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Abstract.
We present a new approach to coarse-graining of variables describing dust flow in GR. It is based on assigning quasi-local

shear, twist and expansion to 2-dimensional surfaces with the help of isometric embeddings into the 3–dimensional Euclidean
space and deriving the time evolution equations for them. Incontrast to the popular Buchert’s scheme it allows to coarse–grain
tensorial quantities in a coordinate–independent way. Theframework can be used to estimate backreaction in inhomogeneous
cosmological models.
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1. INTRODUCTION

In this paper we discuss an alternative to the well–known Buchert’s averaging scheme [1] for inhomogeneous
cosmological models with dust. The new procedure allows forcoarse–graining of both scalar (expansion) and tensorial
(shear and vorticity) part of the fluid velocity gradient in acoordinate–independent way. Given a 3+1 decomposition of
the spacetime we assign the coarse–grained expansion, shear and vorticity to three–dimensional comoving domains of
the fluid. The resulting non–local quantities depend on the 3+1 splitting, but not on the coordinate system introduced
on the spatial slices. If the fluid is irrotational, there exists a preferred, orthogonal splitting and the formalism is entirely
covariant; otherwise one needs to fix the constant time slices by an additional condition.

The procedure is based on a reformulation of the definition ofthe volume average of the velocity gradient over a
comoving domain in Newtonian theory. It turns out that it is possible to reexpress that volume average as a functional
of the time derivative of the metric tensor induced on the domain’s two–dimensional boundary. It has been noted before
[2, 3] that such volume–averaged velocity gradients satisfy an evolution equation which is very similar to the evolution
equation of the local velocity gradient, the only difference being a surface integral of the inhomogeneities of the flow
over the domain’s boundary. This volume average can be rewritten as asurfaceintegral of the fluid velocity due to
the divergence theorem. The key observation is that the surface values of the velocity field can be almost uniquely
reconstructed from the comoving time derivative of the metric induced on the domain’s boundary as long as the that
boundary has the topology ofS2 and its metric has a positive curvature. The only part of the velocity field which cannot
be reconstructed is the total linear and angular velocity, responsible for translations and rotations of the surface asa
whole. However, since they do not contribute to the average shear and expansion, these quantities can be evaluated
just from the reconstructed velocity field. Thus it is possible to reexpress in Newtonian theory the average shear and
expansion as functionals of the derivative of the induced metric on the boundary.

The reformulated definition carries over easily to the relativistic case. If we fix a comoving, three–dimensional
domain in a 3+1 decomposed spacetime, we can find the isometric embeddings of the domain’s two–dimensional
boundaries into the three–dimensional Euclidean space andevaluate the coarse–grained expansion and shear. If
the background metric is not flat, the resulting quantities are not equivalent to any volume integrals any more, but
nevertheless they can serve as a measure the deformation of afinite fluid element. As we show in the paper, the new
definition satisfies simple reasonability conditions: it yields the right answer in the limit of the domain shrinking to a
point and in FLRW metrics.

We also present a way to define the coarse–grained vorticity from the projection of particle four–velocities to the
spatial constant–time slice if the dust is rotating. The definition is independent of the coordinates introduced on the
spatial slice, but in contrast to the irrotational case we donot have a simple, unique definition of a preferred 3+1
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splitting and the coarse–grained quantities do depend on it.
Finally we present the evolution equation for the coarse–grained velocity gradient and show that its structure is very

similar to the evolution equation for its local counterpart. Two additional terms in the form of surface integrals may
serve as a measure of backreaction. i.e. the impact of the inhomogeneities of the flow on the large scale motion of the
dust within the domain.

The proposed procedure is more mathematically involved then Buchert’s, as it requires finding the isometric
embeddings ofS2 surfaces, which is equivalent to solving a system of coupled, non–linear PDE’s. In most cases this is
impossible to do analytically, but numerical methods have already been developed for that problem [4, 5]. Let us also
note that in contrast to Buchert’s approach we do not have evolution equations for the coarse–grained curvature and
matter density. The dust was chosen as the matter model in this paper just for its simplicity; the formalism introduced
here can be applied to any other fluid in General Relativity with only minor modifications. For a more exhaustive
treatment of the topic, including rigorous derivations of the results, see [6].

