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Abstract In this article we show that for initial data close to local minimizers of the Mbius
energy the gradient flow exists for all time and converges smoothly to a local minimizer after
suitable reparametrizations. To prove this, we show that the heat flow of the Mdbius energy
possesses a quasilinear structure which allows us to derive new short-time existence results for
this evolution equation and a Lojasiewicz-Simon gradient inequality for the Mobius energy.
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1 Introduction

The search for nice representatives of a given knot class led to the invention of a variety of
new energies which are subsumed under the term knot energies. These new energies were
needed basically due to the fact that other well known candidates like the elastic energy
cannot be minimized within a given knot class [14] or at least their gradient flow can leave
the given knot class (which can be seen for the elastic energy along the lines in [3]).

This article deals with the gradient flow of the Mobius energy proposed by Jun O’Hara
in [12]. For curves y : R/Z — R” this energy is defined as

1 1 ’ /
E(y) = //(Iy(u)—y(v)lz —dy(w)z)w<u>||y(v>|dudv,

(R/Z)?

where d,, («, v) denotes the distance of the points y (#) and y (v) along the curve y. E is
called Mobius energy due to the fact that it is invariant under Mobius transformations.
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404 S. Blatt

Freedman et al. showed in [6] that the differential of the Mobius energy can be repre-
sented as

E'(y)h = / (Hy (). h(w)) - |y ()|du
R/Z

for all imbedded regular curves y € H3(R/Z,R") and h € H3(R/Z, R"), where

P (y () —y () 1 d (v '(v)|d
Hyw)=21lim / Al — - — —(’//(”)) v Wldv_
e\O0 W ly )=y @)| ly'ldu \Iy'w!) )y )=y @)l
lv—ul>e
and P}ﬁ(u)(w) =w — <w, %) h}::% for all w € R” (for a rigorous argument for the fact

that this is the L2- gradient of E see [13, Chapter 1])
In this paper we will investigate time dependent families of curves y () which move in
the direction of —H y (), i.e. for which

&y =—Hy, (1.1
or whose normal velocity is given —Hy, i.e. for which
3ty =—Hy. (1.2)

where Btly = PLay.

The key to the results in this article is the observation that the evolution Eq. 1.1 can be
written in a quasilinear form. To formulate this result let Cffr for @ > 1 denote the set of all
embedded and regular curves in C* and

yut+w) -y —wy'w dw
—y () T

Oy := 5{’%/ (2 w2
I

for I, := [—1/2,1/2]\[—¢, €]. The functional Q is well-defined for f € C3+°‘(R/Z) for
o > 0. Note that C;’fr is an open subset of C*,V oc >1.

Theorem 1.1 (Quasilinear structure) There is a mapping
Fe () CoCH*“®R/Z.R"), CP(R/Z,R"))
a>p>0

such that

2 1

Forally € H3(R/Z,R™).!

Here, C® stands for real analytic mappings.
In [9], He calculated the linearization of H around curves parametrized by arc-length
and found that

ViH(y) = 27”(—A>3/2h + Ly (h)

! n fact, one can even exchange Q by % (—A)3/2 using [9, Lemma 2.3] and regularity results for pseudo-
differential operators. We do not prove this here, since we do not need it, but this relation is the motivation for
many manipulations we make.
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The gradient flow of the Mobius energy 405

where L is a differential operator of order <2 and A = %22 Unfortunately, in He’s cal-
culations the symbol of the operator L depends on the third derivatives of y and thus he
could show short time existence only for smooth initial data using the Nash-Moser implicit
function theorem.

The structure in Theorem 1.1 enables us to show the following short time existence
result which contains smoothing effects for C>¢ initial data. To state it, let 2¥+* (R /Z) for
k € N, € (0, 1) denote the little Holder spaces, i.e. the closure of C*°(R/Z) under || - || cx-+e
and let hi‘f“ (R/Z, R") denote the set of all injective and regular curves in A*T*(R/Z, R").
Givenacurve y € C l.l’r (R/Z, R"), let h*+*(R/Z, R”))J; denote the space of all vector fields

in A¥*(R/Z, R™) that are normal to y.

Theorem 1.2 (Short time existence) For every « > 0, ¢ N there is a strictly positive,
upper continuous function r = h*+*(R/Z, R") — (0, 00) with the following property:
Let yp € C7L(R/Z, R"). Then for every

No € Vo) i= | f € (h* (R/Z. Ry < 1 fller <7 ()}

there is a constant T = T(No) > 0 and a neighborhood of U C Vy(yo) of No such
that for every No € U there is a unique solution N1\70 e C([0, T),h2+°‘(R/Z)%) N
C'((0, T), C®(R/2),) of

(8%<yo+N> = —H+N) tel0,T]. w3

N(0) = No.
Furthermore, the flow (1\70, 1) — NNO(I) isin C'((U x (0, T)), C®(R/Z)).

As forevery y € hlzja (R/Z,R") there is a yg € C2(R/Z,R"), N € V;(yo) and a diffe-
omorphism v € C2>T¥(R/Z, R/Z) such that y oy = y9+ N, (cf. Lemma 3.1), Theorem 1.2
gives us a solution to the gradient flow for every initial data in hizjo‘ (R/Z,R™) (ctf. Corol-
lary 3.2 for a precise statement). Due to the uniqueness mentioned in this result, it makes
even sense to speak of maximal solution of (1.1) in the sense that the time of existence is
maximal. Such a maximal solution is unique up to reparametrizations.

Using the analyticity of the term F in Theorem 1.1, we will then derive the following
Lojasiewicz-Simon gradient estimate for the Mdbius energy

Lemma 1.3 (Lojasiewicz-Simon gradient estimate) Let yy € Cl.ofr’ (R/Z,R™) be a station-

ary point of the Mobius energy. Then there are constants 0 € [0, 1/2], 0, ¢ > 0, such that
everyy € Hi3’_ (R/Z,R™) with |ly — yull g3 < o satisfies

EG) — EGa'™ <c- /|(Hy><x>|2|y’(x)|dx 2,
R/Z

Combining Theorem 1.2 with Lemma 1.3, we get the main result of this article - long time
existence for (1.1) near local minimizers

Theorem 1.4 (Long time existence) Let yyy € C®(R/Z,R") be a local minimizer of the
Mdbius energy in CK(R/Z, R") for some k € Ny, i.e. let there be a neighborhood U of yy
in CK(R/Z, R") such that

E(y) > E(ym), Yy eU.
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406 S. Blatt

Then for every B > 0 there is a neighborhood V of yy in C*tB(R/Z, R") such that for all
yo € V the heat flow (1.1) with initial data yy exists for all times and converges after suitable
reparametrizations to a stationary point y, satisfying

E(yoo) = E(ym).

In [6], Freedman, He, and Wang showed that there are in fact minimizers of the Mobius
energy in all prime knot classes. As He showed that all these minimizers are smooth (cf. [9]),
the above theorem tells us that the gradient flow converges to such a minimizer if we start
near to one.

Please note, that the precise value of constants in the proofs may change from line to line
and that the summation convention is used in this article.

2 Quasilinear structure

The proof of Theorem 1.1 basically relies on Taylor approximation and estimates for the mul-
tilinear Hilbert transform which can be found in the appendix (Lemma A.5). Furthermore,
it uses the relation of H to the operator H we will introduce now.

Using I, = [—1/2,1/2]/[—¢, €] we can write

Hy(u)
=21lim 2P?<u>(y(u +w)—y(u))_ 1 d ( A) ) ly'(u + w)ldw
R yatw—y@PE [y eldu \y'@l) )y +w—y P
Setting
(Hy)(u)
:= 2 lim ( yutw) —yw) —wy'w)  y"w) ) Iy (u + w)ldw
: e\ |)/(M+W)—)/(u)|2 |y’(u)|2 |)/(M+w)—y(u)|2’

&

one easily sees that
H(y) = PyH(y). 2.1

The first step in the proof of Theorem 1.1 is to show that the difference between Hy and
IVL’P Qy—which is well-defined for y € C3+*(R/Z, R"),« > O—can be extended to an

analytic operator from C2*% to C# for all o > 8.

