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Abstract.

We present a new approach to coarse-graining of variabksitdang dust flow in GR. It is based on assigning quasi-local
shear, twist and expansion to 2-dimensional surfaces tthelp of isometric embeddings into the 3—dimensionaliBeah
space and deriving the time evolution equations for theroohtrast to the popular Buchert's scheme it allows to ceansen
tensorial quantities in a coordinate—independent way.fldmework can be used to estimate backreaction in inhonemyen
cosmological models.
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1. INTRODUCTION

In this paper we discuss an alternative to the well-knownhBuits averaging scheme [1] for inhomogeneous
cosmological models with dust. The new procedure allowsdarse—graining of both scalar (expansion) and tensorial
(shear and vorticity) part of the fluid velocity gradient in@ordinate—independent way. Given a 3+1 decomposition of
the spacetime we assign the coarse—grained expansionasiteaorticity to three—dimensional comoving domains of
the fluid. The resulting non—local quantities depend on thke shlitting, but not on the coordinate system introduced
on the spatial slices. If the fluid is irrotational, therestia preferred, orthogonal splitting and the formalisnmigely
covariant; otherwise one needs to fix the constant timesshgean additional condition.

The procedure is based on a reformulation of the definitiothefvolume average of the velocity gradient over a
comoving domain in Newtonian theory. It turns out that it @spible to reexpress that volume average as a functional
of the time derivative of the metric tensor induced on the diors two—dimensional boundary. It has been noted before
[2, 3] that such volume—averaged velocity gradients satisfevolution equation which is very similar to the evolatio
equation of the local velocity gradient, the only differeraeing a surface integral of the inhomogeneities of the flow
over the domain’s boundary. This volume average can be ttewras asurfaceintegral of the fluid velocity due to
the divergence theorem. The key observation is that theaseifalues of the velocity field can be almost uniquely
reconstructed from the comoving time derivative of the imaétduced on the domain’s boundary as long as the that
boundary has the topology 6f and its metric has a positive curvature. The only part of teaity field which cannot
be reconstructed is the total linear and angular veloa#gponsible for translations and rotations of the surface as
whole. However, since they do not contribute to the averagarsand expansion, these quantities can be evaluated
just from the reconstructed velocity field. Thus it is pobsiio reexpress in Newtonian theory the average shear and
expansion as functionals of the derivative of the inducettimen the boundary.

The reformulated definition carries over easily to the relstic case. If we fix a comoving, three—dimensional
domain in a 3+1 decomposed spacetime, we can find the isenestitbeddings of the domain’s two—dimensional
boundaries into the three—dimensional Euclidean spaceesaldiate the coarse—grained expansion and shear. If
the background metric is not flat, the resulting quantitiesreot equivalent to any volume integrals any more, but
nevertheless they can serve as a measure the deformatidmié dluid element. As we show in the paper, the new
definition satisfies simple reasonability conditions: élgs the right answer in the limit of the domain shrinking to a
point and in FLRW metrics.

We also present a way to define the coarse—grained vorticity the projection of particle four—velocities to the
spatial constant—time slice if the dust is rotating. Therdtdin is independent of the coordinates introduced on the
spatial slice, but in contrast to the irrotational case wendbhave a simple, unique definition of a preferred 3+1
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splitting and the coarse—grained quantities do depend on it

Finally we present the evolution equation for the coarsaingd velocity gradient and show that its structure is very
similar to the evolution equation for its local counterpdkto additional terms in the form of surface integrals may
serve as a measure of backreaction. i.e. the impact of tleriabeneities of the flow on the large scale motion of the
dust within the domain.