2. COARSE–GRAINING VIA ISOMETRIC EMBEDDINGS

Consider gravitating, Newtonian, presureless dust in a flatspace. It is described by the velocity fieldvi , densityρ and
the Newtonian potentialφ . The gradient of the velocity fieldQi

j = vi
, j describes how an infinitesimal fluid or dust

element is deformed and how it rotates during its motion. It can be decomposed into the scalar expansion, symmetric
traceless shear and antisymmetric vorticity

Qi j =
1
3

θ δi j + σ(i j ) + ω[i j ].

Qi j satisfies the evolution equation along the flow

D
∂ t

Qi
j = −Qi

k Qk
j −φ ,i

, j , (1)

where D
∂ t is the convective derivative (see [6, 2, 3]). This equation has a coarse–grained counterpart which one obtains

by taking the volume average ofQi
j over a comoving domainGt

〈Qi
j〉 =

1
V

∫

Gt

Qi
j d

3x =
1
V

∫

Gt

vi
, j d

3x. (2)

Note that〈Qi
j〉 is effectively a surface integral over the boundary of∂Gt

〈Qi
j〉 =

1
V

∫

∂Gt

vi n j dσ . (3)

Its evolution equation has a similar structure to (1),

∂
∂ t

〈Qi
j〉 = −〈Qi

k〉〈Q
k

j〉− 〈φ ,i
, j〉+Bi

j (4)

with 〈φ ,i
, j〉 being the volume average of the Hessian of the potential overGt . The additional term

Bi
j =

1
V

∫

∂Gt

(δvk δvi
, j nk− δvk δvi

,k n j)dσ , (5)

measures how the inhomogeneities of the fluid velocity fieldδvi = vi −〈Qi
j〉x j affect its large scale motion in the

domainGt [2, 3, 6].
In the relativistic case, on a non–flat background, we do not have a well–defined, coordinate–independent notion of

volume averages of tensor objects, so we cannot use (2) to obtain a relativistic counterpart of (4). It turns out, however,
that definition (2) can be reformulated in a geometric, coordinate independent manner which has a natural extension
to non–flat backgrounds. We will first deal with the symmetricpart of 〈Qi j 〉, i.e. shear and expansion. We will show
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that under certain technical assumptions they can be reexpressed as functionals of the metric induced on the boundary
∂Gt and its convective (comoving with the dust) time derivative.

The main tool we are going to employ is the isometric embedding theorem for surfaces ofS2 topology, conjectured
by Weyl and proved by Lewy, Alexandrov, Pogorelov, Nirenberg and Cohn–Vossen (see [7], [8]):

Theorem 2.1 (Isometric embedding theorem forS2) Given a compact, orientable surface S homeomorphic to S2,
with positive metric q whose scalar curvature R> 0. Then

• there exists an isometric embedding

f : S 7→ E3

into the 3–dimensional Euclidean space;
• the embedding is unique up to rigid rotations, translationsand reflexions.

If we fix the orientation, the theorem states that for a givenS2 surface with a positive metric of positive curvature can
be recognized as a submanifold inE3 and this can be done only in one way, up to moving the surface around and
rotating it as a whole. Surfaces satisfying the hypothesis of theorem 2.1 will be called admissible.

Consider now the boundary∂Gt of the coarse–graining domain, parametrized by two coordinatesθ A labeling
individual particles. It is described, together with its time evolution, by equations

xi = ζ i(t,θ A).

The induced metric has the form of

qAB(t,θ A) = ζ i
,A ζ j

,B δi j (6)

and its time derivative in coordinatesθ A

q̇AB = 2vi
(,A ζ j

,B)
δi j .

Assume now that∂Gt is admissible at least for some time and that we know its position in space at one instance of
one timet = t0. We will show that in that case〈Q(i j )〉 can be read out solely from the induced metric (6), even if we
do not have each individual particle’s velocity and position.

GivenqAB(t) we can find the isometric embeddings of∂Gt , consistent with its orientation, intoE3at each timet.
We assume that att0 the embedding is known, but at other times we need to solve thefollowing system of PDE’s

qAB = χ i
,A χ j

,B δi j (7)

for three functionsχ i(t,θ A). We construct this way a one–parameter family of embeddings

xi = χ i(t,θ A)

for which we assume the additional condition

χ i(t0,θ A) = ζ i(t0,θ A).

