
ar
X

iv
:1

00
3.

24
11

v1
  [

he
p-

th
] 

 1
1 

M
ar

 2
01

0

March 12, 2010 3:41 WSPC - Proceedings Trim Size: 9.75in x 6.5in main

1

AEI-2010-037

ON THE BLACK HOLE SPECIES
(BY MEANS OF NATURAL SELECTION)

MARIA J. RODRIGUEZ,

Max-Planck-Institut für Gravitationsphysik,

Albert-Einstein-Institut, 14476 Golm, Germany
∗E-mail: maria.rodriguez@aei.mpg.de

Recently our understanding of black holes in D-spacetime dimensions, as solutions of the
Einstein equation, has advanced greatly. Besides the well established spherical black hole
we have now explicitly found other species of topologies of the event horizons. Whether
in asymptotically flat, AntideSitter or deSitter spaces, the different species are really
non-unique when D ≥ 5. An example of this are the black rings. Another issue in higher
dimensions that is not fully understood is the struggle for existence of regular black
hole solutions. However, we managed to observe a selection rule for regular solutions of
thin black rings: they have to be balanced i.e. in vacuum, a neutral asymptotically flat
black ring incorporates a balance between the centrifugal repulsion and the tension. The
equilibrium condition seems to be equivalent to the condition to guarantee regularity on
the geometry of the black ring solution. We will review the tree of species of black holes
and present new results on exotic black holes with charges.
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1. Introduction

Black holes are the most elementary and intriguing objects of General Relativity

(GR). The fact that the effects of the spacetime curvature are dramatic in their

presence explains why it is relevant studying these systems.

String/M-theory is currently the best candidate for a unified theory of all inter-

actions and, in particular, is expected to describe quantum gravity. One of the most

surprising outcomes of the theory was its prediction of the dimensionality of space-

time. This, perhaps contrary to expectation, was required to be ten rather than

four. As its low-energy limit, higher dimensional GR can be regarded as a powerful

tool to gain insights into the more fundamental theory, as well as deserving fur-

ther study in its own right. As it has been argued, higher dimensional black holes

could form at very high energies and, actually, form at the Large Hadron Collider

(LHC)1 at CERN. Bearing in mind the deep reasons to consider GR in dimensions

higher than four, we aim to analyze its most remarkable solutions, black holes, in a

higher-dimensional setting.

The vast number of black holesa that exist in the Universe, usually lying at the

centre of galaxies, are exactly represented by the black hole solution found by Roy

Kerr,3 a neutral(electrically uncharged)b rotating Schwarzschild black hole6 in four

aNote, incidentally, that the name black hole was coined by John Archibald Wheeler in 1967.2
bIf electric charges are allowed, the only possible four-dimensional black hole solutions are the

http://arxiv.org/abs/1003.2411v1
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spacetime dimensions. This species is unique7,8 as well as the topology of the event

horizon which can only be spherical,9 namely S2 and characterized only by its mass

and angular momentum (called charges in this context).

These objects have a theoretical counterpart in higher spacetime dimensions.

But, unlike in four, in higher dimensions there are other examples of black hole

solutions with new exciting properties. In fact, the four-dimensional uniqueness

theorems break down for D > 4 and, accordingly, horizon topologies other than

spheres can, and do indeed, arise. Almost 100 years after the discovery of the first

black hole solution, the catalogue of different species (exact solutions) of black holes

shows a very rich structure but seems far from being complete – in flat space, besides

the Myers and Perry (MP)black hole10 in five dimensions, there are also the black

ring,11,12 the black saturn,13 the di-ring14,15 and the bicycling black ring.16 The list

is as well enlarged by axisymmetric black holes known approximately such as the

higher dimensional black rings17 and its more general cousins the blackfolds.18

But before plunging into the different examples of black objects let us go back

to the theory we will be interested in, namely GR in D dimensions. The central

field equation of GR in vacuum is the commonly called Einstein equation

Rµν −
1

2
gµν R +

(D − 2)

2
Λ gµν = 0 (1)

(µ, ν = 1, 2, ..., D), of a remarkable simplicity which nevertheless hides an extraordi-

nary mathematical complexity. The geometry of spacetime is encoded in the metric

gµν , which features explicitly and within the Ricci tensor Rµν and scalar R, that

measure the curvature of spacetime. We will allow, in general, for a cosmological

constant Λ. Typically, Λ = 0,±(D−1)L−2, where L is the radius of the curved space.

It follows from (1) that vacuum solutions are either Ricci-flat (Rµν = 0), if Λ = 0,

or Einstein (Rµν = Λgµν), otherwise. Immediate solutions include D-dimensional

Minkowski space (if Λ = 0), D-dimensional de Sitter space, dS (if Λ > 0), and

D-dimensional Anti-de Sitter space, AdS (if Λ < 0). Depending on the value of

the cosmological constant, the black hole solutions of (1) that we will consider will

typically asymptote to one of these three spaces, either in all D directions or in a

smaller number of directions (that we will call transverse). At the practical level,

this will translate in the imposition of appropriate boundary conditions.

