llow + I fa(s)llc + [Lf3(s)llce)

s€[0,T)
- Iu@)loesor.)
Using Lemma A.8, we get
[f1($)llce < CAJluls)llc2te[|@r]l oo
Using |a(x,t) — ag| < A(|z|* 4+ T'), we derive

[f2llee < llvbr(a = a(0)Q(udr)lloe + [[(¥r — 1)(a — a(0))Q(u¢y) | -
< CLA((20)* + T)|lugr [lca+a + |(¥r = 1)(a = a(0)Q(udy) || o
)

where C does not depend on r or T'. Since spt 1 — 1), C R—By,-(0) and spt ¢, C B,-(0),
we see that

(%r = D)(a = a(0)Q(ugy)(x)
= (¥r(2) = D)(a(z) — a(0))

[—1/2,1/2]—[—7‘,7"]

u(a + ), (@ +1)

dw

and hence
[(¥r = 1)(a — a(0))Q(udy)||ce < C(A, 4, ¢, 7)[Jufco.
This leads to

I£2()llce < C1A((2r)* + T)llu(s)¢r [lcare + Cllu(s)|co-

Furthermore,

[fslloe < C(A, @, 7)[|ullc2se

as for v € C3T2(R) with compact support we have

vlutw) —o(w) (u)> dw

w? w?’

o - et =~ [ (2

R—[—1/2,1/2]

and hence

o0

1
1Q(v) — ( Ag)**(v)]lce < @lv]lca + ||v||cz+a)~2/ﬁdw < 24|vf| g2+

N
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Summing up, we thus get

sup ¢'70(|0: (uer)(B)l| e + [ul)dylosse) < CLA(2r)® +T) sup s ug, | osso
t€(0,7] =€(0.7]

+0ww$A»(wpﬁleﬂﬂbwmlwwﬂbﬂ+wﬂmw0
s€(0,T]

where C; does not depend on 7. Choosing r and T small enough and absorbing the
first term on the right hand side leads to

sup ¢'7 (HatUHC”(Br/Q(O)) + HUHCHO“(BT“(O)))
te(0,T

<C(g, ¢, A))( eS(quT](Slfellf(S)Hc*a + st us)llos) + IIU(O)Ilch).

Of course, the same inequality holds for all balls of radius r/4. Thus, covering [0, 1]
with balls of radius r/4 we obtain

sup tl_e(”atu(t)ﬂca + [Ju(®)||ca+a)
te(0,T]

<C ( sup (5" f(s)llca + 80 luls)llos) + IU(O)Ilcww)
s€(0,T]
Using the interpolation inequality for Holder spaces
[ulles < ellullgare + C(e)[ullcn
and absorbing, this leads to
sup
se(0,T

te (0,7

sup 170 ([Qpu(t)[ce + [u(t)llcara) < C ( ]

@“%ﬂ@c~+mwmm)+mmmmwg

Since

[u(s)llca S/||3tU(T)IICQdT+IIU(U)HWSG
0

—

< [ 77 dr sup T dpu(T)]ca + [[u(0) ]| gurso
T€[0,T)
0
1 _
< @Te sup 70| 0u(r) || + [[u(0)[|garso.

7€(0,T]

we can absorb the first term for 7" > 0 small enough to obtain

sup s 70 ([|0u(s)llca + [[u(s)]|este)
s€(0,T)

SCMD((Rmslﬂﬂb>+HM®%MW>.

s€[0,T)
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Step 2: General o but b =0

Let k € Ny, & € (0,1) and let the lemma be true for o« = k + & We deduce the
statement for « =k + 1+ a.
From dyu + aQu = f we deduce that

Ot (Opu) + aQ0ru = Oy f — (0za)Qu
and we obtain applying the induction hypothesis
Dl xron < O (195 lyins + [@ea)Qullyrns + [Du(0)caran)
< C (I fllygersao + Allul oo + [95(0) | oo )

<C (Hf||y7'f+1+&,9 + H@xu(O)HCQHg) .

Step 3: General o and b

From Step 2 we get

o+ ollgesse )

lullxzo < € (IFllyzo + 1((t,2) o b(E) (D) (@)
As

1((t ) = b(E) (u() (@))llyg0 = sup ¢7|fb(t)(u(t)ca <A sup u(s)l|ca
s€(0,T] s€(0,T

and

HM%@S/WMﬂWW+Mme
0

T

S/Te_ldr sup Tl_allatu(T)HCa+Hu(0)||0a+39
T€[0,T]

< =T% sup 7'1_9||8tu(7')||ca—|—Hu(0)||ca+ae.
7€(0,T

D= O

we get absorbing the first term for 7' > 0 small enough

lullxgo < € (IFlygo + luollgasan)
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Lemma 3.7. For all T > 0, a > 0, 0 € (0,1) with « + 30 ¢ N, a and b as in
Lemma 3.6, the map J : u— (u(0),0,u + aQu + bu) defines an isomorphism between
X% and WP (R/Z,R™) x Y.

