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Continuous gravitational-wave (CW) signals such as emitted by spinning neutron stars are an important

target class for current detectors. However, the enormous computational demand prohibits fully coherent

broadband all-sky searches for prior unknown CW sources over wide ranges of parameter space and for

yearlong observation times. More efficient hierarchical ‘‘semicoherent’’ search strategies divide the data

into segments much shorter than one year, which are analyzed coherently; then detection statistics from

different segments are combined incoherently. To optimally perform the incoherent combination, under-

standing of the underlying parameter-space structure is requisite. This problem is addressed here by using

new coordinates on the parameter space, which yield the first analytical parameter-space metric for the

incoherent combination step. This semicoherent metric applies to broadband all-sky surveys (also

embedding directed searches at fixed sky position) for isolated CW sources. Furthermore, the additional

metric resolution attained through the combination of segments is studied. From the search parameters

(sky position, frequency, and frequency derivatives), solely the metric resolution in the frequency

derivatives is found to significantly increase with the number of segments.
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I. INTRODUCTION

Direct detection of gravitational waves would not only
validate Einstein’s theory of general relativity but also
constitute an important new astronomical tool.
Continuous gravitational-wave (CW) signals are expected,
for instance, from rapidly rotating neutron stars through
various emission mechanisms [1–5]. Most such stars are
anticipated to be electromagnetically invisible, but might
be detected and studied via gravitational waves. With
current Earth-based detectors, such as LIGO [6], numerous
efforts are underway to search for CW sources [7–10], and
observational upper limits have already allowed one to
constrain the physics of neutron stars [11,12].

The expected CW signals are extremely weak. Hence
detection requires very sensitive data analysis techniques
to extract these signals from detector noise. In the work of
[13] a powerful method has been derived which is based on
the principle of maximum likelihood detection, leading to
coherent matched filtering. The CW signals are quasimo-
nochromatic with a slowly changing intrinsic frequency.
For a terrestrial detector, the Earth’s motion relative to the
solar system barycenter (SSB) generates a Doppler modu-
lation in amplitude and phase of the waveform. As shown
in [13], the parameters describing the signal’s amplitude
variation may be analytically eliminated by maximizing
the coherent matched-filtering statistic. Thus, one only
searches over the remaining parameters describing the
signal’s phase: the source’s sky location, frequency, and
frequency derivatives (‘‘spindowns’’). The so-obtained co-
herent detection statistic is called the F -statistic, which

can also be generalized to employ multiple detector data
streams [14].
Finite computational resources are what imposes severe

limits on the sensitivity of broadband all-sky searches for
prior unknown CW sources [13,15]. In the fully coherent
F -statistic approach, one must convolve the full data set
with signal waveforms (templates) corresponding to all
possible sources. But the number of templates required to
cover the search parameter space increases as a high power
of the coherent integration time. For yearlong data sets,
searching a realistic range of parameter space would de-
mand more computing power than available on Earth
[13,15]. Therefore, a fully coherent search is restricted to
much shorter integration times.
A more efficient analysis of data sets which span year-

long time intervals is achieved via less expensive hierarch-
ical semicoherent methods [16–19]. In such a method, the
data are divided into segments of duration T, where T is
much smaller than one year. This allows one to use a
coarse grid of templates, on which the F -statistic is calcu-
lated for each segment. Then the F -statistics from all
segments (or statistics derived from F ) are incoherently
combined using a common fine grid of templates. Since
phase information is discarded between segments, this
latter step is called incoherent and thus the search meth-
odology as a whole is referred to as semicoherent.
An important long-standing problem in these semico-

herent methods has been the design of, and link between,
the coarse and fine grids. To address this problem it is
essential to understand the underlying parameter-space
structure. In this context, the geometric approach has
been proven to be very useful, introducing a metric on
parameter space, as first done in [20,21]. The key quantity*Holger.Pletsch@aei.mpg.de
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in this respect is called mismatch M, which is the frac-
tional loss in expected F -statistic (or sum of expected
F -statistics in the incoherent step) for a given signal psig

at a nearby grid point p in phase-parameter space P .
Taylor-expanding M (to quadratic order) at psig in the

differences of psig and p defines the parameter-space

metric.
While the parameter-space metric for coherent searches

has been examined in detail [15,22,23], the metric for
semicoherent searches is comparably much less well
studied. However, the literature does exhibit several quests
for a semicoherent metric [17,18,24,25]. About a decade
ago, the first general discussion of the semicoherent metric
for CW searches was given in [16], along with numerical
investigations. But only recently, the first fully analytical
semicoherent metric has been found, leading to a signifi-
cantly improved CW search method [19]. This recent
progress is based on a better understanding of the global
parameter-space correlations [26], which were first exam-
ined in [27]. In turn, this insight provides new coordinates
on parameter space, enabling the analytical calculation and
study of the semicoherent metric.

The present paper extends the recent work of [19] to
greater generality and provides the essential technical basis
for a parameter-space metric formalism for semicoherent
CW searches. Additionally, complete and fully analytic
semicoherent metric results are presented, which are ready
to use for practical implementations of semicoherent
searches, serving the earlier-mentioned quests of previous
literature. The results apply to broadband all-sky surveys
(embedding directed searches with fixed sky position) for
isolated CW sources.

Section II briefly reviews matched filtering for CW
signals and the parameter-space metric formalism in gen-
eral. Section III elucidates how the metric is obtained for
semicoherent searches. To evaluate and study the semi-
coherent metric, new coordinates on parameter space are
defined in Sec. IV. In Sec. V, the semicoherent metric is
derived and investigated for the case of CW signals whose
intrinsic frequency changes linearly with time (parame-
trized by one spindown parameter). In particular, the re-
finement factor is introduced as the ratio of the number
fine-grid and coarse-grid templates, quantifying the addi-
tional parameter-space metric resolution due to combina-
tion of many segments. Section VI extends these results to
the case of CW signals whose intrinsic frequency can
change quadratically with time (considering two spindown
parameters). Finally, a short conclusion follows in
Sec. VII.

II. MATCHED FILTERING FOR CONTINUOUS
GRAVITATIONAL-WAVE SIGNALS

The detector output data time series is denoted by xðtÞ at
detector time t. In the absence of any signal, the data
contain only noise nðtÞ, which is assumed to be a zero-

mean, stationary, and Gaussian random process. In case a
signal hðtÞ is present, the noise is assumed to be additive,
such that xðtÞ ¼ nðtÞ þ hðtÞ.
The dimensionless signal response function hðtÞ of an

interferometric detector to a weak plane gravitational wave
in the long-wavelength approximation is a linear combi-
nation of the form

hðtÞ ¼ FþðtÞhþðtÞ þ F�ðtÞh�ðtÞ; (1)

where Fþ;� are called the beam-pattern functions, result-

ing in the amplitude modulations from Earth’s spinning
motion. They lie in the range�1 � Fþ;� � 1, and depend
on the orientation of the detector and source, and on the
polarization angle c of the waves. For explicit expressions
the reader is referred to [13]. In the case of an isolated
rapidly rotating neutron star with nonaxisymmetric defor-
mations and negligible proper motion (cf. [28,29]), the
waveforms corresponding to the plus (þ ) and cross
(� ) polarizations are

hþðtÞ ¼ Aþ sin�ðtÞ; h�ðtÞ ¼ A� cos�ðtÞ; (2)

where Aþ and A� are the plus and cross polarization
amplitude parameters, respectively, and �ðtÞ is given by

�ðtÞ ¼ �0 þ�ðtÞ

¼ �0 þ 2�
Xs
k¼0

fðkÞðt0Þ
ðkþ 1Þ!