The difficulty in solving Einstein’s equations (1) increases as the number D of

spacetime dimensions does too. Indeed, the larger number of degrees of freedom,
1
2 (D−2)(D−1)−1, carried by the unknown metric gµν to be solved for makes of (1)

an increasingly involved system of coupled, nonlinear, partial differential equations.

On the other hand, in a higher-dimensional spacetime there is more room than in

four dimensions for solutions to be able to display richer features. For example,

solutions can now rotate in up to N = [D−1
2 ] independent rotation planes, the

number of Casimir operators (independent angular momenta J2
i ) of the spacelike

so-called Reissner-Nordstrom (non-rotating) and Kerr-Newman black holes (rotating).4,5
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rotation group SO(D−1). Despite the complexity of the problem, as we have already

mentioned, many black hole solutions are known and therefore it is natural to seek

a classification.

There are many ways to perform a classification of black holes. They can be

classified according to their boundary conditions and charges (mass and angular

momentum) or, instead, in terms of the topology of the event horizon. This is, per-

haps, a more interesting classification since it is the event horizon what exclusively

distinguishes the black holes from other stellar objects, that lack it and that con-

sequently display more conventional properties. As we have just mentioned, in four

spacetime dimensions the topology of a black hole’s event horizon is restricted to be

the sphere S2. Interestingly enough, this restriction drops if spacetime is allowed to

have a higher number of spacelike directions, in which case much richer possibilities

do indeed arise. We will present a catalogue according to the topology of their event

horizon and point out a selection rule that might explain the struggle for existence

of regular black hole solutions.

From here on we will be mainly concerned with stationary (time independent)

black hole solutions of higher-dimensional GR. In the following section, 2, the pos-

sible event horizon topologies of higher-dimensional single black holes are reviewed.

The explicit metrics of the known examples are recorded in section 3 and the general

properties of multi black holes are discussed in section 4. In section 5 we compile

the explicit known solutions of black holes in curved backgrounds as well as the

properties of more exotic cases such as the higher dimensional black ring. In the

final sections we comment on the phase diagram, a selection rule for regular black

hole solutions and discuss some open problems in the subject. This review is also

intended as a brief guide to the higher-dimensional black hole solutions

Conventions
We will refer to “extra” dimensions of spacetime when considering more than

4 spacetime dimensions and we label them n while setting D = 4 + n where D is
the total number of spacetime dimensions. G is Newton’s constant in D dimensions
and the conventions used for unities are the speed of light, and the Planck and
Boltzmann constants respectively c = ~ = kB = 1. In order to make comparisons
between the different asymptotically flat D-black holes we introduce dimensionless
quantities (factoring out the mass M) for the spin j, the area aH , the angular
velocity ωH and the temperature tH as

j
n+1 = cj

Jn+1

GMn+2
, a

n+1
H = ca

An+1

(GM)n+2
, (2)

ωH = cω ΩH(GM)
1

n+1 , tH = ct (GM)
1

n+1 TH , (3)

where the numerical constants (defining Ωn the n-volume of a unit sphere) are

cj =
Ωn+1

2n+5

(n+ 2)n+2

(n+ 1)
n+1
2

, ca =
Ωn+1

2(16π)n+1
(n+ 2)n+2

(

n

n+ 1

)
n+1
2

, (4a)

cω =
√
n+ 1

(

n+ 2

16
Ωn+1

)− 1
n+1

, ct = 4π

√

n+ 1

n

(

n+ 2

2
Ωn+1

)− 1
n+1

. (4b)
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We find convenient to introduce different dimensionless magnitudes for asymp-
totically (A)dS black holes, denoted by sans-serif fonts, corresponding to quantities
measured in units of the cosmological radius L or ‘cosmological mass’ scale LD−3/G.
For instance, for the S1-radius, mass, angular momentum and horizon area of the
ring we define

R =
R

L
, M =

GM

LD−3
, J =

GJ

LD−2
, AH =

AH

LD−2
. (5)

Equivalently, we might have set L = 1 = G, but the meaning of some formulas is

clearer if we retain L.

2. Topological classification of black holes

Black objects in any dimension can be characterized and classified according to

the topology of their event horizon. On the one hand, the classification of neutral,

asymptotically flat, static black holes (non-rotating solutions with null Killing vector

fields on the horizon) is simple and complete. The Schwarzschild-Tangherlini black

hole has been proved7,8,19,20 to be the only allowed static black hole in all dimensions

D ≥ 4, and the existence of static black holes with non spherical SD−2 topologies

is accordingly ruled out c.

In contrast, stationary black holes (those with intrinsic rotation), can give rise

to event horizons with more sophisticated topologies. The current status of the clas-

sification of stationary black holes by horizon topologies is far from being complete,

and most of the higher-dimensional black hole solutions allowed in principle remain

unknown. Let us first review what the situation is for stationary, asymptotically

flat black holes in all dimensions (see figure 1 for a quick summary).