Proof. The only thing left to show is that this map is onto. To prove this, we use the
method of continuity on the family of operators J; : u — (u(0), du + ((1 — 7)AQu +
T(aQu + bu). In view of Lemma 5.2 in [7], the only thing to show is that Jy is onto.
For ug, f in C°° a smooth solution of the equation

Ou+AQu=f  Vie (0,71
u(0) = ug

is given by

¢
u(t,x) = Zdo(k)eft’\)‘”“k'ae%ik”” +/Z(f(g))A(/{)ef(tfs)A,\k|27rk|3dS.
ok

keZ €L

where

wk
2 (1 1\? T 1
=2 2(1-=—) s —_ 2).
e 3/t( kﬂ) sin(t)dt = =+ 0(7)
0

This follows from the fact that for f € H3(R/Z,R"™) we have by [8, Lemma 2.3
QU (k) = Axl2mk ] £ (k)

Let now ug € h*t3(R/Z,R") and f € Y%, We set fi(t) := f(t + 1/k) and observe
that

fx — f inC°(0,T],h*(R/Z,R™)).
Since fr € C°([0,T — 1/k],h*(R/Z,R™)) we can find functions f,, € C([0,T —
1/k] x R/Z,R™) such that f,, — fn in C°([0,T — 1/k],C*) for n — oo and smooth

uék) converging to ug in hot39 Tet U,k € C'* be the solution of

Un,k(0) = uék) .

{8tun,k + Qun,k = fn,k

Using the a priori estimate of Lemma 3.6, one deduces that the sequence {uy, i fnen is
a Cauchy sequence in X;ffs for every € > 0. The limit u,, solves the equation

{8tun + Qun = fn

un (0) = ug.

Using the a priori estimates again, one sees that {u, },cn is bounded in X%fs. Since
X%fs embeds continuously into C%/2([0, T — ¢], h*3/20) and C*="([5, T — €], h>37)
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for all n € (0,1),¢,6 > 0, we can assume after going to a subsequence that there is a
Uso € X%’e such that

Up — Uoo in C°((0,T —¢),C3%P)
for 0 < B < a,e>0and
Uoo (0) = up.

Hence we get
Oy, = fr — AQUn — f + AQuoo in CO((0,T — &), C3+P)

for all € > 0 which implies that u.. solves

{atuoo + AQuoo = f

Uoo (0) = up.

3.2. The Quasilinear Equation

Proposition 3.8 (Short time existence). Let 0 < o, 0 < 0 <0 < 1, a,a + 30, +
30 ¢ No, U C CoT39(R/Z,R™) be open and let a € C1(U,C*(R/Z,(0,00))), f €
CY(U,C*(R/Z,R")).

Then for every ug € h®T39(R/Z,R™) there is a constant T > 0 and a unique u €
C°([0,T), hat39(R/Z,R™)) N CL((0,T), h3F*(R/Z,R™)) such that

O+ a(u)Q(u) = f(u)
u(0) = wp.

Proof. Let us first prove the existence. We set X’%’e ={w € X%’o :w(0) = up}. For
w E X%’Q(]R/Z,]R”) let ®w denote the solution of the problem

Ou+ Apu = B(w)w + f(w)
u(0) = ug

where Ag = a(up)Q and B(w) = (a(up) — a(w))Q.
Let v be the solution of

Ot + a(uo)Q(@) = f(uo)

and B,.(v) == {w e X3 |lw—2v| oo <7} We will show that ® defines a contraction
T

on B,.(v) if r,T > 0 are small enough.
Since a € CH(U,h*(R/Z,R")), we get || B(z)||p(ca+s,c0) < Cllz — uf gatse for all
z € Cot3l,
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Let wy,wy € B,(v), r < 1. Using that the space X7 embeds continuously into
Co=9(]0,T),Co+39(R/Z,R™)) and w1 (0) = w2(0) = v(0) = uy we get

lwa () = wollgatss < Ct7 sl xze < CL7 (vl xgee +7), (3.21)

[wy (t) = wa (t) || otz < Ot |y — wal|xa. (3.22)
We estimate using Lemma 3.6

[Pw1 = Pws| xge < Cl|Bwr)wr — B(wz)wallyae + Cf| fwr = fwslyee.