The proposed procedure is more mathematically involved tBechert’s, as it requires finding the isometric
embeddings of? surfaces, which is equivalent to solving a system of coupled—linear PDE’s. In most cases this is
impossible to do analytically, but numerical methods hdxesaly been developed for that problem [4, 5]. Let us also
note that in contrast to Buchert’s approach we do not havkiten equations for the coarse—grained curvature and
matter density. The dust was chosen as the matter modekipdlpier just for its simplicity; the formalism introduced
here can be applied to any other fluid in General Relativitthwinly minor modifications. For a more exhaustive
treatment of the topic, including rigorous derivationshuf tesults, see [6].

2. COARSE-GRAINING VIA ISOMETRIC EMBEDDINGS
Consider gravitating, Newtonian, presureless dust in sflate. It is described by the velocity field densityp and
the Newtonian potentiap. The gradient of the velocity fiel@'; = V' ; describes how an infinitesimal fluid or dust

element is deformed and how it rotates during its motionait ée decomposed into the scalar expansion, symmetric
traceless shear and antisymmetric vorticity

1
Qj=3 06 + (i) + wjj)-
Qij satisfies the evolution equation along the flow
D . ) .
5 Qi=-Q-9, @)

where% is the convective derivative (see [6, 2, 3]). This equatias & coarse—grained counterpart which one obtains
by taking the volume average Q'j over a comoving domai@;

. 1 i 3 1 i3
<Q'j>=\_//GIQ'jd x:\_//GI\/yjd X @)
Note that<Qi j> is effectively a surface integral over the boundary &%
<Qi->=1/ vin;do. 3)
J V Jag, J
Its evolution equation has a similar structure to (1),
9 (@) = (@0 ()~ (¢ +8] @
ot i) = k Q) =@ i
with <(p’i1j> being the volume average of the Hessian of the potential Gvefhe additional term

Bij:\% aGt(évkévi’jnk—évkévi’knj)da, (5)

measures how the inhomogeneities of the fluid velocity flfd= Vv — (Q';)x! affect its large scale motion in the
domainG; [2, 3, 6].

In the relativistic case, on a non—flat background, we do ae¢la well-defined, coordinate—independent notion of
volume averages of tensor objects, so we cannot use (2)amabtelativistic counterpart of (4). It turns out, however

that definition (2) can be reformulated in a geometric, cowmtd independent manner which has a natural extension
to non—flat backgrounds. We will first deal with the symmeréet of (Q;;), i.e. shear and expansion. We will show
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that under certain technical assumptions they can be ress@ad as functionals of the metric induced on the boundary
0G; and its convective (comoving with the dust) time derivative

The main tool we are going to employ is the isometric embeglitlirorem for surfaces & topology, conjectured
by Weyl and proved by Lewy, Alexandrov, Pogorelov, Nirergpand Cohn—Vossen (see [7], [8]):

Theorem 2.1 (Isometric embedding theorem fols?) Given a compact, orientable surface S homeomorphicfo S
with positive metric g whose scalar curvaturesR0. Then

« there exists an isometric embedding
f:S—ES

into the 3—dimensional Euclidean space;
- the embedding is unique up to rigid rotations, translatiansl reflexions.

If we fix the orientation, the theorem states that for a gi8&surface with a positive metric of positive curvature can
be recognized as a submanifold&3 and this can be done only in one way, up to moving the surfasenar and
rotating it as a whole. Surfaces satisfying the hypothedisemrem 2.1 will be called admissible.

Consider now the bounda@G; of the coarse—graining domain, parametrized by two coatdsb” labeling
individual particles. It is described, together with its& evolution, by equations

X =Z'(t,0M).
The induced metric has the form of
das(t, 6%) = 'a ' 3 (6)
and its time derivative in coordinaté$
Ga =2V Zj,B) 8-

Assume now thafG; is admissible at least for some time and that we know its jposih space at one instance of
one timet = to. We will show that in that casgQy;;)) can be read out solely from the induced metric (6), even if we
do not have each individual particle’s velocity and positio

Givengag(t) we can find the isometric embeddingsad®;, consistent with its orientation, int&3at each time.