Lemma 2.1 There is amap F € cw(c;{j“ (R/Z,R™), CP(R/Z, R")) such that

a>p>0

Hy = per+ F(y) Vy € H}.(R/Z,R").

|J/()
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The gradient flow of the Mobius energy 407

Proof We have

1

1~

EHV(M) o |)//(u)|3 Qy (u)
e\ 1 1 ,
<« 2/ (|y(u +w) -y |)//(u)|2w2)(y(u +w) — y W) — wy' ()

&

yw+wl / ( yu+w) —y@) —wy'w)  y'w) )
w + 2 —
ly (u+w) — y )2 ly/ ()| 2w? ' ()2

1 1 ,
* (|y(u Fw) —ywP |y’(u>|2w2)'y (e wldw
+/ (zy(u +w) -y —wy' )y ) [y’ (u+w)l — Iy’ )]
@) Pw? KOk ) Pu?

dw

£

Let us denote the first integral on the right hand side of the last equation by I;(y; ¢), the
second integral by I(y; ¢), and last one by I3(y; €).
We define

1
(@) () = / (1= 1)y"(u + rwydr,
0

1
(Buwy)(u) = /(1 =0+ tw) — y"@)dt = (awy) @) — y" w)
0

1

Swy) W) = /<y”(u + 1w

0

Y (u 4 tw) >
Ty (u 4+ tw)]

ly (u +w) —y ()
w2y’ (w)|?

ly (u+w) — y u)|?
w2y’ (w)|?

w(Xyy)m) =1-—

Xuy @) :=
for regular injective curves y € Cl.zfa R/Z,R")and w € [—1/2, 1/2]. Taylor approximation
of y yields
1 2
et w) = y@P = wy@ -+ w? [ =0y e+ rwd

0

1
w?y () + 2wy’ (u) /(1 —0)y" (u + tw)dt
0

1
+w? /(1—t)y”(u+tw)dz 2
0
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408 S. Blatt

2
vy (1 P ¥/ P (“‘””(")2)'

= w?y’ )>(1 — w(Xyy)@)). 2.2)

Y W) (awy) W)+ ———

We will also need this in the version

y 2w
Xwy)w) =1-wXyy)w) =1+ |2y ") - (o) ()

ly/(u)
U)2 2
+|V’T)|2 oy y)@)”. (2.3)
Using
2
A=) ' =14x+ 1x_
we get
| 1 1 Xuwy)@)  Xuwy))? )
— 2.4
ly (u +w)—y w)? |y’<u>|2w2+|y/(u)|2 ( w 1 —w(Xyy) ) @4

for all w > 0 as the injectivity of the curve y implies

Iy +w) — y@))?
w2[y’ ()2

Xuwy)@) :=1—wX(y;u,w) =

Together with
yu+w) -y —wy'(u) = w2/<1 — 1)y (u + tw)dt =w*(awy) (W),

N Yutw)—y ) —wy w)
w2

1
“(u):/(l =) (v + tw)—y" ) dt = (Buy) W),

0

and
1 /
ly/ (@ +w)| — |y )| = wo/<m V! (u + tw)>dz = w(yy) W),
we get
Li(y;e) = /( ” 1_w(wa)(u))(ozw)/)(u)

Iy )*
I

w?(Xyy) ) ,

—1_w(wa)(u))|y(u+w>|dw,

((wa)(u) (Xuwy)W)?
1 —w(Xyy) ()

X (1 +w(Xyy)(u) +

2
L(y;e) = ﬁ/(ﬁw)’)(”) )Iy’(u + w)|dw
ly/(w)] /
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The gradient flow of the Mobius energy 409

and

w2 (X))
(1 w0 + T

Liy:e) = / (Buwy)(u)

Sw dw.
v /( ) )( Py

After factoring out these expressions using Eq. 2.3 and |y (u + w)| = w8,y (u) + |y’ ()|,
Lemma 2.2 together with Lemma A.2 tell us that these integrals define analytic operators
from C2T¢(R/Z, R") to C#(R/Z, R") for all « > B. o

Lemma 2.2 Letly, [, 13,14 € Ngand M (]R")l2 — R* be a lp-linear mapping. Then

wh =M (o y) (), . . <awy)<u))<(8wy)(u))’*
(1— w(xwm(u)w

(Ty)(u) := ;I{%/

defines an analytic map in C”(Czj" (R/Z,R™), CP(R/Z), RF) foralla > B > 0.
Proof We will use the shorthand M (v) for M (v, ..., v).

Step 1: The non-singular case /; > 0
Let yp be fixed. For w € [—1/2, 1/2] we define the function T, : Ci’ra R/Z,R") —
C*(R/Z, R) by
et M@y ) Guy ()"
(Xwy ()

Tyyu) :=w

forallu € R/Z.
Since the function «,, is linear, we get a C < oo such that

| Doy (Pl (c2+e,coy = lawllpc2te cey < C Yw € [=1/2,1/2],
D"a =0 Vm > 2. (2.5)

We write §,, as

1

Swy ) = / 8w (w)dt

0

where 8 (u) := <y”(u + W), ‘; (uiwm Using Lemma A.3, Lemma A.2, and writing 5oy =
g(y',v") where

g1 :R'"xR" - R

g1(x,y) = <x, i>
[yl

is analytic away from {0} x R”", we get that §p is analytic on the set Cf’f‘ (R/Z,R™). Hence,
there is an open neighborhood U of y; and a constant C < oo such that

10" 81 ) (car2,cay = D" B0 ()l cor2.cay < C"m! ¥y € Ut € [0, 11.
Applying Lemma A.3, we get

D" 80 ()l (o2, oy = ID" 80| cora,coy < C™ml ¥y €U, (26)
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410 S. Blatt

To get an estimate for X, we first observe that

(fol v (u + tw)dt)2

= & (Run) .y W)

Xuwy)(u) =

where g2(x, y) = :;‘—l‘z and (X)) () = fol ¥/ (u + tw)dt. Since X, is linear from C**!
to C* and with operator norm bounded by 1, we get using Lemma A.2 again that there is a
neighborhood U’ C U of yy and a constant C < oo such that

||Dme(V)||L(C0‘+2,Ca) S Cmm' (27)

forally e U’

Using that x — x ™ is analytic on (0, co) and that there is an open neighborhood U” C U’
such that 0 < infygurgueﬂg/z()}wy)(u)) and SuPyeU”,ueR/Z(XwV)(“)) < 00, we see that
there is a constant C < oo such that

ID™ (X))l (car2.cay < C™"m! ¥y € U”. (2.8)
Combining Egs. 2.5, 2.6, and 2.8 with Lemma A.2, we get
ID™ Ty (W)l L (cat2.cay < m>C™m! Vy € U”

and hence by Lemma A.3 T is analytic on U” from C>*¢ to C*.

Step 2: The singular case [; = 0

Using the Taylor expansion

1
(1 —x)—14 =14 Ix + 1404 + 1)x2/(1 — (1 — lX)_l4_2dt
0

for x = wX,(y)(u), we get

T () = w My () (Swy )5 | 1+ LwXy () (@) + La(ls + Dw? Xy (7)) )?

1
x /(1 — (1 — twXy () )™ 2dt
0

= (Thy)w) + (Tiy) W) + (Tyy)(w),

where

Tly ) == w "M (ayy () (Suy (1))
T2y (u) == LaM (ayy ) Sy y )3 Xy () (u)
Ty ) := la(ls + DwM (awy ) Sy ()3 Xy () )*

1
x /(1 — (1 — twXy (y) )™ 2ds.
0
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The gradient flow of the Mobius energy 411

Plugging in the definition of «,, and §,, and interchanging the order of integration we get

/ I, = / / —(2 A =)

[0,112 [0,113
X/M(V”(u +nw), ...,y u+nw))
Iy
/ .
X (1'[?:] <y”(u + siw), M»dwdshdtl2
ly'(u + siw)|

/ / /(fy,u)(w, Hy oty s1,sl3)dwdsl3dt21frl

[0,112 [0,11/3 Ie
where
(Ty,u)(w’ I, ...1,, 81, Sl3)

1
= M (=) (MO @ ),y e i) T

" . ]/,(M+S['LU) _ " 1 V/(M) [3)
* <y (wrksiw). |y'(u+s,-w)|> M ). e )

Form the Holder regularity of y we deduce that f‘,,, 4 1s integrable and hence

g{% / T)y (uw)dw

/ / 1im/(fy,u)(w,n,...r,z,sl,sh)dw dsBdr?l,
e\0

[0,112 [0,1]3 Ie

Applying Lemma A.6 for the inner integral and then Lemma A.3, we get (T'y)(u) =
limg 0 f]; T.)(y)(u)dw is analytic from C>** to C# foralla > > 0.

Step 1 implies that the term (sz)(u) = limg\ o f L (Tyy)(u)dw is an analytic operator
from C2t® to C¥ for all @ > 0.
The term 7, can be written using Eq. 2.3 as a sum of expressions of the form

1

lz 1
cw/(l _pMewy @)ty /(1 — O),pdt

1 — rwX,)k
0 ( wXuw) 0

where l} € N. Since X, is analytic and
inf {1 — rw(X,y)w) :y e U",we[-1/2,1/2],u e R/Z,t € [0,1]} > 0,
there is a constant C such that
D" Il (c24e ca < C™"m! V1 €[0,1], w € R/Z.
Using Lemma A.3 twice, we get that 73 is analytic from Cl.zj"‘ to C“. This finishes the proof

of the statement for T,. O
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412 S. Blatt

Proof of Theorem 1.1 From Lemma 2.1 we get an F € Nesp=0 C¥(C?**, CP) such that
forall y € H? (R/Z,R")

- 1 .
H(y) = WQ(V) + F(y).