and
N flwi () = fwa(t))llca < O [lwi () — wa(t)||gasso
(322) o
< OT 7wy — wa xg
Furthermore,
[B(w1)wy — Bwa)wa|lyge
< (B(w1) = B(w2))wi|lyge + [[B(wsz) (w1 — wa)]lye-e
< C sup 177 ([Jwi(t) — wa ()| garae[fwi (t)[|os+a
te(0,T
+ (w2 (t) — wollgarsol|wi (t) — w2 (t)||cs+a)
(3.22)&(3.21) »
< C sup (t” ||wy — 'LUQHXQ,Q”U)l”X;»U
te(0,T] T
+ 177 (|[ollxgoe + ) lwi(t) — wa(t)[|gsra)
CT7(|lvllxae +7)llws — wal xgo-
and thus

1@ (w1) = D(ws)llya0 < CT7 +T7(|Jv] xgo +r)llws — wallya0

and hence ® is a contraction on B,.(v), if T and r are small enough.
Similarly, we deduce from the definition of v that

[@(w) = vl xgr < ClBw)wlyes +[1f(w) = f(uo)llvee
< OTw|| x e fJw — 0l oo + T w = vl xs + [|v = uollcarts
<lw = vllxg-

if T and r are small enough. Then ¢(B,(v)) C ¢(B,(v)). Hence, Banach’s fixed point
theorem tell us that there is a unique u € B,.(v) with dsu + a(u)Q(u)u = f(u).

For the uniqueness statement, we only have to show that every solution is in Y 9,
But this follows from Lemma 3.6. O
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Proposition 3.9 (Dependence on the data). Let a,b be as in Proposition 3.8 and
s Yg’a be a solution of the quasilinear equation

{&u + a(w)Q(u) =0
U(O) = Ug-

Then there is a neighborhood U of ug in h®3¢ such that for all x € U there is a
solution u, of

{@u +a(u)Qu=0
u(0) =z

Furthermore, the map
U— Y~
T Uy
is CL.
Proof. We define ® : h*+3¢(R/Z, R") x X3 — v by
O(z,u) := (u(0) — z, O + a(u)Qu)
Then the Fr'l'g,%chet derivative of ¢ with respect to u reads

W(h) = (h, Oth + a(u)Qh + a' (u)hQu).

Setting a(t) = a(u(t)) and b(t)(h) = o' (u)hQu, Lemma 3.6 tells us that this is an
isomorphism between X;"O‘ and h? x Y; ", Hence, the statement of the lemma follows
from the implicit function theorem on Banach spaces. O

3.3. Proof of Theorem 1.2 and Lemma 3.1
Finally, we are in a position to prove Theorem 1.2

Proof of Theorem 1.2. Since the normal bundle of a curve is trivial, we can find smooth
normal vector fields vy,...,v,—1 € C°(R/Z,R™) such that for each of u € R/Z the
vectors vy (), . .., Vnp—1(u) form an orthonormal basis of the space of all normal vectors
to vo at u. Let Vo(y) := {(¢1, .., dn_1 € WB2TH(R/Z, R 1) : Y7 v € Vo(7)}-
Now let a—1 < 8 < a, § ¢ N. If we have N; = -1 divy, (¢1.4, -+ - dn1.4) € Vi(7),
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then (3.3) reads

(Ori.t) (Pv%(u)Vr) = *ﬁp»# (Q (o + dievi)) + F(yo + i)
2
- e (Qdir) Pwl’l’i — F(vo + ¢i,ev4)
- ﬁp% (Q (di,evi) — (Qbit) vi + Qo)

— F(vo + ¢i,1v4)

2 5
R (Qbit) Pyivi + Fyy (1)
where

o (60) = —F(70 + drav) — ﬁpj/ (Q (bratr) — Qo) vr + Qo)
+ ﬁ ((Qdi) Pyivi — Pss (Qdirr)) -

Using Lemma A.8 one sees that F' € C%(C?t*, CF).

Since (3.1) implies that {Pjn/r :r=1,...,n— 1} is a basis of the normal space of
the curve ~ at the point u, the map A : R*~! — (fy’(u))J‘ (X1, X)) :1:,;Pj7(u)1/i
is invertible as long as |7 — v|lo~ < 1.

Hence, we derive

2 _ ~
0= L Qn+ A7 (Flon)

where A~! (ﬁ’(qﬁt)) € C¥(h?T hP). Now the statement follows easily from Proposi-

tion 3.8 and Proposition 3.9 and a standard bootstrapping argument..

To be more precise, one gets immediately form the short time existence result that
for every ¢o € h®*t® there is a solution in ¢ € C°([0,T), h*+*) N C*((0,T), h3+7)) for
all max{0,a— 1} < B < a, a ¢ N and the C! dependence on the data. Bootstrapping,
we get ¢, € C°((0,T),C*) and the corresponding C'* dependence on the data. O

We conclude this section proving Lemma 3.1

Proof of Lemma 3.1. Let 4 € h?;[a(R/Z, R™) and let us set v, := ¢. * where ¢.(x) =
e~ 1p(x/e) is a smooth smoothing kernel. Since h?’jo‘ (R/Z,R™) is an open subset of
h2T(R/Z,R™) and (¢ — 7.) € C°([0, ), h>T*(R/Z,R™), we get 7. € h?}'a(R/Z,R")
for € small enough.