�
t� t0 þ ~rðtÞ � ~n

c

�
kþ1

; (3)

where �0 is the initial phase, fð0Þ � f denotes the fre-

quency, and fðk>0Þ is the kth frequency time derivative
(also called ‘‘spindown’’), evaluated at the SSB at time
t0. The integer s > 0 denotes the number of frequency time
derivatives to be taken into account, therefore it holds

fðk>sÞ ¼ 0. The vector ~rðtÞ connects from the SSB to the
detector, c is the speed of light, and ~n is a constant unit
vector pointing from the SSB to the location of the CW
source. Thus, a point in phase parameter space p 2 P is

denoted by p ¼ ðfðkÞ; ~nÞ in respect of the reference time t0.
As first shown in [13], the phase �ðtÞ in Eq. (3) can be

approximated without significant loss in signal-to-noise
ratio (SNR) to good accuracy by

�ðtÞ � 2�
Xs
k¼0

fðkÞðt0Þðt� t0Þkþ1

ðkþ 1Þ!

þ 2�
~rðtÞ
c

� ~nXs
k¼0

fðkÞðt0Þðt� t0Þk
k!

: (4)

Consider a data segment spanning the interval
½�T=2; T=2�. The F -statistic is obtained [13,30] from
the likelihood ratio �, which takes the form

ln� ¼ ðxjhÞ � 1
2ðhjhÞ; (5)

where the scalar product has been defined as
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ðxjyÞ � 4Re
Z 1

0

~xðfÞ~y�ðfÞ
SnðfÞ df; (6)

with the Fourier transform indicated by ~, the complex
conjugation denoted by *, and Sn defined as the one-sided
noise spectral density. One may assume Sn to be constant
over the narrow bandwidth of the signal considered in this
work. Then the scalar product of Eq. (6) is approximately
given by

ðxjyÞ � 2

Sn

Z T=2

�T=2
xðtÞhðtÞdt: (7)

Thus, the time average is introduced by the following
notation:

hxi � 1

T

Z T=2

�T=2
xðtÞdt: (8)

Using this notation, Eq. (5) is rewritten as

ln� ¼ 2T

Sn

�
hxhi � 1

2
hh2i

�
: (9)

Replacing the amplitude parameters fAþ; A�; c ;�0g by
their values which maximize ln�, the so-called maximum
likelihood (ML) estimators, defines the detection statistic
F as

F � ln�ML: (10)

Because the F -statistic is maximized over the amplitude
parameters, the remaining search space is just the phase-
parameter space P .

A. Coherent detection statistic for a simplified signal
model

Since the primary goal of this work is in relation to
template-grid construction, a very useful approximation
for this purpose is to replace the beam-pattern functions
Fþ;�ðtÞ by constant values [26,28,31]. The phase of the

CW signal is expected to change very rapidly at the ter-
restrial detector site over a time scale of typically less than
ten seconds, whereas the amplitude of the signal varies
with a period of one sidereal day. Coherent observation
times of practical interest are typically longer than one day,
so that replacing the beam-pattern functions Fþ;�ðtÞ with
effective constant values is a good approximation. In this
case the signal model in Eq. (1) takes the form

hðtÞ ¼ A1 sin�ðtÞ þ A2 cos�ðtÞ; (11)

where A1;2 are defined to be the constant amplitude pa-

rameters. In [28], the validity of this approximation is also
investigated using Monte Carlo simulations. It should be
noted that the actual computation of the F -statistic in a
CW search will, of course, include the effects of amplitude
modulation and involves precise calculation of the detector
position with respect to the SSB using an accurate ephem-

eris model. This simplified signal is used here to facilitate
the template-grid construction.
The log likelihood of Eq. (9) for the simplified signal

model (11) is denoted by ln�? and takes the form

ln�? ¼ 2T

Sn

�
A1hx sin�i þ A2hx cos�i � A2

1 þ A2
2

4

�
:

(12)

By substituting the ML estimators for A1;2 in ln�? of

Eq. (12), it is straightforward to show [26,27] that the
simplified signal model (11) leads to the following coher-
ent detection statistic F ? approximating F as

F ? ¼ ln�?
ML ¼ 2T

Sn
jhxe�i�ij2: (13)

B. Perfect match of signal and template phase
parameters

Consider a signal hsigðtÞ following the model of Eq. (11)

present in the data xðtÞ. Let the signal’s phase evolution
�sigðtÞ be described by known phase parameters denoted

by the vector psig and defined at t0,

hsigðtÞ ¼ A1;sig sin�sigðtÞ þ A2;sig cos�sigðtÞ: (14)

Since the signal parameters are known, one can construct a
template which perfectly matches the signal. Assuming the
noise nðtÞ to be stationary, Gaussian, zero-mean, and addi-
tive, one can show [32,33] that for a known signal (zero
parameter offsets) the expectation value and variance of
F ?, respectively, are

E½F ?� ¼ 1þ 1
2�

2ð0Þ; �2
F ? ¼ 1þ �2ð0Þ; (15)

where �ð0Þ defines the optimal SNR, obtained as

�2ð0Þ ¼ 4T

Sn
jhhsige�i�sigij2: (16)

The expression of Eq. (16) may be further simplified using
Eq. (14) to yield

�2ð0Þ ¼ T

Sn
ðA2

1;sig þ A2
2;sigÞ: (17)

C. Mismatch of the signal and template phase
parameters

If the signal parameters are unknown in advance, one has
to evaluate the detection statistic for a bank of templates.
Let the template phase-parameter vector be p and the
corresponding phase be �ðtÞ. In general, the template
phase parameters will not exactly match the signal parame-
ters. Thus, the parameter offsets are labeled by

�p � psig � p: (18)

The resulting difference in phase ��ðtÞ between the phase
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�sigðtÞ of the signal and the phase �ðtÞ of a template is

defined as

��ðtÞ � �sigðtÞ ��ðtÞ: (19)

In this case the expectation value and variance of F ?,
respectively, are given by

E½F ?� ¼ 1þ 1
2�

2ð�pÞ; �2
F ? ¼ 1þ �2ð�pÞ; (20)

where the SNR �ð�pÞ here depends on the parameter
offsets �p, such that

�2ð�pÞ ¼ 4T

Sn
jhhsige�i�ij2: (21)

Further simplification of Eq. (21) leads to

�2ð�pÞ ¼ T

Sn
ðA2

1;sig þ A2
2;sigÞjhei��ij2 ¼ �2ð0Þjhei��ij2:

(22)

The above relation shows that given an offset �p between
the signal and template parameters the squared SNR is
reduced by jhei��ij2. This gives rise to define a dimension-
less ‘‘mismatch’’ M as

M ¼ �2ð0Þ � �2ð�pÞ
�2ð0Þ (23a)

¼ 1� jhei��ij2: (23b)

The mismatch represents the fractional loss in the expected
detection statistic due to the parameter �p and thus pro-
vides a distance measure in the template parameter space.

