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1. Introduction

The monomial-divisor mirror map (MDMM) [1] is an important tool in the study of (2,2)

mirror symmetry. In this work we will construct a generalization of this map that accounts

for a class of (0,2) deformations of certain (2,2) theories. This map should be a useful

guide in explorations of the heterotic moduli space: it may be used to efficiently determine

singular loci of half-twisted theories, to compare topological heterotic rings on both sides of

the mirror, and to have a hands-on algebraic description of the moduli space. To describe

our result, we will begin with a brief review of the MDMM in the (2,2) context.

The geometric set-up is a Batyrev pair of mirror Calabi-Yau manifolds (M,M◦), each

constructed as a hypersurface in a d-dimensional Fano toric variety—M ⊂ V , M◦ ⊂ V ◦ [2].

The crucial combinatorial ingredient in the construction is a d-dimensional reflexive lattice

polytope ∆. This polytope plays a two-fold role in the mirror construction: on the one

hand, it describes the Newton polytope for the hypersurface P = 0 that defines M ⊂ V ;

on the other hand, the toric fan for V ◦ is obtained by taking the cones over the faces of ∆.

Thus, points in the faces of ∆ have a dual interpretation: they correspond to monomials in

the polynomial defining M ⊂ V and to divisors of V ◦, which pull back to “toric” divisors

on M◦. This natural correspondence between the complex structure data for M encoded

in the coefficients of monomials and the (complexified) Kähler data encoded by the duals

to the toric divisors can be used to construct an isomorphism between the “polynomial”

and “toric” subspaces of deformations of M,M◦, respectively. This is the monomial-divisor

mirror map.
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The MDMM has a physical realization in the context of gauged linear sigma models

(GLSMs)—certain (2,2) supersymmetric abelian gauge theories that, for suitably tuned pa-

rameters, reduce at low energy to non-linear sigma models with target-spaces as above [3].

These theories are specified by the same combinatorial structure, and they depend on

holomorphic parameters encoded in two types of superpotential terms. The chiral super-

potential for charged matter fields contains holomorphic couplings, while the twisted chiral

superpotential contains the dependence on the Fayet-Iliopoulos and θ-angle terms. Not all

of these parameters lead to deformations of the low energy SCFT, as some of them may

be absorbed into irrelevant D-terms by appropriate field redefinitions; however, the combi-

natorial structure of the theory leads to a natural set of redefinition-invariant holomorphic

parameters [4–6]. Moreover, the coordinates so obtained, known as “algebraic gauge” co-

ordinates, are exchanged by the MDMM and lead to an isomorphism between the chiral

ring of the topological A-model and its B-model mirror [4, 5, 7–10]. These results suggest

that the MDMM map between two families of linear sigma models leads to an isomorphism

of families of SCFTs in the low energy limit.

To describe a standard (0,2) non-linear sigma model (NLSM), in addition to choosing

a target-space manifold M , we must also specify a holomorphic vector bundle E → M .

The right-moving world-sheet fermions couple to the pullback of TM , while the left-moving

fermions couple to the pullback of E . The theory has (2,2) SUSY provided that E = TM .

As already noted in [3], the (2,2) GLSMs have a natural set of deformations that only

preserve (0,2) SUSY; in a geometric phase, where the GLSM reduces to a NLSM at low

energy, these correspond to certain unobstructed deformations of the tangent bundle. We

will refer to the space of models obtained via these deformations, together with already

familiar Kähler and complex structure deformations, as the (0,2) GLSM moduli space.

Given a construction of mirror pairs at the (2,2) locus, it is natural to wonder whether

the (0,2) GLSM moduli space for the pair (M, E) is isomorphic to the GLSM moduli

space for (M◦, E◦). In collaboration with M. Kreuzer and J. McOrist we investigated this

question in [6]. By considering the GLSM parameter space modulo (0,2) redefinitions,

we described the (0,2) GLSM moduli space, and we found that for most mirror pairs the

dimensions of the (0,2) GLSM moduli spaces did not agree. However, we were able to

identify a sufficient condition on the combinatorics of ∆ and its polar dual ∆◦ such that

the dimensions matched: no facet of ∆ or ∆◦ should contain a lattice point in its interior.