• D ≤ 4. There are no asymptotically flat black holes below four dimensions: the

lowest dimensional known black hole is the well known Kerr black hole in four

dimensions. As we discussed in section 3, this spherical9 (S2) rotating black

hole is the only one in D = 4, and is uniquely characterized by its conserved

charges.7,8

• D = 5 (n = 1). In five dimensions the situation is different since there are no

equivalent general uniqueness theorems.21,22 Now the possible topologies of the

event horizon are not only S3, but also S1 × S2. The Myers-Perry black hole

solution (the extension of the Kerr rotating black hole to higher dimensions)

corresponds to the former, S3, case. The latter possibility, S1×S2, is also realized

in the black ring of Emparan and Reall,11 with one angular momentum, and that

of Pomeransky and Sen’kov,12 with two angular momenta in orthogonal planes.

These are, in fact, the only possibilities (aside from the Lens L(p, q) topology

where no explicit solution is known), according to rigidity theorems.23,24 All

higher-dimensional black holes, regardless of their asymptotics, have been argued

to be axisymmetric, that is, to display an axial U(1) symmetry.58 The existence

cThe proof can be generalized to Einstein-Maxwell-dilaton theories.20
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Fig. 1. Summary of neutral stationary uni horizon black hole solutions in higher dimen-
sions D ≥ 4 classified by its horizon topologies. In the center the four dimensional spherical
Kerr black hole. Each of the outer shells represents one higher dimension i.e. in D = 5, the
first outer shell from the center, there are S3 and S1 ×S2 topologies of the event horizons
corresponding to the Myers-Perry black hole and the black ring (BR) and helical BR. For
the higher dimensional black rings and blackfolds the solutions have been found perturba-
tively using the matched asymptotic expansions. These are characterized by two scales R

and r0 corresponding to the radii of the spheres that conform its event horizon – a large
Smi and a smaller sD−2−m respectively. Note that for blackfolds p ≥ 2 and

∑

imi = m

while ∀imi are odd. The perturbative analytical metrics of black rings (with S1 × sD−3

event horizons topologies) and p-tuboids (topologically T
p × sD−2−p) have been found in

the thin approximation, when r0 << R. However, helical black rings and the more general
blackfolds which are products of odd spheres are only known to linear order. The same
summary is devised for black holes with asymptotical (A)dS boundary conditions.

of black hole solutions with exactly one U(1) symmetry were conjectured in.25

The first evidence for such a solution was provided in18 and dubbed helical black

rings.

• D = 6 (n = 2). When going one dimension further up, to six dimensions, the

territory becomes vast and not many solutions are known. From cobordism the-

ories,26 restrictions in the type of allowed topologies leave the open possibilities

just to the following: S4, S1 × S3 and S2 × Σg where Σg is a genus g Riemann

surface27 (for example the S2, with g = 0). For several years, the only known

black hole solution in D = 6 was, again, the MP black hole with two rotational

symmetries, with an S4 event horizon. The more extravagant topologies S1×S3

were recently shown to be realized in the D = 6, the thin black rings17 and

the thin helical black rings (black rings in the weak gravity approximation, for

which self gravitational effects are absent. See details in section 3). Also there is

evidence of existence of black 2-tuboids with T
2 × S2 horizons topologies, rep-

resenting a particular type of blackfold in six dimensions. Explicit D = 6 black

hole metrics realizing the remaining possibility, S2 × S2 for the event horizon,

are unknown.

• D > 6 (n > 2). In this case there are essentially no restrictions on the possible
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topologies. In fact, there are no analog rigidity theorems to restrict the topologies

of the black holes’ event horizons in dimensions greater than 6. However, we do

know of possible topologies: those realized by some explicitly known solutions.

These include SD−2 (realized in the Myers-Perry solutions), S1×SD−3 (realized

in the approximate solutions of thin black rings,17 see section 3), and finally,

T
p×SD−2−p with p ≥ 2 (realized in the black p-tuboids). There is also evidence

of existence of black holes with
∏

i S
mi × SD−2−m horizon topologies where

2 ≤ mi ≤ n, where mi ∈ Nodd and m =
∑

imi ≤ n. Collectively black holes

with horizons that are products of spheres and tori (particularly dubbed black p-

tuboids) will be called blackfolds here. Note that even-ball blackfolds are claimed

to describe the ultraspinning MP black holes.

New evidence for the existence of exotic event horizon topologies (such as S2 × S2)

can be found in.28,29,38

Much less is known about black hole solutions which asymptotically approach

global Anti-de Sitter space, AdS, at spatial infinity, the so called AdS black holes.

The reason is to be put down to the extra term that arises from the non-vanishing

cosmological constant in the Einstein equation, which further complicates the prob-

lem. In fact, only AdS black holes with spherical horizons SD−2 for n ≥ 0 ex-

tra dimensions have been known for a long time. These include both the static

Schwarzschild-AdS solution30,31 and the stationary Kerr-AdS black holes.32–34 This

situation has now changed with the discovery of the thin AdS black rings in all di-

mensions greater than four,35 the details of which are presented in section 5. Note

that by topological censorship a four dimensional AdS/dS black ring can be ruled

out.