Furthermore, it can be deduced from v. € C°([0,00), h>**(R/Z,R")), that there
is an open neighborhood U of the set v(R/Z) and an gy > 0 such that the nearest
neighborhood retract r. : U — Z/R onto ~. is defined on U simultaneously for all
€ < g9. Note, that these retracts r. are smooth as the curves . are smooth.
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We set - (z) := r-(v(z)) and N.(z) = v.(¢71(x)) — 70(z) and want to show that
v =", N := N, and 1 := 1. satisfy the statement of the lemma if £ is small enough.

Using the fact that (¢ — r.) € C((0,e0), C**(U,R/Z)) and making U smaller
if necessary, we get that ¢ — 1. belongs to C°((0,g¢), C1T¥(R/Z,R"™)) and 9y =
idr,z. Hence, 1. is a C'to diffeomorphism for ¢ > 0 small enough as the subset of
diffeomorphism is open in C1'T. From 1. (x) := r.(y(z)) we deduce that 1. is in fact
a C?*t@ diffeomorphism, as r. is smooth.

Furthermore, as

Ne = 097" =0 € C%([0,00), C'*(R/Z,R"))

and Ny = 0 we get

(AN

Since r is lower semicontinuous and 7(vyy) > 0, we hence get ||Nz(z)||cr < 7(7e) for
small . As N. € h*“ we deduce that N. € V,.(v.) if € is small enough.
O

4. The tojasiewicz-Simon Gradient Estimate

Proof of Lemma 1.3. We can assume without loss of generality that v, is parametrized
by arc-length and that the length of the curve is 1.

Let H*(R/Z,R™):, denote the space of all vector fields N € H3(R/Z,R™) which
are orthogonal to v;;. We first show that the functional

E:H*R/Z,R"): —R

™M

N — E(¢p+ N)

satisfies a Lojasiewicz-Simon gradient estimate using [5, Corollary 3.11].
To prove that the derivative £ (0) defines a Fredholm operator from H3(R/Z,R™)7,
to L*(R/Z,R"):, C (H*(R/Z,R"))', we calculate using |y},| =1

E"(0)(ha, h2)
; Jojz (H(yar + tha), ha) [yard + thh|dw — [g 5 (H (var), ha) [Yas|dw
= 111m
t—0 t

= <vh1H7M7 h2>L2 + <L1h17 h2>L2

where Lihy = Hyas - ¥y, hy) is a differential operator of order 1 in h;.
So we have to show that P, (VH(yar)) is a Fredholm operator from H3(R/Z, R™)3,

™M
to L?(R/Z,R™)% . We know from Theorem 1.1 that

YM

2
Hry = WPVL'(Q’Y) + F(v)
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where F € C¥(C?*t*,CP) for all a > B > 0. Thus

2
Rk

Py (VaH (v4r)) = (P

!
Ym

(Qh) + Fy, (h)) (4.1)

where

P (8) = = (0 WOP, (@) + Py, (T as) + (VP ) Qn))

e Ccv(C?e, 0P,

Now let v; be a smooth functions such that v4(u),...,v,—1(u) is an orthonormal basis
of the normal space on 7 at u. Then each ¢ € H*(R/Z,R")* can be written in the
form

¢ = divi
where ¢; := (¢, ;) € H*(R/Z). We calculate

P (Q6) = P, (Qow:) = Qor (P vi) + P (Q(ows) — (Qor)vr)
= Qo + F3(¢)

where Fy € C*(C*+ CP) by Lemma A.8. From [8, Lemma 2.3] we know that @ —
%(—A)3/2 is a bounded linear operator from H? to L?. Combining this with the fact

that (—A)3/2 is a Fredholm operator of index zero from H?(R/Z,R") to L?*(R/ZR"),
we get that the operator

(4.2)

A: HR/Z,R")3, — L*(R/Z,R™)5,,
¢ = Qv

is Fredholm of order 0. As the equations (4.2) and (4.1) tell us that P,@ (VH(vun))

is a compact perturbation of A, this is a Fredholm operator as well. Hence, E” is a
Fredholm operator from H?*(R/Z, R")#M to L?(R/Z, R”)#M of index 0.