D. Metric on parameter space

Taylor-expanding the mismatch M up to quadratic or-
der in terms of the template parameter-space location off-
sets p at the signal location psig yields

M � X
a;b

gab�p
a�pb; (24)

defining a positive definite metric tensor g as

gab ¼ h@a�@b�i � h@a�ih@b�i; (25)

where a and b label the tensor indices, and the following
notation has been employed:

@a� � @�

@pa

��������p¼psig

: (26)

The expression of Eq. (25) is often called the ‘‘phase
metric’’ [15,23,29], since it describes a distance measure
on the phase parameter space P .

III. PARAMETER-SPACE METRIC FOR
SEMICOHERENT SEARCHES

In semicoherent CW searches the data are divided intoN
segments of duration T, where T is much smaller than one

year. This allows one to analyze each segment coherently,
using a coarse grid of templates. Then the coherent detec-
tion statistic results from all segments are incoherently
combined using a common fine grid of templates. This
scheme is often called a semicoherent search strategy,
offering the best overall sensitivity at limited computa-
tional resources [16,17] when the fully coherent approach
is infeasible. In preparation of calculating the semicoherent
metric, this section introduces some general notation.

A. The coherent metric for a given segment

Let the integer j ¼ 1; . . . ; N label the jth segment, and
let tj denote the time midpoint of segment j. The time

average over the jth segment is defined by

hxi½j� � 1

T

Z tjþT=2

tj�T=2
xðtÞdt: (27)

The mismatch Mj in the jth segment is given by

M j ¼
�2ð0Þ � �2

j ð�pÞ
�2ð0Þ ; (28)

where

�2
j ð�pÞ ¼ �2ð0Þjhei��i½j�j2: (29)

Thus Mj can be approximated by

M j �
X
a;b

g½j�ab�p
a�pb; (30)

where the components of coherent metric tensor for the jth

segment g½j� are obtained in analogy to Eq. (25) as

g½j�ab ¼ h@a�@b�i½j� � h@a�i½j�h@b�i½j�: (31)

When searching a subspace SP of the phase parameter
space P , the corresponding proper volume V is given by

V ¼
Z
SP

dV ¼
Z
SP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detg½j�

q
dp: (32)

The placement of signal templates to cover the search
parameter space is an instance of the sphere covering
problem [34]. Using a lattice of templates, the number of
coarse-grid templates N coarse

t is obtained from the coher-

ent metric tensor g½j� as

N coarse
t ¼ �0V ¼ �0

Z
SP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detg½j�

q
dp; (33)

where the constant �0 describes the density of templates.
The specific value of �0 depends on the desired maximum
mismatch and the chosen type of lattice [15,32,34]. When
using a random template bank instead of a lattice, then �0

can also depend on the desired coverage fraction [35,36].
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B. The semicoherent metric for combining segments

In the semicoherent search approach, coherent detection
statistic results from the different segments are incoher-
ently combined. To evaluate the metric for this case, the
simplified coherent detection statistic F ? (approximating
F ) of Eq. (13) is again used here. Thus, F ?

j means the

F ?-statistic value obtained in the jth segment. Recall that
F ?

j is the log likelihood function (maximized over the

amplitude parameters). As the joint likelihood is the prod-
uct, the joint log likelihood of all segments is the sum
over j. Therefore, we define the semicoherent detection

statistic �F ? by

�F ? ¼ 1

N

XN
j¼1

F ?
j : (34)

For the case of a known signal (zero parameter offsets)

the expectation value and variance of �F ?, respectively, are

E½ �F ?� ¼ 1þ 1

2
�2ð0Þ; �2

�F ? ¼ 1þ �2ð0Þ
N

; (35)

assuming identical noise spectral densities Sn in every
segment. Hence, combining detection statistics from the
N segments reduces the variance by N.

For nonzero offsets �p between the template and signal
parameters the resulting expectation value and variance of
�F ?, respectively, are obtained as

E½ �F ?� ¼ 1þ 1

2N

XN
j¼1

�2
j ð�pÞ; (36)

�2
�F ? ¼ 1þ 1

N

P
N
j¼1 �

2
j ð�pÞ

N
: (37)

Thus, the mismatch �M, which measures the fractional

loss in the expected semicoherent detection statistic �F ?

due to phase-parameter offsets �p is obtained as

�M ¼ 1

N

XN
j¼1

�2ð0Þ � �2
j ð�pÞ

�2ð0Þ ¼ 1

N

XN
j¼1

Mj: (38)

Since Mj is the mismatch in segment j according to

Eq. (30), �M represents the average mismatch across the
segments (cf. [16]). Consequently, one may write

�M � X
a;b

�gab�p
a�pb; (39)

where the components of the semicoherent metric tensor �g
are obtained as the average of the individual-segment

coherent metric components g½j�ab from Eq. (31),

�g ab ¼ 1

N

XN
j¼1

g½j�ab: (40)

Thus, in analogy to Eq. (33) the number of fine-grid
templates N fine

t is given by

N fine
t ¼ �0

Z
SP

ffiffiffiffiffiffiffiffiffi
det �g

p
dp: (41)

IV. NEW COORDINATES ON PARAMETER SPACE

The standard ‘‘physical’’ coordinates on P are the fre-

quency and frequency derivatives fðkÞðt0Þ at reference time
t0, and the unit vector ~n ¼ ðcos� cos�; cos� sin�; sin�Þ on
the two-sphere S2, pointing from the SSB to the source.
The angles � and � are right ascension and declination.
The analytic evaluation of the semicoherent metric com-

ponents �gab from Eq. (40) is one of the central aspects of
this work. This problem is approached by introducing new
coordinates on the phase parameter space P , leading to a
phase model which depends linearly on the coordinates.