Hence,
H(y) = Py(H(y)) = I P O(y) + F(y),
where
F(y) = PyF(y) = F(y) - <ﬁ<y>, %} |;—|
From F € Na=p-0 C*(C*H, CP) we hence deduce that F € (. 4.0 C*(C*T*,CP). O

3 Short time existence

In this section we derive short time existence results for the gradient flow of the Mobius
energy. For this we will work with families of curves that are normal graphs over a fixed
smooth curve. We show that for initial data y that can be written as this fixed smooth ref-
erence curve plus a vector field that belongs to a certain open neighborhood around 0 in the
space of h>** vector fields, there is a family y; of curves with normal velocity —H (y,) and
converging to y in £%% as ¢ N\ 0.

To describe these neighborhoods, note that there is a strictly positive, lower semi-
continuous function r : Cl.Z.r R/Z,R") — (0, o0) such that

y +{N € C*R/Z, ")y : [N o1 < r(9)} € CH*R/Z,R")
forall y € ;1 (R/Z, R") and
<172 inf_ |y (x)|. 3.1
r(y) <1/ xé?a/zW(x)' G.1

Here, C*(R/Z, R”)f; denotes the space of all vector fields N € C*(R/Z, R") which are
normal to y, i.e. for which (y’(u), N(u)) = 0 for all u € R/Z. Letting
Ve(y) = {N € ®***R/Z,R"); : [N|ct < r(y)}
we have forall y € h?,}a (R/Z, R™)
Y+ V() ChS(R/Z,R"). (32)

Let N € V,(y). Equation 3.1 guarantues that P(t ENY @) is an isomorphism from the
normal space along y at u to the normal space along y + N. Otherwise there would be
a v # 0 in the normal space of y at u such that

(y + N)'(w) > (v +N) ()
oy + N @I Iy + NY @)

1
0= P(V+N),(u)(v) =v— <v
which would contradict

v_<v ()/+N)’(u)> (v + N)'(w)
A NY @I I+ NY @)

N'(u)
"y + N)Y ()]

zlvl—’(v I‘zlvl/2>0.
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The gradient flow of the Mobius energy 413

Fory € C1((0, T), C} . (R/Z,R")) we denote by
oy = Pi(dry)

the normal velocity of the family of curves.
We prove the following strengthened version of the short time existence result mentioned
in the introduction

Theorem 1.2 (Short time existence for normal graphs) Let yy € C*°(R/Z, R") be an embed-
ded regular curve and o > 0, ¢ N. Then for every Ny € V,(yo) there is a constant
T = T(Ng) > 0 and a neighborhood of U C V, of Ny such that for every No € U there is
a unique solution N € C([0,T), h*T(R/Z)) N CH((0, T), C*(R/Z),) of

(3t(vo+N)=—H(p+N) t€[0,T], 33)
N(0) = No. '

Furthermore, the flow (No, 1) — Nﬁo(t) isin CH((U x (0, T)), C*®(R/Z)).

The proof of Theorem 1.2 consists of two steps. First we show that (3.3) can be trans-
formed into an abstract quasilinear system of parabolic type. The second step is to establish
short time existence results for the resulting equation.

The second step can be done using general results about analytic semigroups, regularity
of pseudo-differential operators with rough symbols [4], and the short time existence results
for quasilinear equations in [2] or [1]. Furthermore, we need continuous dependence of the
solution on the data and smoothing effects in order to derive the long time existence results
in Sect. 5.

For the convenience of the reader, we go a different way here and present a self-contained
proof of the short time existence that only relies on a characterization of the little Holder
spaces as trace spaces. In Subsect. 3.1, we deduce a maximal regularity result for solutions of
linear equations of type d;u + a(t) Qu + b(t)u = f in little Holder spaces using heat kernel
estimates. Following ideas from [2], we then prove short time existence and differentiable
dependence on the data for the quasilinear equation.

The following lemma (the proof of which we postpone till the end of the section), will
allow us to solve the gradient flow for all initial data in hlzra R/Z, R™).

Lemma 3.1 Letr : hi’f R/Z,R") — (0, 00) be a lower semi-continuous function. Then for
everyy € hlz'fa (R/Z,R") there is a y € C{V(R/Z,R"), N € V,(y) and a diffeomorphism
V€ CPTY(R/Z, R/Z) such thaty oy =y + N

Combining Theorem 1.2 with Lemma 3.1 we immediately get

Corollary 3.2 (Short time existence) Let yy € hlzf“ R/Z,R"), ¢ > 0, ¢ N. Then there is

aconstant T > 0 and a reparametrization ¢ € C*t*(R/Z, R/Z) such that there is a solution
y e C([0,T), h?j’“ R/Z,R")) N clo, 1), C®(R/Z,R™)) of the initial value problem

oy =—H(y) Vi [0, T],
[V(O) =y o¢.
This solution is unique in the sense that for each other solution
7 € C(0, T), hi*(R/Z,R™) N C((0, T), C*(R/Z, R"))

ir
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414 S. Blatt

and each time t € (0, min(T, f’)] there is a smooth diffeomorphism ¢, € C®°(R/Z,R/Z)
such that

v, ) =y ¢:().

3.1 The linear equation

In this subsection we derive a priori estimates and existence results for linear equations of
the type

oru+aQu+bu=finR/Z x (0, T)
u(0) = ug

where a(t) € h*(R/Z, (0, 00)), b(t) € L(h*(R/Z,R"), C*(R/Z, R")).
We will use the trace method of the theory of real interpolation theory (cf. [11, Sect. 1.2.2]).
For the precise statements, we need for 6 € (0, 1), « > 0, and T > 0 the space

X0 = {g € C((0,T), h*3(R/Z,R") N C'((0, T), h*(R/Z, R") :

sup "7 (18,8 lce + llg(D)ll cava) < oo]
t€(0,T)

equipped with the norm

gl yo.« := sup "0 (13,8 llce + 1) | e3+e)
r te(0,T)

and the space
Yo = [g € C((0,T), h*(R/Z,R™)) : sup 1" ?|g(®)lce < oo]
1€(0,T)

equipped with the norm

]_
Igllyoe = sup ' O|g(®)]ce.
T te(0,T)

Note that X ?’O‘ c (0, T), CY (R/Z, R™)). From the trace method in the theory of inter-

polation spaces (cf. [11, Sect. 1.2.2]), it is well known that for all u € X HT‘a the pointwise
limit #(0) of u(¢) for r — 0 satisfies u(0) € h* 3¢ (R/Z, R") and

lu(Ollcesse = Cllullxr (34

ifa+30 ¢ N.
The aim of this subsection is to prove that for

aeCY([0,T],h*R/Z,R")), beC’O,T), Lk*®R/Z, R"), h*R/Z,R"))
with SUP;e(0,7] 1= b))l Lhe hey < 0o the map
J tu+— (u(0), 0;u +aQu + bu)

is an isomorphism between XGT’“ and h* T3 (R/Z, R") x Yﬁ’“. That J is a bounded linear
operator follows from Eq. 3.4. That it is onto will be shown using a priori estimates together
with the method of continuity.

@ Springer



The gradient flow of the Mobius energy 415

To derive these estimates, we will freeze the coefficients and use a priori estimates for
oru + A(—A)3/2u = f on R where A > 0 is a constant. We will use the formula

(presmmmm e ) s

|w| > ¢

observed by He in [8] for u € H3(R, R"). Using the Taylor expansion
ulx +w)=yx) +wu' (x) + - w2 "(x) + = /(1 0H2u" (x + tw)dt
and the Hilbert transform #, one can derive this formula for u € C*%(R) with compact

support spt u calculating

(—A)Pu = H(u’”)(x)

—/(1—;)2/ (" (x + tw) — u” (x))dwdt

weR

3 1 2, 1 m
— / —/(l—t) W (x +tw) —u" (x))dtdw

weR
= —hm / /(1 %" (x + tw)dtdw
7T eN\0
weR
lw| > &
~ 3 Jim / QU W) Zul) Zww @) ) 4w
T e\0 |w|? | |2
\z})\iRs

Using the boundedness of the Hilbert transform, we furthermore deduce that the operator
(—A)3/? is bounded from C3 ™ (R, R") to C%(R, R").
Let us consider the heat kernel of the equation 9,u + (—A)3/2u = 0 which is given by

1 o 3
G (x) == — / X IRx g H2TKE g (3.6)
21
R
forallr > 0 and x € R. ,
Note that since k > e "127kI” is a Schwartz function, its inverse Fourier transform G, is

a Schwartz function as well. Furthermore, one easily sees using the Fourier transformation
that

%G+ (—=A)*G, =0 onR Vi > 0. (3.7)
The most important property for us is the scaling
Gi(x) =t713G 73y, (3.8)
from which we deduce
G (x) = 7 IHROBGEG (7 1x) (3.9)
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and hence
195Gl L1y < Crt ™ P10 Gl 1wy < Crt ™. (3.10)

Combining these relations with standard interpolation techniques, we get the following
estimates for the heat kernel

Lemma 3.3 (heat kernel estimates) For all 0 < a; < ap, and T > O there is a constant
C =C(ay,ap, T) < 00 such that

G * flicea < Ct™ 2708 fllcay Vf € C*'(R,R"), 1 € (0, T].