That H is an analytic operator from (H?)7, to (Lz)j-M can be seen from Lemma 2.1,

using the fact that H3(R/Z,R™) embeds into C?** for every a € (0,1/2) and C?
embeds into L.
Now, [5, Corollary 3.11] tells us that

1/2

|E(yar + N) = E(yan)|'™* < ¢ /|H('7M+N)(x)|2dxq
/7

for all ¢ € H3(R/Z,R™)* with ¢ gs < 5.2

2We apply [5, Corollary 3.11], for W = (L?(R/Z,R™)Z, C (H3(R/Z,R™)*)" and let P denote the
orthogonal projection onto ker(E" (¢))
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To prove the full estimate, note that since vy, is C*° Lemma A.9 tells us how to
write nearby curves as normal graphs. More precisely, there is a ¢ > 0 such that
for all v € H3(R/Z) with ||y — yarl|lgs < o we have |y/(x)| > co > 0 and there is a
reparametrization ¢ € H3(R/Z,R/Z) and a ¢ € H3(R/Z,R™)* such that

Yoy =9ym+¢

and
¢lles < C - [ly = varll ms.

Assuming o < 1/2 we furthermore have
1/2 <y
and hence

(EM) = E(ym))' ™" = (B(yr + Ny) — B(yan)'™°

1/2
<e- / H (s + Ny)(x) e
/Z
<2 / H (ya + Ny) (@) 1y ()] e
R/Z

5. Long Time Existence Results

In this section we will prove the following more general version of Theorem 1.4

Theorem 5.1 (Long time existence). Let vy € C®(R/Z,R™) be a stationary point
of the Mébius energy and let k € N, 6 > 0 and « > 0. Then there is a constant € > 0
such that the following is true: Suppose that (Vt)iepo,r) 15 @ mazximal solution of the
gradient flow for the Mdbius energy with smooth initial data satisfying

70 — yarllc2ve <€

for an a >0 and
E(v) = E(vm)

whenever there is a diffeomorphism ¢, : R/Z — R/Z such that ||y o & — yurl|lor < 0.
Then the flow (y:): exists for all times and converges, after suitable reparametrizations,
smoothly to a stationary point v satisfying

E(veo) = E(7m)-

This theorem will follow easily from the following long time existence result for
normal graphs over a stationary point of the Mobius energy
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Theorem 5.2 (Long time existence for normal graphs). Let vy € C*°(R/Z,R™) be a
stationary point of the Mdbius energy and let k € N, § > 0 and o > 0. Then there is
a constant € > 0 such that the following is true:

Suppose that N € C([0,T), k>***(R/Z,R™)3, )NC([0,T), C>®(R/Z,R™)5, ) is a maz-
imal solution of the equation

O; (var + Ni) = H(yar + Ny)
with
[NO)||c2+a < ¢

and
E(v) > E(vum)

whenever || N(t)]|cx < 4.
Then T = oo and N(t) converges smoothly to a Noo € C®(R/Z,R™)E  satisfying

E(veo) = E(m)-

Furthermore vy + Noo 18 a stationary point of the Mdébius energy.

Proof. From Theorem 1.2 we see that we can exchange the condition | N(0)||c2+a < &
by the stronger condition |[N(0)||cs+a < e. Using the smoothing properties again, we
can furthermore exchange the property

E(v) = E(vm)

whenever ||N(t)||gr < d by
E(v) = E(vm)

whenever || N ()| cz+e < 4.

Theorem 1.2 tells us that there is a § such that every maximal solution of the
gradient flow of the Md&bius energy for normal graphs N € C([0, Tpnaz), h*T%) N
C*((0.T42), C™) that satisfies

IN()lcs <6 vte[0,T)

exists for all time, i.e. Tj,qz = 0.

Making 6 > 0 smaller if necessary, we can use Lemma 2.1 and a short calculation
to get constants 6 € [0,1/2], ¢ > 0 such that for every N € H*(R/Z,R")3, with
|N||cs < o we have

1/2
(s + N) = ()™ < e / Ho+NPY N . 6D
/Z
1Py one = Py [ <1/2 (5.2)
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and 1
s + NI 2 5 inf 7] > 0. (5.3)

Now let N € C([0, Trhaz), h2+°‘(R/Z,R”)ff-M) N C’((O,Tmax),C“(R/Z,R")#M) be a
maximal solution of the equation
0 (var + Ni) = H(yar + Ny)
with
IN(O)]|ca+a <€

and
E(v) > E(vum)

whenever || N(¢)||cr < 6.
Let us assume that € < §/2 and that there is a smallest ¢y € (0,7") such that

IN®)lcs = 6.

We will derive a contradiction, if € is small enough, which implies that ||N¢||cs < 6,
Vt € [0, Tinaz). By our choice of § this implies that the solution exists for all time.