3. The asymptotically flat black hole solutions

This section includes the known metrics of the most general exact black objects with

asymptotically flat boundary conditions. We review the asymptotically flat metrics

of Myers-Perry black holes in all dimensions and of the doubly-spinning black ring

in D = 5. Then we proceed to recall the conserved charges for the approximate

higher dimensional black rings, helical black rings and blackfolds. The comparison

among them is performed in section 7.

3.1. Black Hole

The Myers-Perry black hole, the higher-dimensional counterpart of Kerr’s black

hole, exhibits rotation in all possible N = [(D − 1)/2] planes. In D dimensions, its

line element is given by10

ds2 = −dt2 + dr2 + r2dα2ǫ+
ΠF

Π− µr
dr2 +

∑

i

(r2 + a2i )(dµ
2
i + µ2

i dφ
2
i )

+
µr

ΠF

∑

i

(dt+ aiµ
2
i dφi)

2 (6)

where i = 1, . . . , N , ǫ = mod 2 (D − 1), µi are the direction cosines, φi the

azimuthal angles, µ and ai are free parameters. The coordinates are restricted as
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∑

i µ
2
i +α2ǫ = 1, and F = 1− a2iµ

2
i

r2+a2
i

and Π =
∏N
i=1(r

2 + a2i ). There exists an event

horizon, with spherical topology SD−2, situated at r0 the largest root of

Π− µ r2−ǫ = 0. (7)

The black hole is characterized by the mass parameter µ and the rotation parameter

ai by which we can express the thermodynamics

M =
ΩD−2

16πG
(D − 2)µ, S =

ΩD−2

4G
µr0 , (8a)

TH =
1

2πr0

(

r20

N
∑

i=1

1

r20 + a2i
− 1

1 + ǫ

)

, (8b)

Ji =
ΩD−2

16πG
ai µ, Ωi =

ai
r20 + a2i

. (8c)

The event horizons of black holes are not at all rigid. On the contrary, they have been

observed to be very elastic.36 For large enough angular momenta the behaviour of

some black holes changes to that of extended black branes (black rings also exhibit a

similar behavior for large spins and act like black strings – see the following section

and37 for details.) Qualitatively, as the spin becomes large, the event horizon spreads

out in the plane of rotation and becomes a higher dimensional ‘pancake’ approaching

the geometry of a black brane. Our focus will be on the particular case in which

the black hole has one large angular momenta and all others are zero. However, a

detailed analysis of the more general situations in which black holes present black

membrane phases can be found in.37

An important simplification occurs in the ultra-spinning regime of J → ∞ with

fixed M , which corresponds to a→ ∞. Then (7) becomes

µ→ a2rn−1
0 (9)

leading to simple expressions for the eqs. (8b) in terms of r0 and a, which in this

regime play roles analogous to those of r0 and R for the black ring. Specifically, a

is a measure of the size of the horizon along the rotation plane and r0 a measure of

the size transverse to this plane.36 In fact, in this limit

M → (n+ 2)Ωn+2

16πG
a2rn−1

0 , S → Ωn+2

4πG
a2rn0 , TH → n− 1

4πr0
(10)

take the same form as the expressions characterizing a black membrane extended

along an area ∼ a2 with horizon radius r0. This identificationd lies at the core of

the ideas in.36 The reader may rightly wonder what happens to

J → Ωn+2

8πG
a3rn−1

0 , ΩH → 1

a
, (11)

dThe entropy corresponds precisely to a membrane of planar area
Ωn+2

Ωn
a2. This value also gives

the precise membrane mass once the dimension dependence of the mass normalization is taken
into account.



March 12, 2010 3:41 WSPC - Proceedings Trim Size: 9.75in x 6.5in main

8

under this identification. Both turn out to disappear, since the black membrane

limit is approached in the region near the axis of rotation of the horizon and so in

the limit the membrane is static. Observe that the value of (9), (10) and (11), are

valid up to O(r20/a
2) corrections.

The transition to this membrane-like regime is signaled by a qualitative change
in the thermodynamics of the MP black holes. At

(

a

r0

)

mem

=

√

D − 3

D − 5
, (12)

the temperature reaches a minimum and
(

∂2S/∂J2
)

M
changes sign. This point

should not be considered as a sign for an instability or a new branch but rather a

transition to an infinitesimally nearby solution along the same family of solutions.

The numerical evidence of38 supports this connection with the zero-mode perturba-

tion of the solution. For a/r0 smaller than this value, the thermodynamic quantities

of the MP black holes such as T and S behave similarly to those of the Kerr solution

and so we should not expect any membrane-like behaviour. However, past this point

they rapidly approach the membrane results and develop a Gregory-Laflamme type

of instability.