A. Linear phase model

For coherent segment lengths T much smaller than one
year, the orbital component ~rorb of the Earth’s motion, ~r ¼
~rorb þ ~rspin, varies slowly during T and thus can be Taylor

expanded around the segment’s midpoint. Hence, by sep-
arating the orbital and spinning components of the Earth’s
motion in the phase model �ðtÞ a convenient reparametri-
zation is obtained in which �ðtÞ depends linearly on the
new coordinates. For further details the reader is referred to
Ref. [26]. Thus the resulting phase model �ðtÞ is obtained
as

�ðtÞ ¼ �0ðt0Þ þ
Xs
k¼0

�ðkÞðt0Þ
�
t� t0
T

�
kþ1

2kþ1

þ nxðt0Þ cos�tþ nyðt0Þ sin�t; (42)

where �0ðt0Þ is a constant independent of t, and the new

frequency and frequency-derivative coordinates �ðkÞðt0Þ as
first derived in [26] are

�ðkÞðt0Þ � 2�

�
T

2

�
kþ1

�
fðkÞðt0Þ
ðkþ 1Þ!

þ Xkþ1

‘¼0

fð‘Þðt0Þ
‘!ðk� ‘þ 1Þ!

~�
ðk�‘þ1Þðt0Þ � ~n

�
; (43)

and the new sky coordinates (as in [19,31]) are given by

nxðt0Þ � 2�fðt0Þ	E cos�D cos� cos½�� �Dðt0Þ�; (44a)

nyðt0Þ � 2�fðt0Þ	E cos�D cos� sin½�� �Dðt0Þ�: (44b)

Thereby, ~�ðtÞ � ~rorbðtÞ=c, with ~rorbðtÞ denoting the vector
from the Earth’s barycenter to the SSB, and, 	E ¼ RE=c �
21 ms is the light travel time from the Earth’s center to the
detector,�Dðt0Þ, �D are the detector position at time t0, and
� ¼ 2�=ð1 sdÞ is the angular velocity of the Earth’s spin-
ning motion, which has a period of one sidereal day.
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Apart from an overall factor, the quantities �ðkÞ have
been referred to as the ‘‘global-correlation parameters’’
[19,26]. As similarly done in earlier work [23,31], note

that the parameters �ðkÞ include a rescaling factor of
ðT=2Þkþ1, such that they become dimensionless for
convenience.

B. Validity estimation

The phase model of Eq. (42) is an approximation to the
phase evolution described by Eq. (4). The validity of this
approximation depends on the coherent integration time T
(duration of a given segment) and on the source frequen-
cies searched, as was previously investigated in [26,31].
The maximum value of T as a function of the highest
search frequency f may be estimated by considering the
first neglected term in the phase model becomes large
enough to eventually lead to a significant mismatch.
Given the phase model of Eq. (42) and searching s spin-
down parameters, the first neglected term ��s is given by

��sðtÞ � 2�
ðt� t0Þsþ2

ðsþ 2Þ! fðt0Þ ~�ðsþ2Þðt0Þ � ~n (45)

� 2�
ðt� t0Þsþ2

ðsþ 2Þ! fðt0Þj ~�ðsþ2Þðt0Þj: (46)

The mismatch produced by the phase offset ��s follows
from Eq. (28) as 1� jhei��sij2. Figure 1 shows the values
of T as a function of frequency f for which ��s yields a

mismatch of 30%. For instance, with s ¼ 1, one should be
able to use coherent segment durations T up to about 2 days
for search frequencies f up to about 1 kHz, such that the
mismatch due to the approximate phase model of
Eq. (42) is still less than about 30%. These results also
qualitatively agree with the earlier investigations reported
in [31].
However, most importantly, the new coordinates

f�ðkÞ; nx; nyg have significant advantages over the original

coordinates ffðkÞ; ~ng. These new coordinates permit the first
analytical solution for the metric of the incoherent combi-
nation step in hierarchical searches, yielding the ‘‘semi-
coherent metric’’ to be presented in the following. In
addition, in these new coordinates, the obtained metric is
explicitly coordinate independent, a very convenient fea-
ture when it comes to practical aspects of conducting CW
searches.

V. METRIC EVALUATION FOR ONE SPINDOWN
PARAMETER

For all-sky surveys of prior unknown CW sources the
search parameter space SP is typically a four-dimensional
subspace of P [7–9,12], restricting to linear changes in
frequency (one spindown parameter). In this case, using
the new coordinates a point in P is labeled by the vector
p ¼ ð�; _�; nx; nyÞ at a given reference time t0. The phase

model of Eq. (42) with s ¼ 1 takes the form

�ðtÞ ¼ �0ðt0Þ þ �ðt0Þ 2ðt� t0Þ
T

þ _�ðt0Þ 4ðt� t0Þ2
T2

þ nxðt0Þ cos�tþ nyðt0Þ sin�t; (47)

where the coordinates � and _� from Eq. (43) are explicitly
written as

�ðt0Þ ¼ 2�
T

2
½fðt0Þ þ fðt0Þ _~�ðt0Þ � ~nþ _f ~�ðt0Þ � ~n�; (48a)

_�ðt0Þ ¼ 2�

�
T

2

�
2
� _f

2
þ fðt0Þ

2

€~�ðt0Þ � ~nþ _f
_~�ðt0Þ � ~n

�
: (48b)

The coordinates nx and ny are as given by Eqs. (44).

A. Coherent metric

Using the coordinates f�; _�; nx; nyg, the components g½j�ab

of the symmetric coherent metric tensor can be computed
analytically from Eq. (31). Thereby it is useful to define the
dimensionless quantity ’ as

’ � �
T

2
: (49)

Thus from Eq. (31) the components g½j�ab are obtained as

FIG. 1. Validity estimation of the approximate phase model
Eq. (42) in terms of the number of spindown parameters s
considered, for given values of coherent integration time T and
the source frequencies searched. The dashed lines correspond to
30% mismatch for the one and two spindown case, respectively.
For example, when including one spindown parameter (s ¼ 1),
the mismatch due to the approximate phase model should be less
than 30% for coherent integrations T up to about 2 days while
searching frequencies up to about 1 kHz.
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g½j��� ¼ 1
3; (50a)

g½j�� _� ¼
4

3

�
tj � t0
T

�
; (50b)

g½j�_� _� ¼
4

45
þ 16

3

�
tj � t0
T

�
2
; (50c)

g½j��nx ¼�j1ð’Þ sinð�tjÞ; (50d)

g½j��ny ¼ j1ð’Þcosð�tjÞ; (50e)

g½j�_�nx ¼�2

3
j2ð’Þcosð�tjÞ� 4j1ð’Þ

�
tj � t0
T

�
sinð�tjÞ;

(50f)

g½j�_�ny ¼�2

3
j2ð’Þ sinð�tjÞþ 4j1ð’Þ

�
tj � t0
T

�
cosð�tjÞ;