The first statement of theorem 2.1 assures that functionsχ i(t,θ A) can always be found, although they are non–unique.
The true particle positions of∂Gt , given byζ i(t,θ A), constitute trivially a family of isometric embeddings, sofrom
the the uniqueness part of 2.1 we know that functionsχ i andζ i are related via

χ i(t,θ A) = Ri
j(t)ζ j(t,θ A)+Wi(t),

whereRi
j is a rotation. If we take a time derivative of this equation att = t0, we obtain

∂ χ i

∂ t

∣∣∣∣
t=t0

= ui(θ A) = vi(t0,θ A)+ Ωi
j ζ j (t0,θ A)+Ei

.
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with constantsΩi j = −Ω ji and Ei . Thus the velocity fieldui, reconstructed from an arbitrary family isometric
embeddings, differs from the true one only by the restrictions to∂Gt of a rotational (Ωi

j x
j ) and s translational (Ei)

vector field. This difference does not influence the value of integral (3) symmetrized in the two indices
∫

∂Gt

u(i n j) dσ =
∫

∂Gt

v(i n j) dσ = 〈Q(i j )〉, (8)

so we can use the reconstructedu instead ofv to evaluate the shear and expansion.
In fact we do not have to find the embeddings explicitly to obtain the reconstructed velocity field. By differentiating

(7) with respect tot we obtain an equation relatingui directly to the convective time derivative ofqAB at t = t0

2ui
(,A ζ j

,B)
δi j = q̇AB.

The linear operatorPζ [Y]AB = 2Yi
(,A ζ j

,B)
δi j appearing on the left hand side yields the variation of the surfaces’

induced metric if the embedding itself is being dragged by a vector fieldYi . By the virtue of theorem 2.1 for an
admissible surface it has a six–dimensional kernel consisting of rigid motions and a ”non–unique inverse”P

−1
ζ . We

can now rewrite the definition of the symmetric part coarse–grained velocity gradient explicitly as a functional of ˙qAB

〈Q(i j )〉 =
1
V

∫

∂Gt

P
−1
ζ [q̇AB](i n j) dσ . (9)

3. VELOCITY GRADIENT IN GENERAL RELATIVITY

Formula (9) is clearly more complicated that (2), but its main advantage lies in the fact that it can be generalized
to fluids on a non–flat background in a simple and natural way. Consider a (possibly curved) spacetime, filled with
dust described by densityρ and four–velocity fieldu. The integral curves ofu are geodesics, i.e.∇uuµ = 0. The four–
velocity gradientZµν = ∇ν uµ describes the deformations of an infinitesimal fluid elementin its motion. It is orthogonal
to u in both indices and therefore effectively a three–dimensional objectZµν satisfies the relativistic counterpart of (1)

∇uZµ
ν = −Zµ

ρ Zρ
ν −Rµ

ανβ uα uβ
. (10)

Unless stated otherwise, in this paper we will assume the flowto be irrotational, i.e.Zµν = Z(µν). We will now show
how to derive the coarse–grained counterpart of (10) in which 〈Zi j 〉 corresponds to a finite fluid volume rather than an
infinitesimal element.

In comoving and orthogonal coordinates(t,yi) one can perform the standard ADM decomposition of the metricinto
the spatial parthi j , with vanishingNi andN = 1 due to the coordinate system choice. Consider a three–dimensional
tube of particle worldlines∂C enclosing a cylinderC (see fig. 1). The tube is described by equationsyi = ξ i(θ A), ξ i

being three time–independent functions andθ A comoving coordinates on the tube labeling individual particles. The
intersections of the cylinder with constant time slicesΣt , denoted in this paper by∂Ct , constitute two–dimensional
surfaces of spherical topology. Assuming that the surfacesare admissible we assign the coarse–grained velocity
gradient to their interior in the following way: we take the induced metric

qAB(t,θ A) = ξ i
,A ξ j

,Bhi j (t) (11)

on ∂Ct and find an arbitrary family of isometric embeddingsft : ∂Ct → ∂Dt ⊂ E3. They are described by equations

xa = χa(t,θ A)

with three functionsχa1 satisfying a system of non–linear PDE’s

qAB(t,θ A) = χa
,A χb

,Bδab.