Proof Letk; € Ny and &; € [0, 1) be such that o; = k; + &; fori =1, 2.
For! > manda € (0, 1), we deduce from fR 8)16_’" G;(y)dy = Oandthat G is a Schwartz
function

10L(G, * )| = / ALTG (@ f(x — y) — I f(x))dy
R
3.9 —(1H=m)/3 | ral—m 13 m m
= /z @G (/1 )] 1@ fx — y) — 8 £ (0))ldy
R

Zzy/tl/f% L B
< /t E=mB GG )] - 187 f(x — 1132) — 3 f(x))|dz
R

IA

¢~ U=mr D3 psl, (™ f) / 1™ G (2)1z21%dz
R

IA

C(l,m, a)y= =t hg1, (3™ f).
Foralll > m,a € (0, 1) we have
holy (3, (G * f)) < C( —m)t'™" holy (3" f)

asforall x;,x; € R

192(Gr # )01 =0,(Grx )| = /8)17"’Gt(y)(8§"f(x1—y)—8§"f(xz—y))dy
R
1957 G | 1 hdle (82" )]y — x2|*

IA

3.10)
< CU—myt= B gl (37 £)lxg — x|

In a similar way we obtain for all / > m
192Gy f)llze < CU—myr B30 oo

Combining these three estimates, we get

G * fllckyray < Ct=RTBY £l ks, (3.11)
IGs * fllgir < Cr~WatD=iFan/3y gy o (3.12)

and if kp > ky
IG: * fllgr, < Ct=Rm®vaD By ey o) (3.13)
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Furthermore, we will use that for0 < o < 8 <y < 1, # y, and f € C* we have the
interpolation inequality

B= r=8

I fllce < 20 £ AN &S (3.14)
which can in the case of « > 0 be obtained from
f-a y=5
[f(x) — f)] < [f(x1) — fO) 7= | f(x1) — fx2)] 7=
B-a r=B
< (hol, ()lxg — x2|") 7= (W6l (f)lxg — x2]|%) v
and in the case that « = 0 from
B y=8
[f(x1) — f)] < 1) = fGDI7 [f (1) — fxa)] 7
B y=p
< (hdly, (H)lxr —x2")7 QI flize) 7.
For &y > @1 we get
1G# fleriay = C (102G * Pllas + G+ 1)

(3 1 ) 1—-ap ap—ay

CUR G )l oy 192G Pllo™ + 11 fllz)

3.11H&3.12)
< Ce= @273 L 1| fllce .

For @1 > ap and hence k; < kp, we obtain

1G# Fllosa = € (102G % Nllem +1G:  Dle)

Glb k 2o T
CU18:>(Gr * )l o, 107 (Grx Pl o' +1Gex fliLee)

3.11H&@3.13)
< C(e= @275 L )|l fllcen .

To derive a representation formula for the solution of d;u + (=AY 2y = f, we need

/G,(x)dx =1.

R
Furthermore, for all f € h* (R, R"), o ¢ N we have

Lemma 3.4 For all t we have

G f 2% F inhe@®,RY.

Proof For g € L*(R) let § denote the Fourier transform of g.
Fort > 0and f € L*(R) we obtain from Lebesgue’s theorem of dominated convergence

~ 110 A
Grx )N =e PP f U8 7 i g2,

Hence, Plancherel’s formula shows

Gy f— f inL%
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Setting f = x(—1,1] and observing

lim(G =1 Gidy = | Gidy, VYx e (—1,1),
t{%( t* )x) pm / 1dy / 1dy, Vx e( )
(=13 e—1),013(x+1)] R

/Gldy: L.

R

we deduce that

To prove the second part, let f € h%(R, R"). From convergence results for smoothing
kernels we get for all f € C*®(R)

limi%up If —Gi# fllce < nmﬁ)up ICf =)= Gix (f = Dlice +I1f = G flice
t t
- nmﬁ)up ICf =)= Gex(f = Dlce
t
Lemma 3.3 ~
< CIf = Dlce.

Since h* (R, R") is the closure of C*°(R, R") under || - ||c«, this proves the statement. O

Linking the heat kernel G, to the evolution equation 3, + A(—A)¥? = f for constant
A > 0 we derive the following a priori estimates

Lemma 3.5 (Maximal regularity for constant coefficients) For all « > 0,6 € (0, 1) with
a+30 ¢ N, and 0 < T < oo, A > 0 there is a constant C = C(«, 0, T, A) such that the
Jollowing holds:

Letu € C'((0, T), h*(R/Z, R"))NCO((0, T), K3 T4R/Z, R")NCO([0, T), h* 30 (R/Z,
R™)) such that u(t) has compact support for all t € (0, T). Then

sup 17 ([9ullce + llullcase)
te(0,7]

< c( sup ' 700 + A (=AY Pyl ce + ||u(0)||ha+3e) (3.15)
t€(0,T]

Proof Setting ii(t, x) := u(t, A'3x) and observing that 8,i(x,t) + (—A)2i(x,1) =
dut, \13x) + A(=A)32u(r, A1/3x), one sees that it is enough to prove the lemma for
A=1
To this end, we first show that u can be written as
t
u(t, ) = / Gi—s * f(s,)ds + Gy xu(0) (3.16)
0

where f = d;u + (—A)3/?u. For fixed r > 0 we decompose the integral in Eq. 3.16 into
1
I = / Gi—s * f(s,)dxds
r—e¢
and

1—e

Je = / Gi—s * f(s,)dxds
0
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and see

Lemma 3.3 £l0
IHellLe = Ce sup [f(s,)llLe —> 0.

se(t—e,t)

As our assumptions imply that u(r) € H>(R, R"), we get comparing the Fourier transform
of both sides

(Giey # (=) u(s, ) (x) = ((—A/?G ) * u(s, ) (x). (3.17)
We get using partial integration in time and Eq. 3.17

t—e t—e

Jo = /G,_s*atu(s, -)ds+/G,_s*(—A)3/2u(s, Yds

0 0
t—e¢

= Gexu(t—e¢,)— G xu,-)+ /(8S(G,,s) + (=A)2G,_y) x uds
0

D Gowutt —e,) = Grxu©,) 23 1) — G xuo, ).

in C% as ¢ N\ 0. This proves Eq. 3.16.
From Lemma 3.3 we get

Gy * uollc3a < CtO7 V||| casso (3.18)
We decompose v(t) := fot Gi—s * f(s,)ds = vi(t) + v2(t) where

t
vi() = Gipxvt/2)  v() = / Gis * f(s,)ds.
s=t/2

Then the definition of || - || ,«¢ and the estimates for the heat kernel in Lemma 3.3 lead to
T

t/2
lv1@llcasa < CA/D7 Ny / s"lds < €t/ NS llyao- (3.19)
0
For& > 0andn € (0, 1) we get
t
IE1(Ge %2l cora—sn = [E'TT / (Gi—s+ * f)ds
t/2 Co+a—3n

Lemma 3.3
=<

t
C&170 [t =5 672" sl £l
t/2

< Ca/D" NS llyao
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and
t
1-n d 1-n
& E(Gg * 02) || c3ta3y = ||&§ (0;Gr—ste * f
t/2 C3+a=3n
t
< cel / (t =5 + ) 2159 s | £l oo
T
t/2
< €/ N fllyeo
as
I3 | 0 1
- t
s""/“ s s = S o ey <
1—n 2 1—n
%
Hence, by the estimate (3.4)
lva (@)l 3+«
<C sup [&"77 (I(Ge * v [l cora-3n |l + 196 (G * v2 (D))l ¢3+a-31)
£€(0,7/2)
<t fllyeo. (3.20)
T

From (3.16), (3.18), (3.19), and (3.20) we obtain the desired estimate for |[u|| -3+«
The estimate for ;u then follows from d;u = f — (—A)>?u and the triangle inequality.
O

Lemma 3.6 (Maximal regularity) For all A, T > 0,n € N, and @ > 0,6 € (0, 1) with
o + 360 ¢ N there is a constant C = C(A, o, 0,n, T), < oo such that the following holds:

Forall a € CY([0, T1, h*(R/Z, [1/A, 00))), b € C°((0, T), L(h*(R/Z, R"), h*(R/Z,
R") with [lall 1 qo.71.c) + CNB@O Lo, hey < A andallu € C'((0, T), h*(R/Z, R")N
%0, T), B3y N ([0, T1, h*+3) we have

sup 'O LYIBu(®)llce + Nu @)l }
t€(0,T]

< C( sup ' 3,u(t) +a(t) Qu(t) + b(Hu(t)lce + ||u<0)||ha+39).
t€[0,T]

Proof Note that it is enough to prove the statement for small 7'. Let us fix 7p > 0 and assume
that T < Tp. Furthermore, we use the embedding 2% (R/Z, R") — h*(R, R") and extend
the definition of Q to functions f defined on R by setting

S futw = fl) - wf'(u) f”(x))dw

X) = l'“l
[ 1/2;1/2] [e,€]

w? w?