By making € > 0 smaller if necessary and using the smoothing from Theorem 1.2
we can furthermore achieve that there are constants C' = C(yas) such that

IN(®)|lcate < C V€ [0, 1) (5.4)
For 4; :=yp + N and ¢ € (0,1p) we calculate
d _ N 5 -
GEG) == [ (0t5 HGOI =
R/Z
. / 0214
R/Z
- [ 1P
R/Z

and hence

~ 9 (B@E) - Bo)) = ~6(BGr) — B’ L B()

dt dt
1/2

[ 15

/Z

>

/2

1
>c /‘at:YtF
7
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Integrating the above inequality over (0,t) yields

15 — varllz2 < 1o — Fellz2 + C (E(Go) — E(var))’
< O30 — v |-

Using the interpolation inequality

1—
I£lles < IFIS21 A1,

where 8 = we get for ¢ € [0, to]

(o]
a+7/2
- ~ 1— ~ ~ 0
19 — ”YM||C3(R/Z,R") <Cl%— 7M||csfa(R/z7Rn)||% - 7M||§2 <C|% - ’YMHcg

<Ce% < 5/2

if € > 0 is small enough, which leads to a contradiction to the definition of ¢y,. This
proves the long time existence.
Since
at:y € Ll([ov OO), L2>

we get that there is a v., € L?(R/Z,R™) such that

Yt = Voo

From Theorem 1.2 we get sup, ||3:||ct < oo for all I € N and hence this convergence is
even smooth and dE(y+) = 0. Using the Lojasievicz-Simon gradient inequality again

we get
1/2

(Blr) = B < | [ 1HPhil | =0
1z

and hence E(Yoo) = E(vMm). O
Proof of Theorem 5.1. Due to Lemma A.9 for all v € C?***(R/Z,R") with |y —
Y|l cz+a < € there is a diffeomorphism ¢, and a vector field N, € C*T*(R/Z,R")
normal to s such that

Yo by =ar + Ny (5.5)
and

[Nyllczte < Clly = yarll 2o (5.6)

if € > 0 is small enough.
For v € C?*t% with
v = lleza <€

let (Nt);e(0,7) be the maximal solution of

O (vm + Ny) = H(ym + Ny)
No = N,.
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Then T < T and for all ¢t € [0,T) there are diffeomorphisms ¢, such that ~, =
(yar + Ni)(¢¢). Hence Ny satisfies all the assumptions of Theorem 5.1 if € is small
enough and thus co =T. Form T' < T we deduce T = cc. O

A. Appendix

A.1. Analytic Functions on Banach spaces

We briefly prove some lemmata about analytic functions on Banach spaces. A thorough
discussion of this subject can be found in [10, 733 2, Section 3].

Definition A.1 (Analytic operator). Let (X, | -]lx), (Y,]-|ly) be real Banach spaces.
A function f € C(A,Y), A C X open, is called real analytic, if for every a € A there
is a open neighborhood U of a in X and a constant C' < co such that

[D™f(z)|| < C™m! VmeN, zeU.

In this context || - || stands for the operator norm. The next lemmata show how to
construct analytic functions:

Lemma A.2. Let g: U — RF be a real analytic function, U C R™ be an open subset,
and let V.C CH*(R/Z,R™) be an open subset such that im(f) C U for all f € V .
Then

T:V — ChR/Z,RY
r—>gox

defines a real analytic function.

Proof. Let fo € V. Since im f; is a compact subset of the open set U there is an € > 0
such that K. :=J B.(y) CU.

yE€im fo 7€
Since g is real analytic and K. C U is compact, there is a constant C' < oo such

that

ID™"g(y)]| < C™ml, VmeN,yeK..

As
DT (y)(h1,. .. hm) = D"g(y)(h1,. .., hm)

(can easily be deduced from the Taylor expansion of g) and since C*(R/Z) is a Banach
algebra, we get

DT < (k + D™ (m + & + 1)1 < C™ml

(k+1)cwrl+k+l(m+k+l!))l/m

forall f € B.(fo) = {y € C*: ||ly|lce < &} where we put C := SUP, e, ( p—
O
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Lemma A.3. Let (X,] - |lx) and (Y,]| - |ly) be Banach spaces and assume that T; €
C¥(X,Y) fort € I is such that the functions t — T; are measurable and for alla € X
there is a neighborhood U of a in X such that

/ (Sup |DmTt(y)|) dt < C"ml. (A1)
T yeU

Then the mapping T : X — Y defined by
Tx = /Ttxdt
1
1s real analytic.

Proof. We want to show that

D" Tx(hy,... h) = /Dmth(hl,...,hm)dt.
I

from which we get that T € C¥(X,Y) using the estimates (A.1). In fact this follows
from well known facts about differentiation of parameter dependent integrals.
O

Remark A.4. In the case that Y = C**(R/Z,R") it is well known, that

(T2)(w) = [ @a(u)de

I

i.e. the value of function Tz given by the Bochner integral at the point u is equal to
the Lebesque integral of the functions T;(u) evaluated at the point w.