(50g)

g½j�nxnx ¼ 1
2� 1

2j0ð’Þcosð’Þ�j1ð’Þ sinð’Þcos2ð�tjÞ; (50h)

g½j�nxny ¼�j1ð’Þ sinð’Þ sinð�tjÞcosð�tjÞ; (50i)

g½j�nyny ¼ 1
2� 1

2j0ð’Þcosð’Þ�j1ð’Þ sinð’Þsin2ð�tjÞ; (50j)

where the spherical Bessel functions jnðxÞ [37] are defined
by

j nðxÞ � ð�xÞn
�
1

x

d

dx

�
n sinðxÞ

x
: (51)

The first few spherical Bessel functions are given by

j0ðxÞ ¼ sinðxÞ
x

; (52a)

j1ðxÞ ¼ sinðxÞ
x2

� cosðxÞ
x

; (52b)

j2ðxÞ ¼
�
3

x2
� 1

�
sinðxÞ
x

� 3 cosðxÞ
x2

; (52c)

j3ðxÞ ¼
�
15

x3
� 6

x

�
sinðxÞ
x

�
�
15

x2
� 1

�
cosðxÞ

x
: (52d)

Note that the components g½j�ab of the coherent metric tensor

are explicitly independent of the coordinates. Therefore,
the number of coarse-grid templates N coarse

t as described
by Eq. (33) can be rewritten as

N coarse
t ¼ �0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detg½j�

q Z
SP

dp; (53)

where
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detg½j�

q
has been taken outside the integration over

the searched region of parameter space, since it is inde-

pendent of the coordinates. Thus,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detg½j�

q
directly scales

the number of templates N coarse
t . The actual value of

N coarse
t depends on the parameter-space region SP

searched over. To analytically obtain realistic estimates
for N coarse

t , one may assume the ranges

�Tfmin & � & �Tfmax; (54)

� �
T2f

4	min

& _� & �
T2f

4	min

; (55)

where 	min ¼ f= _f represents the ‘‘minimum spindown
age’’ [13] to search for. At fixed frequency f the parameter
ranges of nx and ny determine a two-dimensional disk Df

with radius of about 2�f	E. Thus, Eq. (53) yields

N coarse
t ¼ �0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detg½j�

q Z �Tfmax

�Tfmin

d�
Z
Df

dnxdny

�
Z �T2f=4	min

�ð�T2f=4	minÞ
d _�

� �0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detg½j�

q
�5	2E
2	min

T3ðf4max � f4minÞ: (56)

The determinant of the coherent metric tensor detg½j� is
obtained as

detg½j� ¼ 1

135
½1� 6j1

2ð’Þ �j0ð’Þcosð’Þ�½1� 10j2
2ð’Þ

�j1ð’Þ sinð’Þ �j0ð’Þcosð’Þ�: (57)

Note that detg½j� is also explicitly independent of the
reference time t0 (as well as of tj) and solely depends

upon ’. This can be understood from the following rea-

soning. For the parameters fðkÞ a change of reference time
corresponds to a linear transformation [28,29], whose de-
terminant is 1. Similarly, for the parameters nx and ny a

change of reference time can be described by a rotation,
whose determinant is also 1. Therefore this explains why

detg½j� is independent of the reference time.
To examine the scaling of N coarse

t with the coherent

integration time T, Fig. 2 shows T3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detg½j�

q
, which is a

measure for N coarse
t , as a function of T. For increasing

values of T, detg½j� converges to 1=135, since the metric
tensor components related to the Earth’s spinning motion,
nx and ny, become approximately constant. This behavior

can be understood from the Rayleigh criterion. An estimate
of the diffraction-limited resolution is described by the
ratio of the wavelength and the effective ‘‘baseline’’ [23].
The maximum baseline in terms of the Earth’s spinning
motion is the Earth’s diameter, which is first reached al-
ready after half a day of integration. Therefore, very little
metric resolution is gained after integration times T of
about a day, as long as the Earth’s orbital motion can still
be well modeled by a Taylor expansion.
Finally, it should be mentioned that a convenient choice

of t0 in favor of a compact notation is t0 ¼ tj ¼ 0. To
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indicate this choice has been made, the resulting coherent

metric tensor is denoted by g½j¼0�. The components g½j¼0�
ab

are obtained from Eqs. (50) as follows:

g½j¼0�
�� ¼ 1

3; (58a)

g½j¼0�
� _� ¼ 0; (58b)

g½j¼0�
_� _� ¼ 4

45; (58c)

g½j¼0�
�nx ¼ 0; (58d)

g½j¼0�
�ny ¼ j1ð’Þ; (58e)

g½j¼0�
_�nx

¼ �2
3j2ð’Þ; (58f)

g½j¼0�
_�ny

¼ 0; (58g)

g½j¼0�
nxnx ¼ 1

2 � 1
2j0ð’Þ cosð’Þ � j1ð’Þ sinð’Þ; (58h)

g½j¼0�
nxny ¼ 0; (58i)

g½j¼0�
nyny ¼ 1

2 � 1
2j0ð’Þ cosð’Þ: (58j)

B. Semicoherent metric

Given the coherent metric tensor components g½j�ab in

Eqs. (50), explicit expressions for the components �gab of
the semicoherent metric tensor �g are obtained via Eq. (40)
as

�g�� ¼ 1
3; (59a)

�g� _� ¼ 4
3
1; (59b)

�g _� _� ¼ 4
45 þ 16

3
2; (59c)

�g�nx ¼ �j1ð’Þ
SIN
0 ; (59d)

�g�ny ¼ j1ð’Þ
COS
0 ; (59e)

�g _�nx ¼ �2
3j2ð’Þ
COS

0 � 4j1ð’Þ
SIN
1 ; (59f)

�g _�ny ¼ �2
3j2ð’Þ
SIN

0 þ 4j1ð’Þ
COS
1 ; (59g)

�gnxnx ¼ 1
2 � 1

2j0ð’Þ cosð’Þ � j1ð’Þ sinð’Þ�COS2 ; (59h)

�gnxny ¼ �j1ð’Þ sinð’Þ�SINCOS1 ; (59i)

�gnyny ¼ 1
2 � 1

2j0ð’Þ cosð’Þ � j1ð’Þ sinð’Þ�SIN2 ; (59j)

using the following notations to simplify the expressions:


m � 1

N

XN
j¼1

�
tj � t0

T

�
m
; (60)


SIN
m � 1

N

XN
j¼1

�
tj � t0

T

�
m
sinð�tjÞ; (61)


COS
m � 1

N

XN
j¼1

�
tj � t0

T

�
m
cosð�tjÞ; (62)

�SIN2 � 1

N

XN
j¼1

sin2ð�tjÞ; �COS2 � 1

N

XN
j¼1

cos2ð�tjÞ;

(63)

�SINCOS1 � 1

N

XN
j¼1

sinð�tjÞ cosð�tjÞ; (64)

where m can be zero or a positive integer number.
The components �gab of the semicoherent metric tensor

are also explicitly independent of the coordinates.
Therefore, the number of fine-grid templates N fine

t as
described by Eq. (41) is rewritten as

N fine
t ¼ �0

ffiffiffiffiffiffiffiffiffi
det �g

p Z
SP

dp ¼ N coarse
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det �g

detg½j�

s
: (65)

Considering the distribution of the segment midpoints
ftjg, the quantities 
m may be interpreted as the mth mo-

ment of this distribution. Thus a very convenient choice of
reference time t0 for the semicoherent metric is given by
the time average of all segments’ midpoints ftjg,

t0 ¼ 1

N

XN
j¼1

tj: (66)

With this choice of t0 the quantities 
m become the mth
centralmoments (denoted by 
̂m) of the distribution of the
segment midpoints ftjg.