Stepl: x € (0,1)and b =0
Let ¢, ¥ € C*°(R) be two cutoff functions satisfying

XB120) = @ = XB(0)
XB>0) < ¥ =< XBy(0)-
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and ¢, (x) := @(x/r), ¥, (x) = ¥ (x/r). We set
f =0u+aQu.
Then for r < 1/8 we set ap = a(0, 0) and calculate
3 (ugy) + %a(ox—AR)W(um = (du +aQu)p, — a(Qw)p, — O(ug,))
4a—a(0)>Q<u¢r)—ao(Q(u¢r>—%(—AR)W(uw
=for—fi—fH—/f3
where

S1 = a(Q)e, — O(udr))
Sf2 = (a —a(0)) Q(ugy,)
._ s 3/2
f3 = ao(Q(ugy) — 3 (—AR)(uey)

From Lemma 3.5 we get

" Bu )y llco + Nu@)drllcava)

< c( sup ]s“e ULF®drllce + 1A lce + 112 lce + 1 f3() I ce)

5[0,

+||u(0)||ca+3e.)

Using Lemma A.8, we get

I F1)llce < CAllus) | cove P ll ¢3te -
Using |a(x, t) —ag| < A(|x|* 4+ T), we derive
I 2lle < [1¥r(a = ) Qe o + (W = D@ = a(0) Quey)co
< CIA(2N)* + Dllugy || c3ra + |y — 1)(a — a(0)) Q(udr) |l ce

where C; does not depend on r or 7. Since spt 1 — ¢, C R — By4,(0) and spt¢, C B,-(0),
we see that

WYr = D(a —a(0)) Q(ugy)(x)

= (¥r(x) — D(a(x) —a(0))
[=1/2,1/2]-[~r,r]

u(x +w)gy(x +r)
5 dw
w

and hence
[(Wr — D(a —a(0)Quey)lce = CA, ¥, ¢, r)|lullce.
This leads to
If2®)llce < CLAWRN® + T)l|u()¢r [l c3va + Cllu(s)llca.
Furthermore,

[ f3llce = C(A, @, r)llullc2+a
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as for v € C3*(R) with compact support we have

0() — 3 (~Ar)"(v) = — / ) Zv) mu)) &

R—[—1/2,1/2]

and hence

o0
1 1
0 (v) — 8<—AR)3/2<v>||ca < @lvllce + o]l c2ta) - 2/ —3dw < 24[v]| ¢
1

2

Summing up, we thus get

sup 1170118, () (Dl ce + @)y | c3+e) < CLARNT +T) sup 5" ||uepy || c3+e
1e(0,T] 5€(0,T]

+C(¢p, ¥, 1, A))( sup (" F)llee + s uls)les) + ||M0||ca+39)

s€(0,7T]

where C does not depend on r. Choosing r and 7 small enough and absorbing the first term
on the right hand side leads to

1—
sup +77 (1wl ce s, + Nullcreo s, 0
te(0,T]

<C, ¥, A))( sup (s F)llee + s uls)lles) + ||M(0)||Ca+39)-

5€(0,T]

Of course, the same inequality holds for all balls of radius /4. Thus, covering [0, 1] with
balls of radius /4 we obtain

sup 170 (I8,u(®)llce + [lut) | c3+e)
te(0,T]

< C( sup (' 701 £ ()l ce +s‘—9||u<s)||cs>+||u<0>||ca+se).

5€(0,T]
Using the interpolation inequality for Holder spaces
lullcs < ellullca+a + C(e)llullce
and absorbing, this leads to

sup 177 (J18,u(t) oo + (@) || o34 )
te(0,7T]

SC( sup ("N F () e + llus)llce)+ ||“(0)||ca+36)~

s€(0,T]
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Since

s
u(s)llce < / 9:u(T)lcadt + [[u(0) || ca+ao
0

ldr sup v PN du(T)llce + [[u(0) ] carso
7€[0,7T]

IA
—

IA
| —= ©

7% sup ' 70)8,u(t)|ce + |u(0)]| catso.
te€(0,7T]

we can absorb the first term for 7 > 0 small enough to obtain

sup "7 (8, (s)llce + [luls)llc3+a)
s€(0,7)

=< C(A))(( sup Sl_ellfllca)Jr IIM(O)IlcaH@)-
5€[0,7]

Step 2: General « but > =0

Let k € Ng, @ € (0, 1) and let the lemma be true for « = k + &. We deduce the statement
foroa =k+1+4+a.
From 0;u + aQu = f we deduce that

0;(0xu) +aQoyu = 0y f — (0ya)Qu
and we obtain applying the induction hypothesis
sl s < C (105 Fllysas + 110:@) Qull s + 18,0l caso)

= C (I lypnsao + Alullgisas + 18,0 caro)

< € (If lygersan + 1@ coss)-

Step 3: General « and b
From Step 2 we get

il geo = € (If e + 1€ ) 1 BO@ED ]y + ol cuss )
As

(2, x) = 6O @E) )y = sup " [b@O@E)lce <A sup [u(s) ]
T 5€(0,T) 5€(0,T]
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and

N
u(s)llce < / 19:u(t)lcadt + lluoll ca+se
0

"~ 'dr sup 'Y du(r) [ co + [u(0)] caras
7€[0,7]

IA
—

T sup "7 )9,u(t)llce + u(0)]|cusso,
te€(0,7T]

IA
D~ ©

we get absorbing the first term for 7 > 0 small enough

lull g < € (I lyso + ol cusss )-
m}

Lemma 3.7 ForallT > 0, > 0,0 € (0, 1) with @ + 30 ¢ N, a and b as in Lemma 3.6,
the map J : u +— (u(0), o;u + aQu + bu) defines an isomorphism between X(;’a and
hf(R/Z,R") x Y5

Proof The only thing left to show is that this map is onto. To prove this, we use the method
of continuity on the family of operators J; : u — (u(0), d;u + ((1 —t)AQu + t(a Qu + bu).
In view of Lemma 5.2 in [7], the only thing to show is that Jy is onto. For ug, f in C*® a
smooth solution of the equation

ou+2Qu=f Vte(,T]
u(0) = ug

is given by
t

u(t, x) = Zﬁo(k)eftkkklbrkpebrikx + Z(f(s))’\(k)e’(””“k'2”k|3ds
keZ 0 keZ

where

Py 2/1 1= Y Vosinnar == + oy

== -{1--—)sin =— -).

=3 )7 k7t 3 k
0

This follows from the fact that for f € H 3 (R/Z,R"™) we have by [9, Lemma 2.3]
Q) (k) = Ml2mkP £ (k).
Let now ug € h*+3(R/Z, R") and f € Y&". We set fi(r) := f(r + 1/k) and observe that
fe = f inC°(0, T1, h*(R/Z, R™)).

Since f; € oo, T — 1/k], h*(R/Z,R")) we can find functions f, € C*([0,T —
1/k] x R/Z, R") such that f, ; — f, in CO([0, T — 1/k], C%) for n — oo and smooth u{’
converging to ug in h*T3? Let u, ; € C* be the solution of

atun,k + Qun,k = fn,k
n 1 (0) = ).
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Using the a priori estimate of Lemma 3.6, one deduces that the sequence {u, i}nen iS a

Cauchy sequence in X %f . for every ¢ > 0. The limit u,, solves the equation

[8t“n + Quy = fu

u, (0) = ug.

Using the a priori estimates again, one sees that {u, },cn is bounded in X‘;’fs. Since X?’i
embeds continuously into C%/2([0, T — ¢], h*t3/20) and C'~"([8, T — ], h**3") for all
n € (0,1),¢e,8 > 0, we can assume after going to a subsequence that there is a u, € X‘;’e

such that
Uy —> Uoo in CU((0, T — g), C¥P)
for0 < B8 <a,&e > 0and
Uoo(0) = uyp.

Hence we get

dttn = f — AQup — f + AQuino in C°((0, T — g), C3F)

for all ¢ > 0 which implies that u, solves

[a,uoo +AQuco = f

Uoo(0) = uyg.

3.2 The quasilinear equation

Proposition 3.8 (Short time existence) Let 0 < ,0 < 6 < 0 < lL,o,a + 30,0 +
30 ¢ No,U C C*PR/Z,R") be open and let a € CY(U, C*(R/Z, (0, 0))), f €

cl(U, C¥(R/Z, R™)).

Then for every ug € h*t3 (R/Z,R") there is a constant T > 0 and a unique u €

([0, T), h* 3o (R/Z, R™) N CL((0, T), K3+ (R/Z, R")) such that

O +a(u)Qu) = f(u)
u(0) = ugp.