3.2. Black Rings and helical black ring

Black Rings, whose horizon exhibits an S1 × S2 topology, were first found by Em-

paran and Reall11(see39 for a review). Following this development, but now using the

inverse scattering method ,40–42 Pomeransky and Sen’kov12 managed to build what

is usually called the doubly spinning black ring that had long been anticipated. It is

balanced by angular momentum in the plane of the ring, with angular momentum

also in the orthogonal plane corresponding to rotation of the two-sphere. The latter

solution can be written as

ds2 = −H(y, x)

H(x, y)
(dt+Ω)2 +

F (x, y)

H(y, x)
dφ2 + 2

J(x, y)

H(y, x)
dφdψ

−F (y, x)

H(y, x)
dψ2 − 2k2H(x, y)

(x− y)2(1− ν)2

(

dx2

G(x)
− dy2

G(y)

)

(13)

Here, k, ν, λ are parameters, k0 = ν(1 − λ2 − ν2), k1 = λ(1 − λ2 − 3ν2 + 2ν3), the

one-form Ω is defined as Ω = − 2kλ
√

(1+ν)2−λ2

H(y,x) ((1 − x2)y
√
νdψ + (1+y)

(1−λ+ν) (1 + λ −
ν + x2yν(1− λ− ν) + 2νx(1− y)) dφ) and the functions G, H , J , F as

G(x) = (1− x2)(1 + λx + νx2) ,

H(x, y) = 1 + λ2 − ν2 + 2λν(1− x2)y + 2xλ(1− y2ν2) + x2y2k0 ,

J(x, y) =
2k2(1 − x2)(1 − y2)λ

√
ν

(x− y)(1 − ν)2
(1 + λ2 − ν2 + 2(x+ y)λν − xy k0,

F (x, y) =
2k2

(x− y)2(1− ν)2
(G(x)(1 − y2)

((

(1− ν)2 − λ2
)

(1 + ν)

+yλ(1− λ2 + 2ν − 3ν2)
)

+G(y)(2λ2 + xλ((1 − ν)2 + λ2)

+x2
(

(1− ν)2 − λ2
)

(1 + ν) + x3k1 + x4(1− ν) k0)).
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The solution e is parameterized by a scale k and two dimensionless parameters λ
and ν which are required to satisfy 0 ≤ ν < 1 and 2

√
ν ≤ λ < 1+ν. The metric has

a coordinate singularity at the roots where gyy diverges. The roots of the equation
1+λ y+ ν y2 = 0 determine the locations of the inner and outer horizons; the event
horizon is located at

yh =
−λ+

√
λ2 − 4ν

2ν
. (14)

The properties of these black rings, such as the phase diagrams and limits, were first

analyzed in.16 A summary of the results is presented here. There are three limiting

cases of the parameters in this solution: ν → 0, λ → 2ν1/2 and ν → 1, λ → 2. On

one hand it was found that the latter two limiting cases correspond to extremal so-

lutions. The extremal black ring with λ = 2ν1/2 is regular and has zero temperature

as expected. Physically it corresponds to the S2 rotating maximally, i.e. saturat-

ing the Kerr bound. There exists zero temperature black rings for any S1 angular

momentum jψ > 3/4. This is quite similar to the case of supersymmetric black

rings.43–46 Remarkably, it was shown that the entropy of this non-supersymmetric

extremal black ring can be reproduced from a microscopic calculation.47,48 The

limit ν → 1, λ → 2 appears singular, but this is just a coordinate artifact, and

the resulting solution is actually the extremal Myers-Perry black hole with param-

eters a1, a2 and µ1/2 = a1 + a2. In this collapse limit the area is discontinuous,

just like in the similar collapse limits of supersymmetric black rings.45 So this are

endpoints where the ring has collapsed to the zero temperature Myers-Perry black

hole. On the other hand, when ν → 0, the solution is the balanced black ring11 with

rotation only in the plane. In this case, note that since the balance condition has

already been imposed12 the unbalanced black ring with angular momentum only on

the S249,50 cannot be obtained from the Pomeransky-Sen’kov solution. The more

general unbalanced doubly spinning black ring metric51 contains this limit.

Another qualitative feature is the disappearance of the “fat ring branch” as

jφ ≥ 1/5, becomes large. Diagonally opposite 2-spheres of the ring carry jφ angular

momentum which creates an attractive spin-spin interaction.52 This is what causes

the diminishing and the disappearance of the fat ring branch as jφ increases.

The analysis of,53 in concordance with,54 suggested that the thin black ring

branch solutions are stable to radial perturbations and the fat rings unstable. Ex-

trapolating these results, doubly spinning rings with large enough S2 angular mo-

mentum, jφ ≥ 1/5, may be expected to be radially stable.