FIG. 2 (color online). Dependency of the number of coarse-
grid templates N coarse

t on the coherent integration time T (seg-
ment length) for the one-spindown case. The solid curve shows

T3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detg½j�

q
, since N coarse

t / T3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detg½j�

q
. The dashed curve rep-

resents T3=
ffiffiffiffiffiffiffiffi
135

p
.
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In addition, for a large number of segments N, where the
data set spans over many cycles of the Earth’s spinning
motion with the one-day period 2�=�, the following
approximations may also be used:

1

N

XN
j¼1

sinð�tjÞ � 0;
1

N

XN
j¼1

cosð�tjÞ � 0; (67a)

1

N

XN
j¼1

sin2ð�tjÞ � 1

2
;

1

N

XN
j¼1

cos2ð�tjÞ � 1

2
; (67b)

1

N

XN
j¼1

sinð�tjÞ cosð�tjÞ � 0; (67c)

as well as

1

N

XN
j¼1

tj
T
sinð�tjÞ � 0;

1

N

XN
j¼1

tj
T
cosð�tjÞ � 0:

(67d)

Hence, given 
SIN
0 � 0, 
COS

0 � 0, 
SIN
1 � 0, 
COS

1 � 0,
�SIN2 � 1=2, �COS2 � 1=2, and �SINCOS1 � 0, the semicoher-
ent metric components of Eqs. (59) along with the t0 choice
of Eq. (66) take the following diagonal form:

�g �

1
3 0 0 0
0 4

45 þ 16
3 
̂2 0 0

0 0 Rð’Þ
2 0

0 0 0 Rð’Þ
2

0
BBBB@

1
CCCCA; (68)

where Rð’Þ is defined as

Rð’Þ � 1� j0ð’Þ cosð’Þ � j1ð’Þ sinð’Þ: (69)

The determinant of the above semicoherent metric tensor
�gab from Eq. (68) is obtained as

det �g �
�

1

135
þ 4

9

̂2

�
R2ð’Þ: (70)

Finally, if T is an integer multiple q of one sidereal day,
T ¼ 2�

� q, such that ’ ¼ �q and Rð�qÞ ¼ 1, the metric

tensor �g from Eqs. (68) simplifies to

�g �
1
3 0 0 0
0 4

45 þ 16
3 
̂2 0 0

0 0 1
2 0

0 0 0 1
2

0
BBB@

1
CCCA; (71)

and the corresponding determinant is simply given by

det �g � 1

135
þ 4

9

̂2: (72)

C. Parameter-space resolution refinement

The results for the semicoherent metric tensor shown in
Eqs. (68) feature an important property: �g _� _� represents the
only component of the semicoherent metric tensor �g which

significantly changes with an increased number of data
segments N, not converging to some constant value. In
this respect, increasing N means that the number of fine-
grid templates needs to be increased in only one dimension
compared to a given coarse grid.
To describe the refinement quantitatively, we use

Eq. (65) to introduce the refinement factor, denoted by �,
defining the ratio of the fine and coarse template-grid
points:

� � N fine
t

N coarse
t

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det �g

detg½j�

s
; (73)

where in the last step Eqs. (53) and (65) have been used. In
what follows, refinement factor �1 (�2) with the subscript 1
(2) is used to indicate the one-spindown (two-spindown)
case, respectively.
Thus, by means of Eqs. (57) and (70) the refinement

factor �1 for the one-spindown case is explicitly given by

�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 60
̂2

p
Qð’Þ; (74)

where the function Qð’Þ is defined as

Qð’Þ � Rð’Þ½1� 6j1
2ð’Þ � j0ð’Þ cosð’Þ��1=2

� ½1� 10j2
2ð’Þ � j1ð’Þ sinð’Þ

� j0ð’Þ cosð’Þ��1=2: (75)

Note that from Eq. (74) it is obvious that �1 scales linearly
with the number of data segments N, since only 
̂2 de-
pends (quadratically) on N. Hence, the enhanced
parameter-space resolution resulting from the incoherent
combination increases approximately as / N solely due to
the first spindown parameter. This is related to the fact that
the number of possible (linear) spindown tracks in fre-
quency across all segments, of course, grows linearly
with N, too.

D. Illustrative example

As for a simple example, one may consider the case
where N segments are uniformly distributed in such a way
that there are no gaps between neighboring segments, so
that tj ¼ ½j� ðN þ 1Þ=2�T. It should be pointed out that

this special case had been assumed a priori in the previous
work of [16]. Thus, for this particular instance the numeri-
cal findings of [16] can be compared to the analytic results
found here. Denote the time span of the entire data set as
Tdata � NT. Thus, in the present example the choice of
Eq. (66) yields t0 ¼ 0 and


̂ 2 ¼ N2 � 1

12
: (76)

For this case, �1 is shown in Fig. 3 for different values of T
and N. For increasing values of T, �1 rapidly converges to
some upper-limit value for fixed N. This maximum con-
stant value can be arrived at analytically in the following
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way. In this regime of T, detg½j� from Eq. (57) can be
approximated by 1=135 and det �g by Eq. (72), leading to
Qð’Þ � 1 in Eq. (74) and thus

�1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 60
̂2

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5N2 � 4

p
; (77)

where Eq. (76) has been used in the latter step. This result
agrees well with the corresponding refinement factor that
can be computed from the numerical template counting
formulas given in [16].