We called such geometries “reflexively plain” and found that there are roughly six million

mirror families of three-folds with this property.

Of course simply matching the moduli space dimensions does not imply that there is

any natural isomorphism between the theories. In what follows, we will identify a natural

isomorphism and show that it correctly maps an important physical property of the theory:

the isomorphism identifies the principal component of the singular locus (defined below) of

an A/2-twisted GLSM with the principal component of the singular locus of its B/2-twisted

mirror. The half-twisted A/2 and B/2 theories, discussed in some detail in [11], lead to

computations of 273 and 27
3
unnormalized Yukawa couplings of charged matter fields in

the N = 1 space-time effective theory. It is likely that the mirror map exchanges these

Yukawa couplings as well, though we will not show it in this work.
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In general the (2,2) GLSM moduli space is only a subspace of the full moduli space

of complex structure and Kähler deformations: certain variations of complex structure

for M ⊂ V cannot be represented by varying the coefficients of P , and some divisors on

V become reducible when restricted to M , thereby leading to Kähler deformations of M

not realized as hypersurfaces in V . Remarkably, the split in the moduli is preserved by

mirror symmetry: the space of toric Kähler deformations of M is mirror to the space of

polynomial deformations of M◦. In the (0,2) context it is likely that bundle deformations

also exhibit an analogue of non-polynomial deformations—in the GLSM description these

would be bundle deformations that cannot be realized by changing holomorphic couplings

in the theory. In models that are not reflexively plain such deformations may account for

the discrepancy in the counting found in [6]. In reflexively plain theories our results suggest

that the GLSM moduli space forms a natural subspace in the full (0,2) moduli space, and

this subspace is preserved by mirror symmetry.

Although most powerful in the context of a reflexively plain mirror pair, the proposed

mirror map also leads to mirror symmetric subfamilies in more general GLSMs. Thus,

while the full GLSM moduli space is not mirror symmetric, we can identify subspaces

within the moduli space of M and M◦ that are related by our mirror map. The remaining

GLSM parameters, which come from additional “E-deformations,” are more mysterious, at

least from the point of view of the mirror map. It should be borne in mind that they were

typically not considered in work on stability of (0,2) GLSMs to instanton corrections [12–

14]. In addition, the so-called “non-linear” E-deformations lead to significant technical

problems in explicit computations in half-twisted theories [11]. These issues certainly

deserve further study, and we hope that our results on the mirror symmetric subfamilies

will aid in such explorations.

The rest of the paper is organized as follows: in section 2 we will outline the structure

of the (0,2) GLSMs under consideration; in section 3 we will specialize to reflexively plain

models, describe a natural set of coordinates on the GLSM moduli space, and present the

conjecture for the (0,2) mirror map. We will test the proposal by showing that it exchanges

the singular loci of the mirror theories in 4. Next, we extend the mirror map to subfamilies

of more general GLSMs in 5, and we end with a discussion of further directions and open

questions.

Acknowledgments

It is a pleasure to thank P. Aspinwall, J. McOrist, and E. Miller for useful discussions. The

work of IVM is supported in part by the German-Israeli Project cooperation (DIP H.52)

and the German-Israeli Fund (GIF). MRP is supported in part by NSF grant DMS-0606578.

2. The GLSM setup

The (0,2) GLSM Lagrangian is most conveniently described in (0, 2) superspace with co-

ordinates x−, x+, θ+, θ
+
and superspace covariant derivatives D+,D+. The field content is
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divided into chiral multiplets ZI ,Σα; Fermi multiplets1 ΓI satisfying

D+Γ
I = EI(Z,Σ); (2.1)

and vector fields V−,a, v+,a, a = 1, . . . , r.2 The field-strengths for the gauge fields transform

in gauge invariant chiral Fermi multiplets Υa. The “matter” fields ZI ,Γ
I are charged

under the gauge group with charges Qa
I , while the Σa multiplets are neutral. A classical

Lagrangian for the theory is given by

L = Lkin +

{∫
dθ+

[
log(qa)

8πi
Υa +

∑

I

ΓIWI(Z)

]
+ h.c.