The physical parameters of the doubly spinning black ring can be written

M =
3π k2

G

λ

1 + ν − λ
, S =

8π2k3 λ(1 + ν + λ)

G(1− ν)2(y−1
h − yh)

, (15a)

eWe have analytically verified that the solution presented in12 indeed satisfies the Einstein vacuum
equations, Rµν = 0. Note that this form of the metric is also in12 except that we interchange φ
and ψ, so that φ is the azimuthal angle of the S2 and ψ parameterizes the circle of the ring
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TH =
(y−1
h − yh)(1− ν)

√
λ2 − 4ν

8π k λ(1 + ν + λ)
, (15b)

Jφ =
4π k3

G

λ
√

ν
(

(1 + ν)2 − λ2
)

(1 + ν − λ)(1− ν)2
, Ωφ =

λ(1 + ν)− (1− ν)
√
λ2 − 4ν

4k λ
√
ν

√

1 + ν − λ

1 + ν + λ
(15c)

Jψ =
2π k3

G

λ (1 + λ− 6ν + ν λ+ ν2)
√

(1 + ν)2 − λ2

(1 + ν − λ)2(1− ν)2
, Ωψ =

1

2k

√

1 + ν − λ

1 + ν + λ
. (15d)

Examining the ranges of the angular momenta one finds that the angular momenta

can never be equal, and the ratio Jφ/Jψ ≤ 1/3.

The ultra-spinning regimes of black rings can be found in.37

Black ring in all dimensions

Heuristically, a black ring can be defined by taking a black string (see the following

section), bending and wrapping it into a circle, S1, and spinning it in order to

balance its self-gravitational attraction .

The method employed in the construction of the higher dimensional black rings

was the matched asymptotic expansion.55,56 The general idea was to match the

linearized gravity solution for a thin black ring away from the horizon to a near-

horizon solution for a bent boosted black string. An important result of this exercise

is that the perturbed event horizon remains regular.

For the convenience of the reader we collect here the entire thermodynamics :

M =
Ωn+1

8G
Rrn0 (n+ 2) , S =

πΩn+1

2G
Rrn+1

0

√

n+ 1

n
, (16a)

TH =
n

4π

√

n

n+ 1

1

r0
, (16b)

J =
Ωn+1

8G
R2 rn0

√
n+ 1 , ΩH =

1√
n+ 1

1

R
. (16c)

These results are valid up to O(r20/R
2) corrections.

Helical black ring in all dimensions

Due to its elasticity, the thin black ring can be bent and balanced in an helicoidal

shape(a spring ring) as was shown in.57 The horizon being S1 × SD−3, it preserves

only two commuting Killing vector fields in agreement with the rigidity theorems

of.58,59 The physical parameters characterizing the helical black ring are

M =
Ωn+1

8G
(n+ 2)rn0

√

∑

n2
aR

2
a , S =

πΩn+1

2G
rn+1
0

√

∑

n2
aR

2
a

√

n+ 1

n
, (17a)

TH =
n

4π

√

n

n+ 1

1

r0
, (17b)
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Ja = ±Ωn+1

8G

√
n+ 1 rn0 naR

2
a , Ωa =

1√
n+ 1

na
√

∑

n2
aR

2
a

, (17c)

where at least two strands ni > nj > 0 and all of them integers. The helical black

ring with the shortest length is entropically favoured.

3.3. Blackfolds

The horizons topology of blackfolds, p-tuboids or in its more general form as prod-

ucts of odd-spheres, are
∏

i S
mi × SD−2−m horizon topologies where 2 ≤ mi ≤ n,

where mi ∈ Nodd and m =
∑

imi ≤ n. For completeness we present its physical

parameters

M =
RmΩmΩn+1

16πG
rn0 (n+m+ 1) (18a)

S =
RmΩmΩn+1

4G
rn+1
0

√

n+m

n
, T =

n

4π

√

n

n+m

1

r0
, (18b)

Ji =
1

k + 1

Rm+1ΩmΩn+1

16πG
rn0
√

m(n+m) , Ωi =

√

m

n+m

1

R
. (18c)

where R is the radius of the m-sphere. A detailed analysis can be found in.57

4. Multi black holes

All the examples of higher-dimensional black holes that we have discussed so far

present a single event horizon and can, accordingly, be referred to as uni black holes.

However, unlike its four-dimensional counterpart, higher-dimensional GR also ad-

mits black-hole solutions with several, disconnected horizons: the so called multi

black holes. Examples of multi back holes include a five-dimensional black saturn,13 a

combination of a black ring with a Myers-Perry black hole at its centre, di-ring,14,15

a coplanar configuration of two concentric rings or the bicycling black ring,16 con-

sisting of two five-dimensional black rings rotating in orthogonal planes. Due to

the lengthy expressions for the metrics of this multi black holes we will not include

them here.

Black holes, and black rings in particular, have been usually found by means of

educated guesses. In some cases, however, a systematic procedure to generate black

hole solutions can be used. This is the inverse scattering method.40–42 The under-

lying idea behind the method is to make use of the complete integrability of the

system of non-linear equations that follow from Einstein’s equations for solutions

with sufficient symmetry. Remarkably, among the solutions with the required degree

of symmetry are the rotating black holes in various dimensions. And, perhaps more

surprisingly, the technique can also be used even to generate multi black holes so-

lutions. Note that solutions in curved backgrounds and D > 5 with asymptotically

flat boundary conditions cannot be constructed with the method.
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The metric of a D-dimensional stationary vacuum space with D− 2 commuting

Killing vector fields can be written in block diagonal form.60,61 Furthermore, the

two-planes orthogonal to the Killing vector fields are integrable. This means that one

can always introduce a coordinate system that is independent of the corresponding