A.2. Estimates for the Multilinear Hilbert transform

Lemma A.5. For1>a>8>0,n,meN, and t; € (0,1) the singular integral

1 m
(715 -+ - ym) (u) @)/w UIW(H w)dw
1. =

defines a bounded multilinear operator from C*(R/Z,R™) to C#(R/Z,R).
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Proof. For u,v € R/Z and a € (0, 3) we get

|T(71a s a’ym)(u) - T(’Ylv ce avm)(v)|

1 m m
< " H%(Uthiw)*H%(ertiw) dw
1/2>w|>a 71 =t
1 m m
+ " H%‘(U+fz’w)—H%(u) dw
a>|wl =1 1=1
1 m m
+ " H%‘(U—i—tiw)—H%‘(v) dw
a>|wl i=1 i=1
Since |t;] < 1 we get
H%‘(U + tiw) — H%(u) < mH 1vill o (/2R W]
i=1

i=1 =0

and hence, using the Holder-continuity of the ~;,

|T(r717 s a7m)(u) - T(’Yl’ s ,’Ym)(ﬂ)|

m
1 . 1
< mH Iillco (r/z,Rm) / " lu —v|" dw + 2 / R dw

=0 1>|w|>a lw|<a

m
< mH 73l ¢ (r/z,Rn) (—21og(a) [u — v]|* dw + 4a®) .
=0

Choosing a = |u — v| we get
’T(’Yl, s avm)(u) - T(’yla R 77771)(1})’

< mH Vil co )z, (—210g |u — v| + 4ar) |u — v|*
i=0

m
< CH ill oo /2yl — 0]
=0

where C' = msup,¢o1;(—2log x+4a)r® P < co.
O

Lemma A.6. For arbitrary a > >0, n,m € N, and t; € (0,1) the singular integral
1 m
(715 -+~ Ym) (u) lm/w”7w+7ww

defines a bounded multilinear operator from C*(R/Z,R) to C#(R/Z,R).
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Proof. First let us note that it is enough to prove the statement for « = a+n, 5 = B+n,
neNy,1l>a> B > 0 and we will use induction on n to prove this statement. For
n = 0 the claim is the content of Lemma A.5. Let (7f)(z) := f(x + h). Using
the relation 7,(T' (Y1, -+, Vm)) = T(Th(71) - - - Th (Y )) and the multilinearity of T, the
difference quotient can be written as

Th(T(717 cee 77m) - T(’Yly e a’Ym)) o T(Tn(’h), e aTh(’Ym)) - T(717 s 7’Ym>)
h h

Now let a8’ > . Since

(Th(vi) —vi) /I 220 in CF

(Th (i) 220, v in ch

and T a bounded linear operator form CP to CP, we get that

“3Ym)

Th(T(’Vlwuv’ym)_T(7la"~77m)) h—0 - ’
E T :
L P (’Yla y Vis

in C?. Hence, T is a bounded multilinear map from C*+& to C'*7. Using induction,
one gets the full statement. O

Remark A.7. Let us state a simple extension of Lemma A.6. Given a multilinear
form M :R" x ---xR" - R¥ a>3>0, meN,andt; € (0,1) the singular integral

. 1
T(v1, .- Ym)(u) == ?\r‘% EM(’yl(u +Hw), ..., Ym(u+ tpw)))dw
1.

defines a bounded multilinear operator from C*(R/Z,R) to C#(R/Z,R™). This can
be deduced plugging

n

My (u+ t1w), ..., ym(u + thw))) = - Z M(esy,...,e;, )L (v (u+t,w),e;,)

into the definition of 7', where eq,...e, is the standard basis of R™, and applying
Lemma A.6 to all the coordinates of the resulting summands.

A.3. Facts about the Functional )

In this section we prove a commutator inequality that serves us as a substitute for the
Leibniz rule for Q.

39



Lemma A.8 (Leibniz rule for Q). For f,g € C*T3(R/Z,R™) and o > B we have
1Q(f9) — Q(N)gllcs < Cla, B fllca+zllgllca+s.
Proof. We have

(Q(fg9) — Q(f)g)(u)
_ / of (utw)g(u+w) — f(u)g(u) — w(f'(w)g(u) ~ f(w)g'(u)

w?

[(-1/2,1/2]
dw

w?

(" () + 20 () ) + f<u>g"<u>>}

_ / of (4t w)g(u) — f(Zlg(U) —wf'(u)g(u) f,,(u)g(u)} Z)ﬁg
[—1/2,1/2]
_ o (flut+w)— f(u)u))(zg(u+w) —g(u) 2 (w)g' ()
[~1/2,1/2]
+ I I =0T ) |
_y (f (u+w) — f(u)@zgg(u +w) —g(u) f/(u)g,(u)}
[~1/2,1/2]
+(fQ(9))(w).