VI. METRIC EVALUATION FOR TWO SPINDOWN
PARAMETERS

Searching for CW signals from potentially younger
objects, spinning down faster, might eventually require
one to also include a second spindown parameter (see
[38] for an example), taking also into account quadratic
changes in frequency with time. In this section, the addi-
tional semicoherent metric components are computed,
which arise when a second spindown parameter is included
in the search. Thus, the coordinates f�; _�; €�; nx; nyg at time

t0 are used to label a point in this five-dimensional parame-
ter space. The phase model of Eq. (42) with s ¼ 2 is given
by

�ðtÞ ¼ �0ðt0Þ þ �ðt0Þ 2ðt� t0Þ
T

þ _�ðt0Þ 4ðt� t0Þ2
T2

þ €�ðt0Þ 8ðt� t0Þ3
T3

þ nxðt0Þ cos�tþ nyðt0Þ sin�t:

(78)

Based on Eq. (43) the coordinates �, _�, and €� are explicitly
written as

�ðt0Þ ¼ 2�
T

2
½fðt0Þ þ fðt0Þ _~�ðt0Þ � ~nþ _fðt0Þ ~�ðt0Þ � ~n�;

(79a)

_�ðt0Þ ¼ 2�

�
T

2

�
2
� _fðt0Þ

2
þ fðt0Þ

2

€~�ðt0Þ � ~n

þ _fðt0Þ _~�ðt0Þ � ~nþ
€f

2
~�ðt0Þ � ~n

�
; (79b)

€�ðt0Þ ¼ 2�

�
T

2

�
3
� €f

6
þ fðt0Þ

6
~�
:::
ðt0Þ � ~nþ

_fðt0Þ
2

€~�ðt0Þ � ~n

þ
€f

2

_~�ðt0Þ � ~n
�
: (79c)

The coordinates nx and ny are as introduced in Eqs. (44).

A. Coherent metric

Including a second spindown parameter €� in the phase
model of Eq. (42) yields the following additional compo-

nents for the coherent metric tensor g½j�:

g½j�� €� ¼
1

5
þ 4

�
tj � t0
T

�
2
; (80a)

g½j�_� €� ¼
4

3

�
tj � t0
T

�
þ 16

�
tj � t0
T

�
3
; (80b)

g½j�€� €� ¼
1

7
þ 8

�
tj � t0
T

�
2 þ 48

�
tj � t0
T

�
4
; (80c)

g½j�€�nx ¼
�
�3

5
j1ð’Þ þ 2

5
j3ð’Þ

�
sinð�tjÞ � 4j2ð’Þ

�
�
tj � t0
T

�
cosð�tjÞ � 12j1ð’Þ

�
tj � t0
T

�
2
sinð�tjÞ;

(80d)

g½j�€�ny ¼
�
3

5
j1ð’Þ � 2

5
j3ð’Þ

�
cosð�tjÞ � 4j2ð’Þ

�
�
tj � t0
T

�
sinð�tjÞ þ 12j1ð’Þ

�
tj � t0
T

�
2
cosð�tjÞ:

(80e)

The components g½j�ab of the coherent metric tensor are

explicitly independent of the coordinates as mentioned
earlier. Therefore, the number of coarse-grid templates
N coarse

t is also computed as presented by Eq. (53). To
analytically estimate the actual value of N coarse

t for the
two-spindown case, in addition to Eqs. (54) and (55) the
following ranges of €� are assumed to be searched

FIG. 3 (color online). Refinement factor �1 for the one-
spindown case. In this plot the color-coded contours show
log10ð�1Þ as a function of the coherent segment length T and
the number of segments N. It has been assumed that there are no
gaps between neighboring segments, and so Eq. (76) has been
used. The dashed lines mark locations of data sets with total time
span (Tdata ¼ NT) of one, two, and three years.
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� �
T3f

12	2min

& €� & �
T3f

12	2min

: (81)

Thus, evaluation of Eq. (53) yields in this case

N coarse
t ¼ �0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detg½j�

q Z �Tfmax

�Tfmin

d�
Z
Df

dnxdny
Z �T2f=4	min

�ð�T2f=4	minÞ
d _�

Z �T3f=12	2
min

�ð�T3f=12	2
min

Þ
d €�

� �0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detg½j�

q
�6	2E
15	3min

T6ðf5max � f5minÞ: (82)

The determinant of the coherent metric tensor g½j� for the two-spindown case is obtained accordingly as

detg½j� ¼ 4

23 625
½1þ 375j1

2ð’Þj2
2ð’Þ þ 189j1

4ð’Þ � 252j1
3ð’Þj3ð’Þ þ 84j1

2ð’Þj3
2ð’Þ þ 42j1ð’Þj3ð’Þ

� 42j0ð’Þj1ð’Þj3ð’Þ cosð’Þ þ 75j1
3ð’Þ sinð’Þ=2� 14j3

2ð’Þ � 10j2
2ð’Þ þ 14j0ð’Þj3

2ð’Þ cosð’Þ
� 69j1

2ð’Þ þ 10j0ð’Þj2
2ð’Þ cosð’Þ � 2j0ð’Þ cosð’Þ þ 69j0ð’Þj1

2ð’Þ cosð’Þ þ j0
2ð’Þcos2ð’Þ

� j1ð’Þ sinð’Þ þ j0ð’Þj1ð’Þ sinð’Þ cosð’Þ�: (83)

As mentioned earlier, detg½j� only depends upon ’. To
investigate the scaling of N coarse

t with the coherent inte-

gration time T, Fig. 4 shows T6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detg½j�

q
, being a measure

for N coarse
t , versus T. For increasing values of T, detg½j�

converges to the constant value of 4=23 625, since the
metric tensor components related to the Earth’s spinning
motion, nx and ny, become approximately constant in this
regime as explained earlier in Sec. VA.

Finally, it should be pointed out that choosing
t0 ¼ tj ¼ 0 simplifies the expressions of Eqs. (80),

yielding

g½j¼0�
� €� ¼ 1

5; (84a)

g½j¼0�
_� €� ¼ 0; (84b)

g½j¼0�
€� €� ¼ 1

7; (84c)

g½j¼0�
€�nx

¼ 0; (84d)

g½j¼0�
€�ny

¼ ½35j1ð’Þ � 2
5j3ð’Þ�: (84e)

B. Semicoherent metric

The extra components of the semicoherent metric tensor
�g are then obtained via Eq. (40) using Eqs. (80) as

�g� €� ¼ 1
5 þ 4
2; (85a)

�g _� €� ¼ 4
3
1 þ 16
3; (85b)

�g €� €� ¼ 1
7 þ 8
2 þ 48
4; (85c)

�g €�nx ¼ ½�3
5j1ð’Þ þ 2

5j3ð’Þ�
SIN
0 � 4j2ð’Þ
COS

1

� 12j1ð’Þ
SIN
2 ; (85d)

�g €�ny ¼ ½35j1ð’Þ � 2
5j3ð’Þ�
COS

0 � 4j2ð’Þ
SIN
1

þ 12j1ð’Þ
COS
2 : (85e)

With the approximations of Eqs. (67) used earlier,

SIN

0 � 0, 
COS
0 � 0, 
SIN

1 � 0, 
COS
1 � 0, and the t0

choice of Eq. (66) the semicoherent metric tensor compo-
nents in Eqs. (85) take the following form:

�g� €� ¼ 1
5 þ 4
̂2; (86a)

�g _� €� � 0; (86b)

�g €� €� ¼ 1
7 þ 8
̂2 þ 48
̂4; (86c)