We assume that & the embedding is known, but at other times we need to solviotlosving system of PDE’s

dag = Xi,AXj,B 3 (7)
for three functiong (t,6”). We construct this way a one—parameter family of embeddings
X = x'(t,6%)
for which we assume the additional condition
X'(to,6") = 7' (to, 8%).
The first statement of theorem 2.1 assures that funcjbisé”) can always be found, although they are non—unique.

The true particle positions @G, given by’ (t,0%), constitute trivially a family of isometric embeddings, fsom
the the uniqueness part of 2.1 we know that functiphand(' are related via

X'(t,6%) =R;(1) (1, 6%+ W(t),
whereR‘j is a rotation. If we take a time derivative of this equatioh atty, we obtain

i . . i i i
00_)§ =U'(6") =V(to, 0% +Q'; ) (to,6") +E'.
t=tg
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with constantsQ;; = —Qj and E'. Thus the velocity fieldu', reconstructed from an arbitrary family isometric
embeddings, differs from the true one only by the restntito dG; of a rotational (2' xl) and s translationag)
vector field. This difference does not influence the valuetdgral (3) symmetrized in the two indices

/06{ uinjdo = /aGt Vi nj)do = (Qj)), 8)

S0 we can use the reconstructeristead ofv to evaluate the shear and expansion.
In fact we do not have to find the embeddings explicitly to abtiae reconstructed velocity field. By differentiating
(7) with respect ta we obtain an equation relating directly to the convective time derivative gfg att =ty

2Ui(’A Zj7B) 8j = Qas.

The linear operato?; [Y]ag = 2Yi(,A Zj_B) &; appearing on the left hand side yields the variation of théasas’
induced metric if the embedding itself is being dragged byeatar fieldY'. By the virtue of theorem 2.1 for an
admissible surface it has a six—dimensional kernel cangisff rigid motions and a "non—unique inversé”z‘l. We
can now rewrite the definition of the symmetric part coarsairgd velocity gradient explicitly as a functionalgqg’

Qi) =y / QAB njdo. )

3. VELOCITY GRADIENT IN GENERAL RELATIVITY

Formula (9) is clearly more complicated that (2), but its madvantage lies in the fact that it can be generalized
to fluids on a non—flat background in a simple and natural wamsitler a (possibly curved) spacetime, filled with
dust described by densigyand four—velocity fieldu. The integral curves af are geodesics, i.€],u# = 0. The four—
velocity gradien®,,, = Oy uy, describes the deformations of an infinitesimal fluid eleneits motion. Itis orthogonal

to uin both indices and therefore effectively a three—dimemaliobjectZ,, satisfies the relativistic counterpart of (1)

0,24, = -z4,2°, - R“M uub. (10)

Unless stated otherwise, in this paper we will assume thetfidve irrotational, i.eZy,y = Z ;.. We will now show
how to derive the coarse—grained counterpart of (10) in wtifg; ) corresponds to a finite fluid volume rather than an
infinitesimal element. _

In comoving and orthogonal coordinaigsy') one can perform the standard ADM decomposition of the mttic
the spatial parh;j, with vanishingN' andN = 1 due to the coordinate system choice. Consider a threendiorel
tube of particle worldline§C enclosing a cylinde€ (see fig. 1). The tube is described by equatigns &'(84), &'
being three time-independent functions @fdcomoving coordinates on the tube labeling individual péet. The
intersections of the cylinder with constant time sliéggsdenoted in this paper b§C;, constitute two—dimensional
surfaces of spherical topology. Assuming that the surfacesadmissible we assign the coarse—grained velocity
gradient to their interior in the following way: we take theluced metric

Gas(t, 0%) = &8 g hij (1) (11)
on dC; and find an arbitrary family of isometric embeddings G, — @Dy C E>. They are described by equations
X = x(t,6")
with three functiong(! satisfying a system of non—linear PDE’s

qas(t, 8) = X2a X5 Gab-

1 Indicesa,b,c,... run from 1 to 3, just like, j,k,.... We will reserve the former for geometric objectsHfand the latter for objects on a constant
time slice of the spacetime.
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FIGURE 1. Coarse—graining af,,, over the slices of a tube of particles