Taylor expansion yields

(1—1)g" (u+ tw)dt
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and hence the first term in Equation (A.3) can be written as

(f(u+w) = fFW)(g(u+w) —g(w) f’(U)g’(u)}

[(—1/2,1/2]

—2f(w) fol(l —t)g" (u+ tw)dtdw

w
(—1/2,1/2]

Jo 0= 0)f"(ut tw)dt

+ 29’ (u) "

(—1/2,1/2]
+2 / / / (1—1)(1 = s)g" (u+tw)f"(u+ sw)dtdsdw.
(—1/2,1/2][0,1] [0,1]

Using the boundedness of the Hilbert transform to estimate the first two terms, we get

IQ(f9) — Q(f)g — 9Q(Pllce < C(IlF lcallg” e + llg'llca 1" llc=)

and hence

1Q(f9) — Q(f)g — 9Q(llox < [Ifllca+zllgllcats.

A.4. Normal Graphs

The following lemma is used in the proofs of Lemma 1.3 and Theorem 5.1.

Lemma A.9. Let v € O (R/Z,R"). Then for every o > 1 there is an ¢ > 0 such
that for all v € C*(R/Z) with

v = 0lles <,
there is a reparametrization ¢ and a function N € C*(R/Z,R™) normal to ~y such
that

Yodp=r+N
and

N1 < Clly = ollee-

Proof. Let U be an open neighborhood of vy such that there is a nearest point retract
ry, i.e. a C* function ry : U — R/Z such that

yoryoy=r
and

l9(ru(p) —pl = inf |y(z)—pl.
We then set

Py (@) = ro(v(@))
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and deduce, since 1., = i¢d and the space of diffeomorphism is open in C', that ) is
a diffeomorphism if € small enough. Furthermore, let us note that v — v, is smooth
from C*(R/R) to C*(R/Z,R/Z). We set

and

%21/)7_1

N, () =vo9p™! — 0.

The claim now follows from the fact that v — NN, is a smooth function with N, =

0. O
References

[1] Herbert Amann. Nonhomogeneous linear and quasilinear elliptic and parabolic
boundary value problems. In Function spaces, differential operators and nonlinear
analysis (Friedrichroda, 1992), volume 133 of Teubner-Texte Math., pages 9-126.
Teubner, Stuttgart, 1993.

[2] Sigurd B. Angenent. Nonlinear analytic semiflows. Proc. Roy. Soc. Edinburgh
Sect. A, 115(1-2):91-107, 1990.

[3] Simon Blatt. Loss of convexity and embeddedness for geometric evolution equa-
tions of higher order. to appear in Journal of Evolution Equations, 2009.

[4] Gérard Bourdaud. Une algébre maximale d’opérateurs pseudo-différentiels.
Comm. Partial Differential Equations, 13(9):1059-1083, 1988.

[5] Ralph Chill. On the lojasiewicz-simon gradient inequality. Journal of Functional
Analysis, 201:572-601, 2003.

[6] Michael H. Freedman, Zheng-Xu He, and Zhenghan Wang. Mobius energy of
knots and unknots. Ann. of Math. (2), 139(1):1-50, 1994.

[7] David Gilbarg and Neil S. Trudinger. Elliptic partial differential equations of
second order. Classics in Mathematics. Springer-Verlag, Berlin, 2001. Reprint of
the 1998 edition.

[8] Zheng-Xu He. The Euler-Lagrange equation and heat flow for the Mobius energy.
Comm. Pure Appl. Math., 53(4):399-431, 2000.

[9] Zhengxu He. A formula for the non-integer powers of the Laplacian. Acta Math.
Sin. (Engl. Ser.), 15(1):21-24, 1999.

[10] Einar Hille and Ralph S. Phillips. Functional analysis and Semi-Groups. American
Mathematical Society, 1957.
[11] Alessandra Lunardi. Analytic semigroups and optimal regularity in parabolic prob-

lems. Progress in Nonlinear Differential Equations and their Applications, 16.
Birkhauser Verlag, Basel, 1995.

42



[12] Jun O’Hara. Energy of a knot. Topology, 30(2):241-247, 1991.

[13] Philipp Reiter. Repulsive knot energies and pseudodifferential calculus: rigorous
analysis and regularity theory for O’Hara’s knot energy family B, o € 2,3).
PhD thesis, RWTH Aachen, 2009.

[14] Heiko von der Mosel. Minimizing the elastic energy of knots. Asymptot. Anal.,
18(1-2):49-65, 1998.

43



	Introduction
	Quasilinear Structure
	Short Time Existence
	The Linear Equation
	The Quasilinear Equation
	Proof of Theorem 1.2 and Lemma 3.1

	The Łojasiewicz-Simon Gradient Estimate
	Long Time Existence Results
	Appendix
	Analytic Functions on Banach spaces
	Estimates for the Multilinear Hilbert transform
	Facts about the Functional Q
	Normal Graphs