}
, (2.2)

where {WI(Z)} is a set of holomorphic functions of the chiral multiplets with gauge charges

−Qa
I , while qa = e−2πra+iθa are holomorphic parameters combining the Fayet-Iliopoulos

parameter and the theta angle for each gauge group.

To construct a GLSM for a Batyrev Calabi-Yau hypersurface, we pick a d-dimensional

reflexive polytope ∆ and call its dual polytope ∆◦. A reflexive polytope contains a unique

interior point, and it is convenient to choose this to be the origin. Since ∆,∆◦ live in dual

vector spaces, we can pair the lattice points in ∆, labeled by m, with nonzero lattice points

in ∆◦, labeled by ρ. In this way we define the rank d pairing matrix 〈m,ρ〉. We describe

the d-dimensional toric variety V by using the homogeneous coordinate ring [16, 17]. For

each ρ we specify a complex coordinate Zρ on C
n (i.e. n is the number of non-zero lattice

points in ∆◦), and for a suitably chosen triangulation Σ of ∆◦, V may be presented as a

quotient

V =
C
n − FΣ

G
. (2.3)

Here G ≃ [C∗]r ×H for some finite abelian group H , r = n− d, and FΣ is an exceptional

set that depends on the chosen triangulation. The action of [C∗]r on the Zρ is determined

in terms of a basis for the kernel of 〈m,ρ〉. We pick an integral basis Qa
ρ, a = 1, . . . , r, and

specify the action of (t1, . . . , tr) in [C∗]r on C
n by

(t1, . . . , tr) · Zρ 7→
∏

a

t
Qa

ρ
a Zρ. (2.4)

This immediately leads to a homogeneous coordinate presentation of the defining polyno-

mial P :

P (Z) =
∑

m∈∆

αmMm, with Mm ≡
∏

ρ

Z〈m,ρ〉+1
ρ , (2.5)

for some choice of parameters αm.3 P (Z) transforms homogeneously under the action of

G, with charges −Qa
0 ≡

∑
ρ Q

a
ρ.

With these combinatorial ingredients in hand, we can describe the (2,2) GLSM for

1These have left-moving fermions as lowest components.
2We follow the notation of [3], and we stick to the set-up relevant to deformations of (2,2) theories for

hypersurfaces in toric varieties. Many generalizations are possible, e.g. [15].
3The sum over m includes m = 0 here and below unless otherwise indicated.
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M ⊂ V in terms of (0,2) fields. We take the matter field index I to run over the lattice

points in ∆◦, and we set the gauge charges of the fields to be Qa
ρ. Finally, we take r

gauge-neutral matter fields Σα and consider the action specified by

Eρ =

r∑

α=1

ΣαQ
α
ρZρ, ΓIWI = Γ0P (Z) + Z0

∑

ρ

Γρ ∂P

∂Zρ
. (2.6)

This theory has (2,2) supersymmetry, as well as unbroken (and non-anomalous) U(1)L ×

U(1)R R-symmetries. The model depends on the parameters qa, αm, which in a geometric

phase give rise to, respectively, complexified Kähler and complex structure deformations.

To obtain (0,2) deformations, we simply generalize the superpotential couplings while

preserving gauge invariance and U(1)L × U(1)R symmetries.4 At this point it is useful to

combine the r Σα into a vector Σ, which allows us to express the allowed couplings as

E0 = Z0Σ · δ, Eρ = Σ ·Eρ(Z), (2.7)

where δ is a vector of parameters and Eρ(Z) is a vector of polynomials with same gauge

charges as Zρ. The ΓIWI terms take the form

∑

I

ΓIWI = Γ0P (Z) + Z0

∑

ρ

ΓρJρ(Z), (2.8)

where each Jρ has the same set of monomials as P,ρ, but with coefficients unrelated to

the αm in P . Since the Fermi multiplets are not chiral, supersymmetry of the holomor-

phic superpotential is not automatic. Demanding (0,2) SUSY leads to constraints on the

parameters:

P (Z)δ +
∑

ρ

Jρ(Z)Eρ(Z) = 0 for all Z. (2.9)

A desire for brevity and a weariness of repetition have led to much interesting toric

geometry and physics being left out from the preceding discussion. Before we move on

to study reflexively plain models, we will comment on a few of these points. First, the

finite abelian group H must be included as a discrete gauge group of the GLSM, leading

to an orbifold of the theory. Second, we have not commented on the exceptional set FΣ,

partly because there are many possible exceptional sets, each corresponding to a “phase”

of the GLSM—with different phases corresponding to different cones in the space of Fayet-

Iliopoulos parameters. Existence of certain triangulations known as maximal projective

subdivisions show that there exist FΣ—equivalently a phase of the GLSM—such that

M ⊂ V has suitably mild singularities. Finally, the toric description of the automorphism

group of the toric variety plays a crucial role in describing the general form of Eρ and

the various field redefinitions that may be used to eliminate some of the holomorphic

parameters. For models with (2,2) supersymmetry the discussion of these redefinitions

follows the original construction of the MDMM, while in the (0,2) models these details are

4In the low energy limit U(1)R should correspond to the R-symmetry of the (0,2) theory, while U(1)L
should become an important left-moving symmetry [15].
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discussed at length in [6].

3. GLSM moduli space of reflexively plain models

We now restrict the general set-up to the reflexively plain models. A reflexively plain pair

of polytopes leads to toric varieties V, V ◦ with smallest possible automorphism groups—

namely those where the continuous automorphisms are inherited from [C∗]d reparametriza-

tions of the algebraic torus contained in V (V ◦). The form of P (Z) and Jρ(Z) remains the

same as in general GLSMs, with P (Z) given in eqn. (2.5), and Jρ determined by

ZρJρ =
∑

m∈∆

jmρMm, (3.1)

where the parameters jmρ obey

jmρ = 0 whenever 〈m,ρ〉 = −1. (3.2)

On the (2,2) locus these are given by jmρ = αm(〈m,ρ〉 + 1).

The E couplings simplify for a reflexively plain model:

Eρ(Z) = eρZρ, (3.3)

with eρ a vector of field-independent parameters. The holomorphic field re-definitions are

also considerably simpler to describe:

ZI 7→ uIZI , ΓI 7→ vIΓ
I , (3.4)

where uI , vI ∈ C
∗. In addition, there are GL(r,C) rotations of the Σα multiplets, which

we will choose to write as

Σ 7→ u−1
0 v0Σ ·H (3.5)

for H ∈ GL(r,C). The SUSY constraint requires

αmδ +
∑

ρ

jmρe
ρ = 0 for all m. (3.6)

The redefinitions induce an action on the parameters, and two sets of parameters

related by such a rescaling are expected to lead to identical low energy physics. The action

on the δ,eρ, αm, and jmρ is easy to determine:

eρ 7→
uρv

−1
ρ

u0v
−1
0

Heρ, δ 7→ Hδ,

αm 7→ αm × v0
∏

ρ

u〈m,ρ〉+1
ρ ,

jmρ 7→ jmρ × u0vρu
〈m,ρ〉
ρ

∏

ρ′ 6=ρ

u〈m,ρ′〉+1
ρ . (3.7)
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The redefinitions also act on the complexified Kähler parameters qa. The origin of this

action is that the fermion measure transforms anomalously under transformations with

uρ 6= vρ. Holomorphy allows us to determine this shift by considering the U(1) anomalies for

transformations with |uρ| = |vρ| = 1. It is not hard to see that under such a transformation

the action shifts by

∆L =
∑

a

∫
dθ+

1

8πi
log


∏

ρ

(
uρv

−1
ρ

u0v
−1
0

)Qa
ρ


Υa, (3.8)

whence we conclude that the redefinition leads to

qa 7→ qa ×
∏

ρ

[
uρv

−1
ρ

u0v
−1
0

]Qa
ρ

. (3.9)