These are subject to gauge transformations of the form wf nigptions
X2(t,0%) — R, (t) x°(t, 04) + WA(t). (12)

We can now define a fictious rather then reconstructed vgldieild v on the surface image i&® by taking the
time derivative of each particle’s positions given %Y. The vector field can also be recovered directly frgg =
E'(.A EJ_B) hij (t) by the inverse of”y. We can then useto evaluate the coarse—graingg, as tensors iE>

~ 1
(Zian)) = Vo oo, Vi do (13)

(Vo denotes here the volume enclosediy in E3). Because of (8) these integrals are independent of thewield
v chosen, but they do depend on the orientation of the embesidéate and under gauge transformations (12) they
transform according to

(Zab) — R R, (Zoq)-

In order to get rid of that gauge dependence we need to<ﬁ@pback to the spacetime. Each isometric embedding
ft defines canonical isometrigg between the tangent spacgz; to the constant time slices at poimis= dC and

E3. Any vectorX € Tp2; can be decomposed into the tangent pad@ and the projection to the outward pointing
normaln'

X' =XE4+Xon'.
We then take
gp(X)? = (i X7)2 + XomP,

wheren? is the outward pointing normal to the image of the surfaclpj (see fig. 2)gp preserves the metric tensor
and can be used to map geometric objects figh to E2 or back. In particular, one can puﬂiab> back to each point
pin dC by gp,

(Zij)p= g;(<2>)ij .
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FIGURE 2. Canonical isometrgp : Tp%; — E3

It is straightforward to verify that the tensor fie{d;j) constructed o@C this way is insensitive to transformations
(12) and thus completely independent of the choice of isotmembeddingd; .

If the antisymmetric part oZ,,, i.e. the vorticity, does not vanish, it can be coarse—gias well, although in
a different way. Note that the 3+1 splitting cannot be orthrea in that case and the four—velocity field has a
non-vanishing projection to the constant time slice, dethbyw'. We define now the antisymmetric part(@,) as

5 1
Ziag) = — W)y N do. 14
(Zjan) % thg( )ja N (14)
Note however that, in contrast to the rotating case, in aetpae filled with rotational dust it is difficult to single oat
preferred 3+1 splitting. Unfortunately, just like in the @ert's formalism, the values ¢Zij) depend on the splitting
one chooses in general. Throughout the rest of the paper Ivenlyi deal with the non-rotating dust and in that case

3.1. The coarse—graining procedure in the narrow tube limitand in FLRW metrics

Outside the Newtonian setting we loose the equivalen¢g pfto the volume average of the local velocity gradient.
Nevertheless the newly defined quantities turn out to havedirect limiting behavior, namely if we shrink the coarse—
graining domain to a single point, we recover the lagalat that point. More precisely, consider a one—parameter
family of tubes described by equation

y =AM (15)

with a positive parameteY. As A — 0, the tube shrinks down to the single worldliyle= 0. One can prove that for
smallA the values ofZ;j), including the antisymmetric part if the vorticity doesuénish, can be expanded at every
point p of the tube in powers of as

(Zij) = Zijy_o +O(2). (16)
Intuitively one can understand this fact in the followingywaxpressions (13) and (2) are perfectly equivalent if the
background metric is flat and if the velocity gradient is dansover the coarse—graining domain. In general none of

these conditions is satisfied @p, but the more the domain under consideration shrinks, g®iteéfeels” the back-
ground curvature and the inhomogeneitiegin As it shrinks down to a point, both curvature and inhomogérse
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drop out andz;j) is equal to the volume average of the loZglover a small domain around the pojht= 0. Itis now
straightforward to prove that such volume average appesattten the value dfjj aty' = 0. For a rigorous argument
see [6].