Proof Let us first prove the existence. We set X7 := {w e x%*
weX ?’9 (R/Z, R™) let dw denote the solution of the problem

oru + Apu = B(w)w + f(w)
u(0) = ug

where Ag = a(ug) Q and B(w) = (a(ug) — a(w)) Q.
Let v be the solution of

Oyt 4 a(uo) Q(u) = f(uo)
i1(0) = ug

: w(0) = up}. For

and B, (v) :={w € )2?’9 “lw — vl yeo < r}. We will show that ¢ defines a contraction on

B, (v) if r, T > 0 are small enough.
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Since a € CY(U, h*(R/Z,R")), we get 1Bl (a3 cey < Cllz — ullcarso for all
ze Ca+39.

Let wi, wy € By(v), r < 1. Using that the space X7 embeds continuously into
c°=9(10, T1, C*P3(R/Z, R™)) and w1 (0) = w2(0) = v(0) = ug we get

lwa(6) = uollcarao < C17~ flwnllyae < CE7 O (vllyee +71),  (321)
w1 (t) = wa ()| carao < C17 Jwy — wa | xao. (3.22)
We estimate using Lemma 3.6

[®w; — Pwy||yee < CllB(wwr — B(wz)wzlly}w + Cllfwr = fwallyze.

and
N f i) = Fwa)llce < CH 7wy (1) — wat) [ cetas
(22) CT'w; — w2l oo
Furthermore,
1B(wi)wi — B(w)ws|lyso
< [(B(w1) = Bwa)willyze + | B(w2) (w1 — w2)lyze
<C sup "7 (Jwi(t) — wa ()|l ot | wi (1) || 3+
te(0,T]
Fllwa(t) = uollcarso llwi () — wa (1)l c3+a )
SEZI ¢y (17 = wall s Iy
t€(0,7T]
+7 ([l g + ' w1 (@) = w20l s )
T (Iwllyae +rlwi — wallxeo.
and thus

[®(w1) — @)l yao < C(T7 + T 0(|Jv]lyao + r)llwi — walyas
T T T

and hence & is a contraction on B, (v), if T and r are small enough.
Similarly, we deduce from the definition of v that

[®(w) = vllxar < CllBw)wllyze + [f (w) = f(uo)llyze
—0 1-6
< CT7 7 Jlw| yoe llw — Vlixee + T llw = vlixge + v — uollcass
< llw —vllyeo

if T and r are small enough. Then ¢ (5,(v)) C ¢(B,(v)). Hence, Banach’s fixed point
theorem tell us that there is a unique u# € B, (v) with d;u + a(u) Q(u)u = f(u).

For the uniqueness statement, we only have to show that every solution is in Y7 % But
this follows from Lemma 3.6. O

Proposition 3.9 (Dependence on the data) Let a, b be as in Proposition 3.8 and u € Y. g,a
be a solution of the quasilinear equation

du+aw)Qm) =0
u(0) = up.
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Then there is a neighborhood U of uq in h* 3¢ such that for all x € U there is a solution
uy of

[a,u +a)Qu=0
u0) =x
Furthermore, the map

U — Yﬁ’“

X > Uy
is Cl.
Proof We define @ : h% 3 (R/Z, R") x X%¢ — v&*? by

D (x,u) == () —x, o;u + a(u) Qu)

Then the Fréchet derivative of ¢ with respect to u reads

8¢(x W 1y = (. 3y + alu) Qh + a' wh Qu).

Setting a(t) = a(u(t)) and b(t)(h) = a’(u)h Qu, Lemma 3.6 tells us that this is an isomor-

phism between X ?’“ and hP x Y}o’“. Hence, the statement of the lemma follows from the
implicit function theorem on Banach spaces. O

3.3 Proof of Theorem 1.2 and Lemma 3.1

Finally, we are in a position to prove Theorem 1.2

Proof of Theorem 1.2 Since the normal bundle of a curve is trivial, we can find smooth nor-
mal vector fields vy, ..., v,—1 € C*(R/Z,R") such that for each of u € R/Z the vectors
vi(u), ..., v,—1(u) form an orthonormal basis of the space of all normal vectors to yg at u.
Let Vo (y) == (@1, ..., ¢u—1 € RPTOR/Z, R : 372 givi € Ve (1)),

Nowleta — 1 < B < a, B ¢ N. If we have N, = 27;01 i, (B1ss - Pn1) € Vr(¥),
then (3.3) reads

2
(0.0 (P;_’(u)v’) == |y’|3 P% (Q (vo + ¢iivi)+ F(vo + ¢iivi)
= |V |3 (Q¢’ l) ’vl F(VO + ¢i,tui)
2
WP Py 5 (Q (¢1.0v1) = (Q8i.r)vi + Oro)
_F(VO + ¢l tVi)
=7 |3 (Q8i.e) Pyrvi + Fyy ()

where

2
Fyy(p) = =F(yo + bravr) — e P (Q (brivr)— (Qér.i)vr + Q10)

|J/ |3 ((Q¢l f) ’Vl - P,/L’ (Q¢i,zvi))-
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Using Lemma A.8 one sees that F € C*(C*t*, CP).

Since (3.1) implies that {P;w, :r =1,...,n — 1} is a basis of the normal space of the
curve y at the point u, the map A : R G @)L, (x1, ..., x0—1) = X P}ﬁ(u)v,- is

invertible as long as [|y" — ygllz= < 1.
Hence, we derive

2

3z¢z = 7|)//|3

0¢, + 4~ (F(n)

where A™H(F (¢y)) € C®(h®*t, hP). Now the statement follows easily from Proposition 3.8
and Proposition 3.9 and a standard bootstrapping argument..

To be more precise, one gets immediately form the short time existence result that for
every ¢o € h2T¥ there is a solution in ¢ € CO([0, T), h*+*) N C1((0, T), h3*F)) for all
max{0, o« — 1} < B < a, @ ¢ N and the C! dependence on the data. Bootstrapping, we get
¢ € CO(0, T), C*®) and the corresponding c! dependence on the data. O

We conclude this section proving Lemma 3.1

Proof of Lemma 3.1 Let y € hlzj"‘ (R/Z,R"™) and let us set y; := ¢, * y where ¢ (x) =
8’1¢(x /€) is a smooth smoothing kernel. Since hiz,f“ (R/Z,R™) is an open subset of
W (R/Z,R") and (¢ — y:) € C2([0, 00), h7H*(R/Z, R™), we get y, € hﬁj"(R/Z, RY)
for & small enough.

Furthermore, it can be deduced from y, € C 0([0, 00), h2te (R/Z, R™)), that there is an
open neighborhood U of the set ¥ (R/Z) and an &y > 0 such that the nearest neighborhood
retract v, : U — Z/R onto y is defined on U simultaneously for all ¢ < gg. Note, that these
retracts r, are smooth as the curves y, are smooth.

We set Yo (x) 1= re(y(x)) and No(x) = yg(l//e_l(x)) — yo(x) and want to show that
Y 1= Ye, N := Ng, and ¢ := 1, satisfy the statement of the lemma if ¢ is small enough.

Using the fact that (¢ — r¢) € C((0, o), Cch(U,R/Z)) and making U smaller if neces-
sary, we get that ¢ — . belongs to C2((0, &), 1t (R/Z,R"™)) and Y9 = idrz. Hence,
Ve is a C11* diffeomorphism for ¢ > 0 small enough as the subset of diffeomorphism is
open in C'" From v, (x) := r.(y (x)) we deduce that 1/, is in facta C>+ diffeomorphism,
as r, is smooth.

Furthermore, as

Ne =ye o9, — yo € C°([0, 00), C'T*(R/Z, R™))
and Nop = 0 we get

0
AP}

Since r is lower semicontinuous and r(yp) > 0, we hence get || Ng(x)||c1 < 7(ye) for small
e. As N, € h*% we deduce that N, € V.(y,) if ¢ is small enough. ]

4 The Lojasiewicz-Simon gradient estimate

Proof of Lemma 1.3 We can assume without loss of generality that y,, is parametrized by
arc-length and that the length of the curve is 1.
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Let H 3(R/Z, R”)f;M denote the space of all vector fields N € H 3(R/Z, R™) which are
orthogonal to ys. We first show that the functional

E:H R/Z,RHL - R

Ym

N E(¢+N)
satisfies a Lojasiewicz-Simon gradient estimate using [5, Corollary 3.11].

To prove that the derivative E" (0) defines a Fredholm operator from H 3 R/Z, R”))J;M to
L*(R/Z,R")y,, C (H?(R/Z, R"))', we calculate using |y}, = 1

E"(0)(h1, h2)
im Joyz (H (v + thy), h2) lymd' + th'jldw — [g 5 (H(ym), ha) lyyldw
t—0 t
= (Vi Hym, h2)L2 +(Lihy, ho) 2

where Lihy = Hyy - (v, b)) is a differential operator of order 1 in h.
So we have to show that PV/w (VH (yy)) is a Fredholm operator from H 3(R/Z, R”)#M
to lz(R/Z, R”))&M. We know from Theorem 1.1 that

2 1
Hy = 5 Pr(Qn) + F ()

where F € C®(C*t, CP) forall ¢ > B > 0. Thus

1 / _ 2 1 -
PJ/;@; (ViH (yyy)) = 7|)//|3 (Py},w(Qh) + Fy,, (h)) 4.1)
where

~ 6
Py ) = = szl W12 Qo)+ B (S ) + (4P, (@)

e cvCc*, ch).