The parametrization of the GLSM just described is analogous to homogeneous coor-

dinates for a projective space, and it has proven useful in arguments for stability of (0,2)

deformations [12]. For our purposes, it will be more convenient to have an affine set of

coordinates independent of the redefinitions. To construct these, we first note that the

action on the αm is the same as in the (2,2) case, and there is a well-known way to pick

invariant coordinates [1, 4]. We introduce the integral rank d pairing matrix πmρ = 〈m,ρ〉

for m 6= 0 and choose an integral basis Q̂â
m for its cokernel.5 It is then easy to see that

κ̂â ≡
∏

m6=0

(
αm

α0

)Q̂â
m

(3.10)

are invariant under the redefinitions. Next, we introduce

κa ≡ qa
∏

ρ

(
j0ρ
α0

)Qa
ρ

(3.11)

as invariant “Kähler” coordinates. Note that on the (2,2) locus the κa reduce to the usual

qa. We also define

γρ ≡
j0ρ
α0

eρ, and bmρ ≡
α0jmρ

αmj0ρ
− 1 for m 6= 0. (3.12)

The motivation for the latter choice is that on the (2,2) locus bmρ = πmρ. Note that we

have assumed αm 6= 0. This does not constitute much of a loss of generality and will

simplify a number of arguments.

We now have a set of invariant parameters bmρ, κ̂â, κa, as well the δ,γ that transform

to Hδ,Hγ. These are not quite independent because of the SUSY constraint, which takes

5The Q̂â
m, together with Q̂â

0 = −
∑

m6=0
Q̂â

m, will be the gauge charges for the mirror GLSM. Of course
Qa

ρ are an integral basis for the kernel of πmρ.
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the form

α0δ +
∑

ρ

α0γ
ρ = 0,

αmδ +
∑

ρ

αm(bmρ + 1)γρ = 0, for m 6= 0. (3.13)

With our assumption αm 6= 0, we find that these take an elegant form:

δ = −
∑

ρ

γρ,
∑

ρ

bmργ
ρ = 0 for m 6= 0. (3.14)

At the (2,2) locus the matrix bmρ has rank d, which determines the γρ to be in the r-

dimensional kernel of b spanned by the Qa
ρ. Thus, the γρ are determined up to the

GL(r,C)—the remaining field redefinitions. In fact, in order to obtain a non-singular

theory the rank of bmρ can be at most d. Otherwise, at least one of the components of γρ

must necessarily vanish, leading to an unconstrained Σ multiplet. In fact, as we will argue

in the next section, the theory will also be singular if the rank of bmρ drops below d. Thus,

we will restrict attention to bmρ of rank d, which implies that γρ and δ are determined

precisely up to the GL(r,C) redundancy in a choice of basis for the kernel of bmρ.

We are now left with “affine” coordinates κa, κ̂â, as well as a rank d matrix bmρ that

satisfies

bmρ = −1 whenever πmρ = −1. (3.15)

Do these give the expected dimension of the GLSM moduli space? Our deformation pa-

rameters are easily counted in terms of ℓ(∆), ℓ(∆◦)—the numbers of lattice points in ∆

and ∆◦, as well as K—the number of pairs m,ρ with πmρ = −1:

#(κ) = ℓ(∆◦)− 1− d,

#(κ̂) = ℓ(∆)− 1− d,

#(b) = d [ℓ(∆) + ℓ(∆◦)− 2− d]−K, (3.16)

where in the last line we used the fact that a p×q matrix of rank at most d is an irreducible

subvariety of codimension (p−d)(q−d) in the space of p×q matrices [18]. Adding up these

parameters, we find the dimension of the GLSM moduli space for a reflexively redundant

theory [6]. We note that the (0,2) deformations encoded by bmρ have an elegant algebraic

description as an intersection of K linear equations with the moduli space of matrices of

rank at most d.

The parametrization just constructed suggests a simple conjecture for the mirror the-

ory: the mirror GLSM is obtained by exchanging ∆,∆◦, transposing the matrix b, and

exchanging the roles of κa and κ̂â.