1 Indicesa,b,c, . . . run from 1 to 3, just likei, j,k, . . .. We will reserve the former for geometric objects inE3and the latter for objects on a constant
time slice of the spacetime.
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FIGURE 1. Coarse–graining ofZµν over the slices of a tube of particles

These are subject to gauge transformations of the form of rigid motions

χa(t,θ A) → Ra
b(t)χb(t,θ A)+Wa(t). (12)

We can now define a fictious rather then reconstructed velocity field v on the surface image inE3 by taking the
time derivative of each particle’s positions given byχa. The vector field can also be recovered directly from ˙qAB =

ξ i
(,A ξ j

,B)
ḣi j (t) by the inverse ofPχ . We can then usev to evaluate the coarse–grainedZ(i j ) as tensors inE3

〈Z̃(ab)〉 =
1
V0

∫

∂Dt

v(a nb) dσ (13)

(V0 denotes here the volume enclosed by∂Dt in E3). Because of (8) these integrals are independent of the vector field
v chosen, but they do depend on the orientation of the embeddedsurface and under gauge transformations (12) they
transform according to

〈Z̃ab〉 → Rc
aRd

b 〈Z̃cd〉.

In order to get rid of that gauge dependence we need to map〈Z̃ab〉 back to the spacetime. Each isometric embedding
ft defines canonical isometriesgp between the tangent spacesTpΣt to the constant time slices at pointsp∈ ∂Ct and
E3. Any vectorX ∈ TpΣt can be decomposed into the tangent part to∂Ct and the projection to the outward pointing
normalni

Xi = Xi
T +Xnni

.

We then take

gp(X)a = ( ft ∗XT)a +Xnma
,

wherema is the outward pointing normal to the image of the surface atf (p) (see fig. 2).gp preserves the metric tensor
and can be used to map geometric objects fromTpΣt to E3 or back. In particular, one can pull〈Z̃ab〉 back to each point
p in ∂Ct by g∗p

〈Zi j 〉p = g∗p
(
〈Z̃〉

)
i j .
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FIGURE 2. Canonical isometrygp : TpΣt → E3

It is straightforward to verify that the tensor field〈Zi j 〉 constructed on∂Ct this way is insensitive to transformations
(12) and thus completely independent of the choice of isometric embeddingsft .

If the antisymmetric part ofZµν , i.e. the vorticity, does not vanish, it can be coarse–grained as well, although in
a different way. Note that the 3+1 splitting cannot be orthogonal in that case and the four–velocity fielduµ has a
non–vanishing projection to the constant time slice, denoted bywi . We define now the antisymmetric part of〈Z̃ab〉 as

〈Z̃[ab]〉 =
1
V0

∫

∂Dt

g(w)[a nb] dσ . (14)

Note however that, in contrast to the rotating case, in a spacetime filled with rotational dust it is difficult to single outa
preferred 3+1 splitting. Unfortunately, just like in the Buchert’s formalism, the values of〈Zi j 〉 depend on the splitting
one chooses in general. Throughout the rest of the paper we will only deal with the non–rotating dust and in that case
〈Z[i j ]〉 = 0.

3.1. The coarse–graining procedure in the narrow tube limitand in FLRW metrics

Outside the Newtonian setting we loose the equivalence of〈Zi j 〉 to the volume average of the local velocity gradient.
Nevertheless the newly defined quantities turn out to have the correct limiting behavior, namely if we shrink the coarse–
graining domain to a single point, we recover the localZi j at that point. More precisely, consider a one–parameter
family of tubes described by equation

yi = λ ξ i(θ A). (15)

with a positive parameterλ . As λ → 0, the tube shrinks down to the single worldlineyi = 0. One can prove that for
smallλ the values of〈Zi j 〉, including the antisymmetric part if the vorticity doesn’tvanish, can be expanded at every
point p of the tube in powers ofλ as

〈Zi j 〉 = Zi j
∣∣
yi=0 +O(λ ). (16)

Intuitively one can understand this fact in the following way: expressions (13) and (2) are perfectly equivalent if the
background metric is flat and if the velocity gradient is constant over the coarse–graining domain. In general none of
these conditions is satisfied onΣt , but the more the domain under consideration shrinks, the less it “feels” the back-
ground curvature and the inhomogeneities inZi j . As it shrinks down to a point, both curvature and inhomogeneities
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drop out and〈Zi j 〉 is equal to the volume average of the localZi j over a small domain around the pointyi = 0. It is now
straightforward to prove that such volume average approaches then the value ofZi j at yi = 0. For a rigorous argument
see [6].