Now let v; be a smooth functions such that v (u), ..., v,_1(u) is an orthonormal basis of
the normal space on y at u. Then each ¢ € H*(R/Z, R")" can be written in the form

¢ = ¢ivi
where ¢; := (¢, v;) € H*(R/Z). We calculate
P} (0)= P (Qdiv)= 0d, (P vi)+ P (Q@ivi) — (Q)v,)
= 0y + Fy(@) “2)

where F3 € C‘“(Cz"'“, Cﬁ) by Lemma A.8. From [9, Lemma 2.3] we know that
0 - %(—A)y 2 is a bounded linear operator from H 2t0 L2 Combining this with the fact
that (—A)3/2 is a Fredholm operator of index zero from H3(R/Z, R") to LQ(R/ZR"), we
get that the operator
A:HR/Z, R, — L*(R/Z,R");,,
¢ = Qi
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is Fredholm of order 0. As the Eqs. 4.2 and 4.1 tell us that P)f; (VH (ypm)) is a compact
M

perturbation of A, this is a Fredholm operator as well. Hence, E” is a Fredholm operator
from H3(R/Z, R");. to L*(R/Z, R").  of index 0.
That H is an analytic operator from (H 3)¢M to (Lz))}M can be seen from Lemma 2.1,

using the fact that H3(R/Z, R") embeds into C>T¢ for every a € (0, 1/2) and C# embeds
into L2.
Now, [5, Corollary 3.11] tells us that

E(a +N) — Ean)'™ <. / \H (v + N)(0)Pdxq |2
1z

forall ¢ € H3(R/Z, R")* with ||¢|| 3 < 5.2

To prove the full estimate, note that since yys is C°° Lemma A.9 tells us how to write
nearby curves as normal graphs. More precisely, there is a o > 0 such that for all y €
H?3 (R/Z) with ||y — ym|l g3 < o we have |y’ (x)| > ¢o > 0 and there is a reparametrization
Y € H¥(R/Z,R/Z) and a ¢ € H3(R/Z, R")L such that

yov =yu+¢
and
lollgs = C-lly — yullgs-
Assuming o < 1/2 we furthermore have
172 <1yl
and hence

(E(y) — E(ym)' ™ = (E(ym + Ny) — E(ra)) '™

IA
o

/ |H (ym + Ny (x)2dx |12
R/Z

IA

2c-/|H<yM+Ny)<x)|2|y/<x)|dx.
R/Z

5 Long time existence results
In this section we will prove the following more general version of Theorem 1.4

Theorem 5.1 (Long time existence) Let yyy € C*(R/Z,R") be a stationary point of
the Mobius energy and let k € N, § > 0 and a« > 0. Then there is a constant ¢ > 0

2 We apply [5, Corollary 3.11], for W = (Lz(R/Z, R”))%M - (H3(R/Z, R")l)’ and let P denote the
orthogonal projection onto ker (E” (¢))
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such that the following is true: Suppose that (y;):e[o,T) is a maximal solution of the gradient
flow for the Mobius energy with smooth initial data satisfying

lvo — ymllcate <&

foran o > 0 and

E(y) = E(ym)

whenever there is a diffeomorphism ¢; : R/Z — R/Z such that ||y, o ¢; — ym|llcx < 8. Then
the flow (y:); exists for all times and converges, after suitable reparametrizations, smoothly
to a stationary point Y, satisfying

E(yoo) = E(ym).

This theorem will follow easily from the following long time existence result for normal
graphs over a stationary point of the Mobius energy

Theorem 5.2 (Long time existence for normal graphs) Let yy € C®(R/Z, R") be a sta-
tionary point of the Mobius energy and letk € N, § > 0 and o > 0. Then there is a constant
& > 0 such that the following is true:
2 1 Ly
Suppose that N € C([0, T), h*T%(R/Z, R")},M) NC(0,T), C*°(R/Z, ]R")VM) is a max-
imal solution of the equation

O (ym + Ni) = H(ym + No)
with
INO)lc2ta <&
and

E(y) = E(yn)

whenever |N(t)||cxk < 6.
Then T = oo and N(t) converges smoothly to a Noo € C*°(R/Z, R”)JJ;M satisfying

E(yeo) = E(ym)-

Furthermore vy + Noo is a stationary point of the Mobius energy.

Proof From Theorem 1.2 we see that we can exchange the condition [|[N(0)|[c2+« < €

by the stronger condition || N(0)|| -3+« < ¢. Using the smoothing properties again, we can
furthermore exchange the property

E(y) = E(ym)
whenever || N (#)] o« < 8 by
E(y) = E(ym)

whenever ||N(t)|| o2+« < 6.

Theorem 1.2 tells us that there is a § such that every maximal solution of the gradient flow
of the Mébius energy for normal graphs N € C ([0, Tiuax), h2T%) N C®((0.Tjpax), C) that
satisfies

IN@Oles =8 Ve el0,T)
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exists for all time, i.e. Tj,qc = 0O.

Making § > O smaller if necessary, we can use Lemma 2.1 and a short calculation to get
constants 6 € [0, 1/2], ¢ > 0 such that for every N € HS(R/Z, R”))J;M with [|[N]|c3 < o we
have

E(ar +N) — Eganl'™ < c- / Hy + NP N2 6
R/Z
1 1
IPY =PI 172 (5.2)
and
! ! 1 . /
|J/M+N|Z§1nf|)’/w|>0. (5.3)

Now let N € C([0, Tnax). F*T*(R/Z, R")5, ) N C((0, Tnax), C¥(R/Z, Ry, ) be a
maximal solution of the equation

O (ym + Ni) = H(ym + N)
with
INO)c3+e <€
and

E(y:) = E(yn)

whenever [|N(t)||cx < 6.
Let us assume that ¢ < §/2 and that there is a smallest #y € (0, T') such that

IN@les = 8.

We will derive a contradiction, if ¢ is small enough, which implies that || N;|c3 < 6, Vt €
[0, T;,4x)- By our choice of § this implies that the solution exists for all time.

By making ¢ > 0 smaller if necessary and using the smoothing from Theorem 1.2 we can
furthermore achieve that there are constants C = C(yyy) such that

IN®lc3+e <C Vi €0, 10). (54

For 3, :== yy + N and t € (0, fp) we calculate

d 5 - o~
SEG) =~ / O 7 HGOIF|
R/Z
=—/ 17 P17
R/Z
=—/ \H7 217
R/Z
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and hence

—1<E(~)—E( N =0 (EG) — E( )9—‘1E(~)
dt 4 YMm 14 Ym dt 4

. /|a#m2|f;| 12
R/Z

> /WF 12,
R/Z

Integrating the above inequality over (0, ¢) yields
17 = vallzz < 70 = Pellz2 + C (EGo) — E(yan))’
< Cllvo — v
Using the interpolation inequality
1—
Iflles < 1A 00,
o

where 8 = az72 We get for ¢t € [0, 1p]

~ ~ 1- ~ ~ 0,
17 = ymlic3swyzrny = Cllve — VM”CSED((R/Z’R;:)”VI - VM”iz =Cliyo - VM||CBz
<ce% <52

if & > 0 is small enough, which leads to a contradiction to the definition of #y. This proves
the long time existence.
Since

87 € L'([0, 00), L?)
we get that there is a Yoo € L?(R/Z, R") such that
Yt = Voo-

From Theorem 1.2 we get sup; ||| < oo foralll € N and hence this convergence is even
smooth and 6 E (Y) = 0. Using the Lojasievicz-Simon gradient inequality again we get

(Eyoo) — Eya))' ™ < ¢ /|Hyoo|2|ygo| 120
R/Z

and hence E(y) = E(ym)- m]

Proof of Theorem 5.1 Dueto Lemma A.9 forall y € C***(R/Z, R") with ||y — yarlc2+a <
¢ there is a diffeomorphism ¢, and a vector field N, € C 2+ (R/Z, R™) normal to yy; such
that

Yooy =ym+Ny (5.5)

and

[Ny llc2+e = Clly — ymllc2+e (5.6)
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if &€ > 0 is small enough.
For y € C2*% with

ly —vmllcrte <&
let (Ny), €l0.7) be the maximal solution of
35‘()’M + Ny) = H(ym + Ny)
No=N,.

Then T < T and for all ¢t € [0, f’) there are diffeomorphisms ¢; such that y; = (yar +
Nt)(qbt). Hence ~N, satisfies all the assumptions of Theorem 5.1 if ¢ is small enough and thus
oo=T.Form T < T wededuce T = oo. O

A Appendix
A.1 Analytic functions on banach spaces
We briefly prove some lemmata about analytic functions on Banach spaces. A thorough

discussion of this subject can be found in [10, Chapter 3, Sect. 3].