D− 2 coordinates. Taking together all these considerations, the metric can be cast

in the following canonical form:

ds2 = Gab(ρ, z) dx
adxb + e2 ν(ρ,z)(dρ2 + dz2) (19)

where the conformal factor e2 ν(ρ,z) is a function of ρ, z and Gab(ρ, z) is an induced

metric in a D−2 dimensional hyperplane. Without loss of generality we can take co-

ordinates such that det(Gab) = −ρ2. The Einstein equations for this kind of metrics

decouple and the system is completely integrable. Several strategies were developed

to deal with the problem of the appearance of singularities. For singly spinning black

holes a uniform rescaling or renormalization was introduced.49,50,62–64 And, in or-

der to generate healthy solutions with rotations along any number of planes a more

general method was proposed in65 and applied to generate many multi black holes.

A remarkable feature of this type of solutions is that they can be characterized by

Black Saturn Black Di-Ring

Bicycling Black Ring
Fig. 2. Rod structure of all multi horizon black holes (besides combinations between them) in five

dimensions. In the most general solutions the (upper) horizon rods have mixed directions (1,Ω
(i)
φ
,Ω

(i)
ψ

),

i = 1, 2 corresponding to each component of the multi black holes solution, while the other (lower) rods
are oriented purely along φ and ψ.

their rod structure, as defined in61 generalizing.60 It involves the specification of the

rods and its directions to characterize a solution. A graphical representation of the

rod structure that determines each solution uniquelyf can be found (see Fig. 2).

5. The black hole solutions in curved backgrounds

This section is devoted to the (A)dS black holes solutions.

5.1. (A)dS black holes in all dimensions

The stationary black hole solution with dS or AdS asymptotics was found in four

dimensions66g and thirty years later in five dimensions.32 The extension of this

fThe static solutions are characterized uniquely by the rod diagrams. However, a unique charac-
terization of five-dimensional stationary solutions is more subtle.22
gThe static black hole solution with AdS asymptotics had been found preiously by Kottler.30



March 12, 2010 3:41 WSPC - Proceedings Trim Size: 9.75in x 6.5in main

13

solution, known as the Kerr-de Sitter and Anti-de Sitter metric, to higher dimensions

was carried out by Gibbons, Lu, Page and Pope and, in dimension D and Boyer-

Lindquist coordinates, is given by33,34

ds2 = −W (1− λ r2) dτ2 +
2M

U

[

Wdτ −
N
∑

i=1

ai µ
2
i dϕi
Ξi

]2

+
U dr2

V − 2M
+ r2dα2ǫ

+

N
∑

i=1

r2 + a2i
Ξi

[dµ2
i + µ2

i (dϕi + λaidτ)
2] +

λ

W (1− λr2)

[

N+ǫ
∑

i=1

(r2 + a2i )

Ξi
µidµi

]2

(20)

where i = 1, . . . , N = [(D− 1)/2] and ǫ = mod 2 (D− 1), so that D = 2N +1+ ǫ.

There are N the azimuthal angles ϕi and (N + ǫ) direction cosines α, µi obeying

the constrain
∑N

i µ2
i + ǫ α2 = 1. Also the mass parameter M and the rotational

parameters ai are free. Finally, λ = Λ/(D−1), where Λ is the cosmological constant

and the functions U , V , W and Ξi are defined by

W ≡
N+ǫ
∑

i=1

µ2
i

Ξi
, U ≡ rǫ

N+ǫ
∑

i=1

µ2
i

r2 + a2i

N
∏

j=1

(r2 + a2j) (21)

V ≡ rǫ−2 (1− λ r2)

N
∏

i=1

(r2 + a2i ) , Ξi ≡ 1 + λa2i . (22)

In the limit of vanishing cosmological constant, Λ → 0 (20) reduces, as expected,

to the asymptotically flat MP black hole (6).

We now discuss some aspects of the (A)dS black hole with more than one angular

momentum.33 Their mass, angular momenta, area and surface gravity, as computed

in,68 are

M =
mΩD−2

4π
∏

j Ξj

(

N
∑

i=1

1

Ξi
− 1− ǫ

2

)

, Ji =
mΩD−2ai
4πΞi

∏

j Ξj
, (23)

A =
ΩD−2

r1−ǫ+

∏

i

r2+ + a2i
Ξi

, κ = r+

(

1 +
r2+
L2

)

(

∑

i

1

r2+ + a2i
+

ǫ

2r2+

)

− 1

r+
, (24)

where N =
[

D−1
2

]

is the maximal number of independent angular momenta, ai are

the N angular velocity parameters, m is the mass parameter, ǫ = (D − 1)mod 2,

Ξi = 1 − a2i /L
2. This solution displays a spherical SD−2 event horizon situated at

r = r+, the highest real solution of V −2M = 0. Note that this equation is the same

as the equation for the horizon of the asymptotically flat Myers-Perry black hole in