In order to test the coarse–graining procedure we may also apply it to known homogeneous cosmological solutions.
For a dust–filled Friedman–Lemaitre–Robertson–Walker metric in the natural 3+1 splitting the it yields the expected
answer for any admissible surface:

〈Z̃ab〉 = H(t)δab, (17)

i.e. the coarse–grained velocity gradient consist only of the scalar part given by the Hubble parameter. This result
is easy to see if we notice that the metricqAB induced on the surface, like any other object in a FLRW solution
comoving with the dust, undergoes a homogeneous rescaling in time described by ˙qAB = 2H(t)qAB. The same metric
variation is induced on the image of the embedded surface by the homothetic vector fieldva = H(t)xa in E3. It is now
straightforward to verify that the restriction of this vector field to∂Dt gives (17) when plugged into (13). This result
holds for open, closed and flat FLRW metrics alike.

4. TIME EVOLUTION EQUATION FOR THE COARSE–GRAINED QUANTITI ES

In order to derive the time evolution equations for the coarse–grained velocity gradient, one must first introduce a
preferred time derivative of a tensor field inE3, which will serve as a generalization of the covariant derivative along
the geodesic in (10). We define it via

DTab...
cd... =

∂
∂ t

Tab...
cd... +Wa

zTzb...
cd...

+Wb
zTaz...

cd...
+ · · ·+

−Wz
c Tab...

zd... −Wz
d Tab...

cz... + · · · ,

where

Wab = −
1
V0

∫

∂Dt

v[a nb] dσ .

D preserves the Euclidean metric inE3 and has the right narrow tube limit, i.e. it reduces to∇u along the limiting
geodesic [6].

We now fix a tube of particle worldlinesCt , given by functionsξ i(θ A), whose sections∂Ct are admissible surfaces.
We find the isometric embeddings and calculate〈Z̃ab〉. This allows for decomposing thelocal Zi j , pushed forward to
∂Dt ⊂ E3 via gp, and the velocity fieldva into the the coarse–grained, large scale part and local inhomogeneities

gp∗(Z)ab = 〈Z̃ab〉+ δZab (18)

va = 〈Z̃a
b〉xb + δva

, (19)

both defined on∂Dt only.
For the sake of brevity we introduce the following notation for surface integrals of the type of (3) and (13):

N [Xa]b =
1
V0

∫

∂Dt

Xanbdσ .

We will also denote byR [ · ] the unique inverse ofPχ satisfying

N R [rAB][cd] = 0

for any rAB, plus an irrelevant condition fixing the constant partEa, for example fixing the surface’s centroid at the
origin. Now the definition of the coarse–grainedZi j can be written down in a slightly more compact manner

〈Z̃(ab)〉 = N R [q̇AB]ab = N R

[
2Z(i j ) ξ i

,A ξ j
,B

]

ab
(20)
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in which we have used the time derivative of (11) to substitute 2Z(i j ) ξ i
,A ξ j

,B for q̇AB. Note that the combination

N R

[
2ξ i

,A ξ j
,B ·

]
plays in our formalism the role of the coarse–graining operator for symmetric tensors of rank 2 on

Σt .
The evolution equation for〈Z̃ab〉 takes now the form of

D〈Z̃ab〉 = −〈Z̃ac〉〈Z̃
c
b〉− 〈Ra0b0〉+Bab+ B̃ab, (21)

where

〈Ra0b0〉 = N R

[
2Ri0 j0ξ i

,A ξ j
,B

]
(ab)

is obviously the coarse–grained contraction of the Riemanntensor withuµ uν , considered as a symmetric tensor onΣt

[6]. We can see that two new terms have appeared in comparisonwith (10). The first one is the symmetrized version
of the familiar Newtonian backreaction term (5):

Bab = N
[
δvc

,c δv(a

]
b)
−N

[
δvc

(,a δvb)

]

c
. (22)

The second one is entirely relativistic and has a more complicated structure

B̃ab = N R

[
4〈Z̃cd〉

(
δZd

eχe
(,A − δvd

(,A

)
χc

,B)

]

ab
+

+ N R

[
2
(

δZceδZe
d χc

,A χd
,B− δvc

,A δvd
,B δcd

)]
ab

.

Just like in the Newtonian case, both backreaction terms aresurface integrals divided by volume. In contrast to (22)
however,B̃ab involves linear terms in perturbations. BothBab and B̃ab together measure the influence of inhomo-
geneities on the time evolution of the coarse–grained expansion and shear.
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