�g €�nx � �6j1ð’Þ
̂COS
2 � �6j1ð’Þ
̂2; (86d)

�g €�ny � 6j1ð’Þ
̂SIN
2 � 6j1ð’Þ
̂2: (86e)

FIG. 4 (color online). Dependency of the number of coarse-
grid templates N coarse

t on the coherent integration time T (seg-
ment length) for the two-spindown case. The solid curve shows

T6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detg½j�

q
, sinceN coarse

t / T6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detg½j�

q
. The dashed curve shows

T6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4=23 625

p
.
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Thus, the full five-dimensional semicoherent metric tensor �g is obtained as

�g �

1
3 0 1

5 þ 4
̂2 0 0
0 4

45 þ 16
3 
̂2 0 0 0

1
5 þ 4
̂2 0 1

7 þ 8
̂2 þ 48
̂4 �6j1ð’Þ
̂2 6j1ð’Þ
̂2

0 0 �6j1ð’Þ
̂2
Rð’Þ
2 0

0 0 6j1ð’Þ
̂2 0 Rð’Þ
2

0
BBBBBB@

1
CCCCCCA; (87)

where Rð’Þ is given by Eq. (69). The corresponding deter-
minant is obtained as

det �g � 1þ 60
̂2

23 625
4R2ð’Þ140

�
15ð
̂4 � 
̂2

2Þ

� 45
j1

2ð’Þ
̂2
2

Rð’Þ þ 
̂2

�
: (88)

When T is an integer multiple q of one sidereal day, T ¼
2�
� q, such that ’ ¼ �q and Rð�qÞ ¼ 1, the determinant of

the semicoherent metric tensor takes the form

det �g � 1þ 60
̂2

675
16

�
15ð
̂4 � 
̂2

2Þ �
45
̂2

2

�2q2
þ 
̂2

�
:

(89)

C. Parameter-space resolution refinement

The refinement factor for the two-spindown parameter
case �2 has been defined through Eq. (73) as

�2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det �g

detg½j�

s
: (90)

Here g½j� and �g denote the coherent and semicoherent
metric tensors, respectively, for the two-spindown parame-

ter case. Substituting detg½j� by Eq. (83) and det �g by
Eq. (88) yields

�2 ¼ 2
ffiffiffiffiffiffi
35

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 60
̂2

p �
15ð
̂4 � 
̂2

2Þ

� 45
j1

2ð’Þ
̂2
2

Rð’Þ þ 
̂2

�
1=2

Uð’Þ; (91)

where the explicit expression for Uð’Þ can be deduced
from Eq. (83) (suppressed for brevity here).

From Eq. (91) the scaling of �2 at leading order in N is
obtained as �2 / N3, using 
̂4 / N4 and 
̂2 / N2. This
cubic scaling with N is solely due to the first and second
spindown parameters, resulting from the product of pos-
sible linear and quadratic spindown tracks in frequency
across the segments, which obviously grows as N3.

Note that in general, for s spindown parameters, the
expected scaling of the refinement factor �s with the
number of data segments N is given by

�s / Nsðsþ1Þ=2: (92)

This scaling with N is robust and agrees with what can be
deduced from the numerical findings of Ref. [16].

D. Illustrative example

To further examine �2, it is instructive to consider again
the example data set presented in Sec. VD. Thus, given
tj ¼ ½j� ðN þ 1Þ=2�T and t0 ¼ 0, the third central mo-

ment vanishes, 
̂3 ¼ 0, and the fourth central moment 
̂4

is obtained as


̂ 4 ¼ N4

80
� N2

24
þ 7

240
: (93)

Furthermore, it holds


̂ 4 � 
̂2
2 ¼

N4

180
� N2

36
þ 1

45
: (94)

Using Eq. (93) along with Eq. (76) the refinement factor
�2 can be computed as a function of T and N, as illustrated
in Fig. 5. For increasing values of T, �2 rapidly converges

to some constant value for fixed N. In this case, detg½j� of
Eq. (83) is well approximated by 4=23 625 and det �g of

FIG. 5 (color online). Refinement factor �2 for the two-
spindown case. In this plot the color-coded contours show
log10ð�2Þ as a function of the coherent segment length T and
the number of segments N. It has been assumed that there are no
gaps between neighboring segments. The dashed lines mark
locations of data sets with total time span (Tdata ¼ NT) of one,
two, and three years.
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Eq. (89) by

det �g � 240

675
ð1þ 60
̂2Þð
̂4 � 
̂2

2Þ: (95)

Hence, �2 in this case is described by

�2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2100ð1þ 60
̂2Þð
̂4 � 
̂2

2Þ
q

� �1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð35N4 � 175N2 þ 140Þ=3

q
; (96)

where Eqs. (76) and (94) have been used. Thus, the antici-
pated scaling at leading order in N is recovered: �2 / N3.

VII. CONCLUSION

A formalism has been presented for the parameter-space
metric of semicoherent CW searches, where the data are
divided into segments that are coherently analyzed and
subsequently combined incoherently. By using new coor-
dinates on parameter space, the first fully analytical semi-
coherent metric for broadband all-sky CW surveys has
been derived. Additionally, in the new coordinates the
components of both the coherent and the semicoherent
metric tensor are constant, being explicitly independent
of the coordinates. This entails great convenience regard-
ing practical aspects of semicoherent CW searches.

Explicit analytic expressions of the semicoherent metric
tensor components have been obtained for two typical
search parameter spaces of current practical interest.
First, the one-spindown case has been considered, restrict-
ing to linear frequency drifts with time as done in many
current all-sky searches. Second, the semicoherent metric
also has been calculated and examined for the two-
spindown case, where additionally quadratic changes in
frequency are taken into account.

Analytic signal template counting formulas have been
provided for the coherent stage (coarse grid) as well as for

the incoherent combination step (fine grid). In this respect,
a useful quantity, called the refinement factor, has been
introduced as the ratio of the number of fine-grid and
coarse-grid templates. Thus, the refinement factor de-
scribes (coordinate independently) the additional
parameter-space metric resolution gained from the combi-
nation of segments. Moreover, the scaling of the refinement
factor with the number of segments has been found to be
predominantly determined solely by the spindown
parameters.
The present results also embed the case of directed

semicoherent searches, where the sky position is known
and hence is not a search parameter. Thereby, the search
parameter space consists only of frequency and spindown
parameters. The corresponding semicoherent metric tensor
components are identical to ones derived here. The result-
ing scalings of the refinement factor with the number of
segments also hold, since governed by the spindown pa-
rameters as described above.
The formalism presented in this paper assumes segments

that are very short compared to one year. The Earth’s
orbital motion then can be described by a low-order
Taylor expansion, and therefore be modeled by changes
in frequency and frequency derivatives. In the future, how-
ever, increased computing power might allow one to use
segments substantially longer than a few days and hence
issues remain to be explored in such circumstances.
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