In order to test the coarse—graining procedure we may ajsly &pgo known homogeneous cosmological solutions.
For a dustfilled Friedman—Lemaitre—Robertson—Walkerimgt the natural 3+1 splitting the it yields the expected
answer for any admissible surface:

(Zab) = H(t) Sab, (17)

i.e. the coarse—grained velocity gradient consist onlyhefgcalar part given by the Hubble parameter. This result
is easy to see if we notice that the metggg induced on the surface, like any other object in a FLRW sotuti
comoving with the dust, undergoes a homogeneous rescalitmyé described bgas = 2H (t) gas. The same metric
variation is induced on the image of the embedded surfackékidmothetic vector field = H (t)x2 in E>. It is now
straightforward to verify that the restriction of this vecfield to dD; gives (17) when plugged into (13). This result
holds for open, closed and flat FLRW metrics alike.

4. TIME EVOLUTION EQUATION FOR THE COARSE-GRAINED QUANTITI ES

In order to derive the time evolution equations for the ceagsained velocity gradient, one must first introduce a
preferred time derivative of a tensor field&, which will serve as a generalization of the covariant daie along
the geodesic in (10). We define it via

0
b... b... b.. b .
7k cd.. — ETa Cd..."'vvaz-l—Z cd.”"_V\/ZTaZ ed. Tt

SWET® —WT™ g+

where
W, ——i/ Vig Ny do
lab — VO 9Dy [a''p] .

2 preserves the Euclidean metricBi and has the right narrow tube limit, i.e. it reducesipalong the limiting
geodesic [6]. .

We now fix a tube of particle worldlines;, given by functions' (GA), whose sectiondC; are admissible surfaces.
We find the isometric embeddings and calcukag,). This allows for decomposing tHecal Z;j, pushed forward to

oDy C E3 via 0gp, and the velocity field? into the the coarse—grained, large scale part and locaiiolgeneities
gp*(z)ab = <Zab> + 5Zab (18)
Vo= (X040, (19)

both defined o@Dy only.
For the sake of brevity we introduce the following notation$urface integrals of the type of (3) and (13):

1
JV[Xa]b - \70 Dy Xanbdo-.

We will also denote byZ [ -] the unique inverse o’ satisfying
JV% [rAB] [Cd] = O

for anyrag, plus an irrelevant condition fixing the constant paf for example fixing the surface’s centroid at the
origin. Now the definition of the coarse—graingg can be written down in a slightly more compact manner

Ziawy) = N ZGnela = N % |22 E nEe| (20)
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in which we have used the time derivative of (11) to subsiit?z(ij)E"AfjjB for gag. Note that the combination

NR {ZE(AE{B } plays in our formalism the role of the coarse—graining ofgerr symmetric tensors of rank 2 on
.
The evolution equation fo(rZab) takes now the form of

D (Zav) = —(Zac) (Z%) — (Reobo) + Bab+ Bab, (21)

where

(Recvo) =4 | Rojo€ al's|

is obviously the coarse—grained contraction of the Riemansor withu! u”, considered as a symmetric tensor2gn
[6]. We can see that two new terms have appeared in companisioii10). The first one is the symmetrized version
of the familiar Newtonian backreaction term (5):

Bap = N[0V cV(aly — N [6v°(’a 6vb)} R (22)
The second one is entirely relativistic and has a more caaigld structure

Bab = N% {4<2cd> (5Zdexe<,A - 5Vd<aA) XCaBJab+

+ N R[2(6Z0607% X aXle — OV ASV 58a )| .

AR ; : a
Just like in the Newtonian case, both backreaction termsuarface integrals divided by volume. In contrast to (22)
however,B,, involves linear terms in perturbations. Bo®y, and By, together measure the influence of inhomo-
geneities on the time evolution of the coarse—grained esiparand shear.
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