4. The singular loci

The reader may agree that mirror map conjectured above is elegant enough to be easily
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believable; however, it would be nice to have a more convincing test. Perhaps the simplest

convincing test is to check that the map identifies the singular loci of the A/2 and B/2

models with their mirrors. In this section we will see that this is indeed so.

4.1 The A/2 singular locus

The singular locus of the A/2 theory is easily determined by using the Coulomb branch

techniques introduced in [3,4] and extended to (0,2) theories in [11,19]. More precisely, this

identifies a number of components of the singular locus associated to divergences due to

non-compact Σα directions. The so-called “principal component” of the singular locus—a

complex co-dimension subvariety in the moduli space has a particularly simple form as the

locus where the r equations
∏

ρ

[
σ · eρ

σ · δ

]Qa
ρ

= qa, (4.1)

have a solution for some σ 6= 0. This is nicely rewritten in terms of our invariant coordinates

as
∏

ρ

[
σ · γρ

σ · δ

]Qa
ρ

= κa. (4.2)

On the (2, 2) locus this reduces to the familiar condition [4]

∏

I

(
r∑

a=1

σaQ
a
I

)Qa
I

= qa. (4.3)

Another interesting limit is obtained by working deep in a geometric phase, where quantum

effects may be neglected, and the vacuum expectation value of Z0 is zero. In this case, a

solution to eqn. (4.2) implies that the classical theory develops a flat σ direction. It is not

hard to see from the classical Lagrangian that this implies there exists σ 6= 0 such that

σ · γρZ∗
ρ = 0 for some Z∗ ∈ V. (4.4)

The geometric import of this singularity is easy to understand. The deformed bundle is

defined by the complex6

0 // Or|M
eαρZρ

// ⊕ρO(Dρ)|M
Jρ

// O(
∑

ρ Dρ)|M // 0 , (4.5)

with space of sections of E described by ker J/ imE. Given a solution to eqn. (4.4),

dim imE(Z∗) < r, and the supersymmetry constraint implies Z∗ ∈ M . The rank of E

increases at Z∗, and, consequently, the sheaf E is no longer a bundle.

Thus, the (0,2) singular locus in eqn. (4.2) interpolates between the (2,2) singular locus

of eqn. (4.3), and the classical singular locus of eqn. (4.4). It is amusing to note [11] that

a classically singular bundle can lead to a perfectly sensible theory away from the large

radius limit.

6Here the Dρ are the toric divisors, and O(Dρ)|M are the corresponding line bundles restricted to M .
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4.2 The B/2 singular locus

The principal component of the B/2 singular locus requires a little bit more work. Experi-

ence from the (2,2) locus and the results of [11] suggest that these singularities are due to

a non-compact direction for the Z0 multiplet. Before we embark on our computation, we

should note that there are a number of remaining issues in the B/2 model: for example,

there is no complete proof that it is independent of the qa. It is easy to see that “most”

instantons do not contribute to B/2 correlators, but a full non-renormalization argument

has yet to be given. We will assume this independence does indeed hold, which allows us

to work in a geometric phase.

The Z0 multiplet develops a non-compact direction if and only if there exists a point

p ∈ M such that Jρ(p) = 0 for all ρ. In fact, without loss of generality we may work with

p ∈ V , since the SUSY constraint ensures that P (p) = 0 will follow from Jρ(p) = 0. We

will concentrate on the situation when p ∈ [C∗]d ⊂ V , which in the case of (2,2) theories

yields the principal component of the singular locus.7 We will continue to use the same

terminology in the (0,2) theories.

We seek the conditions on the bmρ and αm such that ZρJρ(p) = 0 for all ρ for some

p ∈ [C∗]d. In the case of (2,2) models, where bmρ = πmρ, a characterization of the principal

component of the singular locus was obtained by Kapranov [20]. What follows is a simple

generalization of his result. We start by recasting ZρJρ in terms of invariant parameters:

ZρJρ =
j0ρ
α0


α0M0 +

∑

m6=0

αmMm(bmρ + 1)


 . (4.6)

Thus, to find a singularity we must solve

α0M0 +
∑

m6=0

αmMm(bmρ + 1) = 0 for all ρ. (4.7)