Definition A.1 (Analytic operator) Let (X, || - [|x), (Y, || - |ly) be real Banach spaces. A
function f € C*(A,Y), A C X open, is called real analytic, if for every a € A there is a
open neighborhood U of a in X and a constant C < oo such that

|D" fo)| < C"m! Ym eN, x € U.

In this context || - || stands for the operator norm. The next lemmata show how to construct
analytic functions:

Lemma A.2 Let g : U — R¥ be a real analytic function, U C R" be an open subset, and
let V C Cke (R/Z, R™) be an open subset such that im(f) C U forall f € V. Then

T:V— ChYR/zZ, R
X—>gox
defines a real analytic function.

Proof Let fy € V. Since im fj is a compact subset of the open set U there is an ¢ > 0 such
that K, := Uyeimfo B.(y) CU.
Since g is real analytic and K. C U is compact, there is a constant C < oo such that

D" g < C"m!, VmeN, ye K,.
As
D"T(y)(h1, ..., hw) = D"g(y)(h1, ..., hy)

(can easily be deduced from the Taylor expansion of g) and since C*(R/Z) is a Banach
algebra, we get

ID"T ()l < (k 4+ DHC" ™ m 4+ k4 1) < C"m!

for all f € B:(fo) = {y € C* : |ylce < &} where we put C := SUP,,,eny,
(<k+1>cm+"+‘(m+k+1!>)1/m

m}

m!
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Lemma A.3 Let (X, ||-|lx) and (Y, ||-|ly) be Banach spaces and assume that T, € C* (X, Y)
fort € I is such that the functions t — T; are measurable and for all a € X there is a
neighborhood U of a in X such that

/ sup | D" T, ()|l }dt < C"m. (A1)
] yeU

Then the mapping T : X — Y defined by

Tx:/T,xdt

1

is real analytic.

Proof We want to show that

Dme(hl,...,hm)=/D'”T,x(hl,...,hm)dt-
1

from which we get that T € C®(X, Y) using the estimates (A.1). In fact this follows from
well known facts about differentiation of parameter dependent integrals. O

Remark A.4 In the case that Y = C*¢ (R/Z,R") it is well known, that

(Tx)(u) = /(Tz)X(u)dt
I
i.e. the value of function 7Tx given by the Bochner integral at the point u is equal to the
Lebesque integral of the functions 7; () evaluated at the point u.

A.2 Estimates for the multilinear Hilbert transform

Lemma A.S For1>a > 8 >0,n,m € N, and t; € (0, 1) the singular integral
1 m
T(yr, .. ym)u) == ;1{1(1]/ ” Hyi(u +tiw)dw
I, 1=

defines a bounded multilinear operator from C*(R/Z, R") to CP(R/Z, R).
Proof Foru,v € R/Z and a € (0, %) we get
T, vm)@) =T,y Ym) (V)]

< / % H)/i(u+tiw)—HVi(v+tiw)

12>|w|za =1 i=1

[1vi@+tw —]]rw

i=1 i=1

[Tri@+6w —]]rvw

i=1 i=1

dw

+ dw

a=|w|

1
w

dw

1
+ —
w

ax=|w|
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Since |t;] < 1 we get

[Tri@+uw —]]rw

i=1 i=1

m
< m [ ] Ivillce@/zzmlwl®
i=0

and hence, using the Holder-continuity of the y;,

|T()’17 AR} )’m)(”) - T(y17 RN Vm)(v)|

m
1 1
SmHIIVillca(R/Z,R") / E|u—v|“dw+2 / Fdw

i=0 1=|w|>a lw|<a

m

<m [ Ivilce@zrn (—2log@) lu — v|* dw + 4ea®).
i=0

Choosing a = |u — v| we get
Tt Ym) @) =T (1, Ym) (V)]

m
< MH lvillce@ryz,rny (—21og lu — v| + 4a) Ju — v]|*
i=0

m
< CH lvillce®/z,rmylu — vlf
i=0

where C = m sup, (o 11(—2log X+4a)x* P < co. O

Lemma A.6 For arbitraryo > > 0,n,m € N, and t; € (0, 1) the singular integral
1 m
T(y1s - ym)(u) := ;1{%/ o Hm(w + tiw)dw
Ie =

defines a bounded multilinear operator from C*(R/Z, R) to C#(R/Z, R).

Proof First let us note that it is enough to prove the statement fora = & +n, g = B+n,ne
Nog,1 > a > ,3 > 0 and we will use induction on n to prove this statement. For n = 0
the claim is the content of Lemma A.5. Let (7, f)(x) := f(x + h). Using the relation
w(T 1y s Ym)) = T(th(y1) - . . Th(vim)) and the multilinearity of 7, the difference quo-
tient can be written as

T ym) =T ym)) T ) = T - Vi)
h h

DTG @) =¥ B T m)).
i=1
Now let @8’ > B. Since

h—0 , .
(i) — vi)/h —y' inCP

h—0 .
(tn(yi) —> y inCP
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and T a bounded linear operator form CcP to CP, we get that

(T W1y V) =T W1 ey V) 0~
h z T (y]» ’ )’,'/, ’ Vm)

i=1
in CP. Hence, T is a bounded multilinear map from Cita o CIHP, Using induction, one

gets the full statement. O

Remark A.7 Letus state a simple extension of Lemma A.6. Given a multilinear form M: R" x
o xR" > RF,a>pB>0,meN,and; € (0, 1) the singular integral

. 1
Ty @) 3= i [ MO+ 10). -+ )
e\ w
I
defines a bounded multilinear operator from C*(R/Z,R) to C p (R/Z,R™). This can be
deduced plugging

n

M@+ nw) Y@+ ) = D Meq. ... e, )L v+ tw). e)
jl ~~~~~ jm:]
into the definition of 7', where e, . . . ¢, is the standard basis of R”, and applying Lemma A.6

to all the coordinates of the resulting summands.

A.3 Facts about the functional Q

In this section we prove a commutator inequality that serves us as a substitute for the Leibniz
rule for Q.

Lemma A.8 (Leibniz rule for Q) For f, g € cot3 R/Z,R™") and a > B we have

19(f8) — Q(N)glics = Cle, Bl fllca2 M8l cets -
Proof We have

(Q(fg) — Q(NHe)w)
2f(u +w)gw+w) — fu)gu) —w(f (w)gw) — fu)g' (u))

w?2

[=1/2,1/2]

—(f"(w) +2¢" () f'(u) + f(u)g”(u))]

dw
w2

o fu+wig) — f(uz)g(u) —wf ug) f”(u)g(u)] diz)
w w
[=1/2,1/2]
_ z(f(u +w) - f(ui))gg(u +w) —gw) 27 () ()
[-1/2,1/2]
i (2g(u +w) — ggu) —wg'(w) g,,(u))] Luz)
w w
_5 (f (u+w) — f(uzl))gg(u +w) —g) f’(u)g’(u)]
[~1/2.1/2]
+(fQ(8) ().
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Taylor expansion yields

S u+w)— fu)

w

1
= f'(u) + w/(l — ) f"(u+ tw)dt

g(u+w) g _ ¢ (u )+w/(1 g (u + tw)dt

and hence the first term in Eq. A.2 can be written as

) (f(u—i—w)—f(u:jgg(u—i—w) —gu)) —f’(u)g’(u)]
[—1/2,1/2]
1 1
=2 Jo 1~ t)gw(” wdr
[—1/2.1/2]
1 "
28 Jo =) f"(u+ tw)dtdw

w
[=1/2,1/2]

+2 / / / (1—0)1 —5)g"(u+tw)f"u+ sw)dtdsdw.
[—1/2,1/2][0,1][0,1]

Using the boundedness of the Hilbert transform to estimate the first two terms, we get

10(f8) — C(f)g —8Q(Nllce < C (If llcxllg”llce + llg"llce I f "l e )

and hence

19(f8) — Q(NHg —gQ(Nlce = I fllcer2llgllca+s-

A.4 Normal graphs

The following lemma is used in the proofs of Lemma 1.3 and Theorem 5.1.

Lemma A.9 Let yy € C7(R/Z,R"). Then for every o > 1 there is an ¢ > 0 such that for
all y € C*(R/Z) with

ly —vollce <&,

there is a reparametrization ¢ and a function N € C*(R/Z, R") normal to yy such that
yop=pw+N

and

INI < Clly = vollce-

Proof Let U be an open neighborhood of y such that there is a nearest point retract r, i.e.
a C“ function ry : U — R/Z such that

yoryoy =Yy
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and

lgru(p)) — pl = xé%f/z ly (x) — pl.

We then set

and

Yy (x) = ru(y(x))

deduce, since v, = id and the space of diffeomorphism is open in C*, that ¥, is a

diffeomorphism if ¢ small enough. Furthermore, let us note that y — v, is smooth from
C*(R/R) to C*(R/Z,R/Z). We set

and

¢y =y,

Ny =yoy~ —n.

The claim now follows from the fact that y — N,, is a smooth function with N,y =0. 0O
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