The problem is very easy to solve if we consider the Mm as independent variables. If we

choose a basis {γ̂α̂m} for the cokernel of bmρ, the general solution depends on a set of

parameters σ̂α̂ and takes the form

αmMm = σ̂ · γ̂m, for m 6= 0 and α0M0 = σ̂ · δ̂, (4.8)

where δ̂ = −
∑

m6=0 γ̂
m. Of course the ℓ(∆) terms αmMm are not independent but instead

for any Z satisfy r̂ = ℓ(∆)− d− 1 constraints

∏

m6=0

[
αmMm

α0M0

]Q̂â
m

=
∏

m6=0

[
αm

α0

]Q̂â
m

= κ̂â, (4.9)

7The point p may also belong to some [C∗]k, k < d in the compactification of [C∗]d to V ; the resulting
singular locus may either be a limit of the principal component, or give rise to a new component. In the
latter case, in (2,2) models there is a well-defined combinatorial description of these additional components
on both sides of the mirror.
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where as before the Q̂â
m constitute a basis for the cokernel of πmρ. Plugging in the result

of the linear problem, we see that a singular point exists only if

∏

m6=0

[
σ̂ · γ̂m

σ̂ · δ̂

]Q̂â
m

= κ̂â, (4.10)

for some non-zero σ̂. In fact, it is not hard to see that the converse is also true: a solution

to eqn. (4.10) guarantees that we can find a singular point. This is most easily seen by

taking a logarithm of αmMm/α0M0, which leads to simpler equations for Zρ:

∑

ρ

πmρ logZρ = log
α0σ̂ · γ̂m

αmσ̂ · δ̂
. (4.11)

By eqn. 4.10 the right-hand side is in the image of πmρ, and we will be able to find a requisite

Zρ. Thus, the B/2 singular locus is described as the locus of solutions to eqn. 4.10 for some

non-zero σ̂. This yields r̂ equations for the σ̂α̂; however, invariance of the equations under

rescaling σ̂ implies that a solution will be found on a complex codimension one subvariety

in the moduli space.

The B/2 singular locus, like its A/2 cousin, interpolates between two familiar notions:

singularities of M and singularities of E . On the (2,2) locus, where Jρ = P,ρ, a solution

to eqn. (4.10) guarantees a singularity in the complex structure of M ; even when M is a

non-singular hypersurface, a look at the complex in eqn.(4.5) shows that a simultaneous

solution to Jρ = 0 for some Z∗ ∈ M implies that the rank of E increases as Z∗, leading to a

singular bundle. Of course there is an important difference between the two singular loci:

while the B/2 locus is entirely determined by classical computations, the A/2 locus encodes

quantum singularities, which in a geometric phase correspond to diverging instanton sums.

Inspection of the principal components of the A/2 locus in eqn. (4.2) and the B/2 locus

in eqn. (4.10) makes it clear that the proposed mirror map will map these to, respectively,

the B/2 and A/2 singular loci of the mirror. This provides a non-trivial check of the

conjecture.

It should be easy to extend this correspondence to other components of the singular

loci. On the A/2 side these are associated to mixed Higgs/Coulomb singularities [4], while

on the B/2 side they are due to singularities that occur at points where some of the Zρ

vanish.

The discussion of the B/2 loci assumed that bmρ has rank d; when the rank drops

below d, the theory must inevitably become singular, since the existence of extra σ̂α̂ in

eqn. (4.10) will mean solutions for any values of the parameters. When interpreted from

the mirror A/2 side, the appearance of an extra σ̂α̂ suggests that this singularity may be

due to a new branch in the moduli space, which is perhaps more easily interpreted in a

different GLSM.

5. Mirror Subfamilies

In the previous sections we constructed a set of coordinates for the GLSM moduli space
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of reflexively plain geometries, suggested a generalization of the monomial-divisor mirror

map, and showed that the generalization is consistent with the form of the singular loci

of the theory. While this is a nice result, it is so far restricted to a relatively small class

of Calabi-Yau hypersurfaces. However, as we will now explain, the idea can be fruitfully

applied to generic GLSMs for Calabi-Yau hypersurfaces, where it yields mirror symmetric

subfamilies in the full GLSM moduli space.

As found in [6], the difficulty of matching the GLSM parameters with those of its

mirror lies in the more complicated form of the E-deformations and field redefinitions. The

combinatoric source of the trouble is the possible existence of lattice points contained in

the interiors of facets of ∆ and ∆◦. We will let W (W ◦) be the number of such points in

∆(∆◦). On the (2,2) locus the lattice interior facet points in ∆ give rise to W redundant

complex structure parameters, while the W ◦ points in ∆◦ give rise to redundant Kähler

parameters. The former arise from coefficients in P that may be eliminated by elements

of AutV that do not belong to [C∗]d; the latter correspond to divisors of V that do not

intersect the hypersurface M ⊂ V . Although these are indeed redundant, the MDMM

naturally extends to a map on these parameters as well [4], and in some sense the map is

simpler to state if we allow for the redundancy. The point is that as long as the redundancy

is understood on both sides of the mirror, it does not really lead to difficulties.

To extend this idea to the (0,2) case, we require an additional step: we must restrict

the set of E-deformations of eqn. (2.7) to just the “diagonal” form of eqn. (3.3). Having

done this, we can construct the parameters invariant under the “diagonal” redefinitions

exactly as above, both for the model and its mirror. The two sets of parameters will be

exchanged by the mirror map exactly as in the reflexively plain examples, yielding a mirror

pair of subfamilies, each of dimension

Ndiag = (d+ 1)(ℓ(∆) + ℓ(∆◦)− 2− d)− d−K, (5.1)

where K is the number of pairs m,ρ with πmρ = −1. As on the (2, 2) locus, we expect

W+W ◦ of these parameters to be redundant; happily, this redundancy is itself mirror sym-

metric. Moreover, since we have an explicit mapping of the coordinates on our subspace,

it is easy (as with the MDMM) to specialize the construction to subfamilies.

6. Discussion

A conjecture for the (0,2) mirror map allows us to pursue a number of new lines of inquiry.

Perhaps the most obvious direction would be to prove that the map yields an isomorphism

of topological heterotic rings [21, 22] by developing a generalization of the toric residue

methods that were used in [4,7–10]. There is one immediate issue that one must confront,

since, unlike the topological field theories associated to (2,2) theories, the half-twisted

models do not have a clear relationship between local observables and deformations of the

action. Experience with (2,2) models and the form of the (0,2) mirror map do suggest a

guess for how to map the correlators. The natural observables of the B/2-twisted theory for

M ⊂ V consist of monomials Om = αmZ0Mm, while the mirror A/2-twisted observables

– 12 –



are given by the O◦
m = γ̂m · σ̂. It is tempting to suggest that the mirror map should

exchange these via

〈Om1
Om2

Om3
〉B/2,M = 〈O◦

m1
O◦

m2
O◦

m3
〉A/2,M◦. (6.1)

Is this true without a parameter-dependent change of basis? If not, can a basis change lead

to an equivalence?

The “non-diagonal” E-deformations continue to pose a challenge. We have found a

way to avoid them, either by working with models without such complications, or working

on certain subspaces of the moduli space. However, this is not entirely satisfactory. Are

these deformations perhaps lifted by world-sheet instantons? If not, how do we describe

their mirrors? Having answered these questions one would have a reasonably complete

picture of what the GLSM may teach us about (0,2) theories with a (2,2) locus.

While developing this complete picture is surely important and likely to lead to in-

teresting mathematical structures and neat physical effects, a larger world awaits! Many

rich (0,2) theories without a (2,2) locus can be studied by GLSM techniques [3, 23]; while

comparatively little is known about them away from special points in the moduli space,

there are intriguing hints of mirror pairs and a rich duality structure [24,25]. It would be

very useful to have an analogue of a mirror map for at least some theories in this large

class. There will be new difficulties, but we believe at least some of the interplay between

combinatorics and physics should work in a familiar fashion. Our work offers a small but

sturdy stepping stone into the “real” (0,2) world.
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