D + 2 dimensions, where the additional rotation is aN+1 = L and mass parameter

is µ = 2L2m. Hence, the root structure and the horizons of the Kerr-AdSD black

hole can be inferred from the MPD+2 solution; in particular, for odd D, an horizon

always exists provided that any two of the spin parameters vanish, while for even

D, its existence is guaranteed if any one of the spins vanishes. Therefore, under

this assumption, an ultraspinning limit can be achieved for all but two (one) of the

ai → L in odd (even) dimensions.
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These black holes comply with the “BPS bound”67

ML ≥
N
∑

i=1

|Ji| (25)

This bound can only be saturated in the ultra-spinning regime, in which one

or more spin parameters tend to L, but never when all the angular momenta are

non-zero. Indeed, suppose n spin parameters approach the ultraspinning limit. To

keep the mass finite, we need to scale the parameters as

Ξα=1...n = ξαν , m = µνn+1, (26)

where ν → 0 in the ultraspinning limit, while keeping ξ1, . . . , ξn and µ constant.

As we observed previously, this limit is allowed provided any one (two) of the ai
vanish in even (odd) dimensions. Then the root r+ tends to zero, while the mass

and angular momenta reach the values (with α, β = 1 . . . n running on the spin

parameters that tend to L and I = n+ 1, . . . , N denoting the others)

M =
µΩD−2

4πΠαξαΠIΞI

∑

α

1

ξα
, Jα =

µΩD−2

4πξαΠβξβΠIΞI
, JI = 0 , (27)

and saturate the BPS bound (25). However, these black holes are not extremal,

since the surface gravity diverges like κ→ (2k+ ǫ− 2)/2r+, where k is the number

of vanishing spin parameters. The area vanishes in the limit, decreasing to zero like

AH ∝ M
2k+ǫ−1
2k+ǫ−2

(

1− J

M

)

2k+n+ǫ−1
2k+ǫ−2

(1 +O(M− J)) . (28)

The limiting black holes are pancaked out along the planes of rotation (the geometry

describes a black membrane with horizon topology R
2n × SD−2(n+1)) and so, it is

reasonable to presume that they will develop a Gregory-Laflamme type of instability.

5.2. (A)dS black rings in all dimensions

It is natural to ask whether black rings exist in higher dimensions. Their existence

(or absence) in Anti-de Sitter space is of special interest for the possible implications

in the context of the AdS/CFT duality. However, in spite of attempts since early

on, an exact solution describing an (Anti-)de Sitter black ring remains elusive.

Nevertheless, there appears no obvious physical reason why these solutions

should not exist. Putting a black ring in Anti-de Sitter space should have the ef-

fect of increasing the gravitational centripetal pull on it, but, at least within some

parameter ranges, this can be plausibly balanced by spinning the black ring faster.

On the other hand, if we put the ring in de Sitter space, the cosmological expan-

sion should act against the tension, and so the required rotation should be smaller

and possibly reach zero. Thin black rings have been constructed via approximate

methods in every dimension D ≥ 5.17 The physical quantities are

M =
Ωn+1

8G
Lrn0 (n+ 2)R

(

1 + R
2
)3/2

, S =
πΩn+1

2G
Lrn+1

0 R

√

n+ 1 + (n+ 2)R2

n
,
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TH =
n3/2

√

1 + R
2

4πr0

√

n+ 1 + (n+ 2)R2
, (29a)

J =
rn0 L

2

8G
Ωn+1R

2
[(

1 + (n+ 2)R2
) (

n+ 1 + (n+ 2)R2
)]1/2

, (29b)

ΩH =
1

L

√

(1 + R
2)(1 + (n+ 2)R2)

R
2(n+ 1 + (n+ 2)R2)

. (29c)

in principle valid up to corrections of order r0/min (R,L).

6. Transverse asymptotically flat black holes

We proceed now to recall the metrics for the simplest black strings (p = 1) and black

p-branes, characterized by transverse asymptotically flat boundary conditions, and

extended horizons with topologies SD−2−p × R
p.

Black p-branes and black strings (1-branes)69 are D-dimensional solutions that

arise from the combination of a D−p dimensional Schwarzschild-Tangherlini metric

with a flat, Euclidean metric on the remaining R
p. These extended black holes are

transverse asymptotically flat (namely, asymptotically flat in only D−p directions),
evade the no-hair theorems, and exhibit horizon topologies SD−2−p × R

p. Their

metric, in D dimensions, is of the form

ds2 = −V dt2 + 1

V
dr2 + r2dΩ2

D−p−2 + dxidx
i . (30)

where V = 1 − ( r+r )D−p−3 and i = 1, 2, . . . , p. The event horizon is situated at

r = r+. The x
i directions correspond to the flat part Rp; alternatively, they can be

periodically identified, xi = xi+2πRi, yielding the so-called localized black objects

in Kaluza-Klein circles (see e.g. the review70).

7. The phase diagram

The understanding of the black hole phases in five dimensions has advanced greatly

in recent years. As we have seen, besides the well known uni horizon black holes,

namely the Myers-Perry black hole and the black ring, there also exist multi black

hole solutions. In fact, in five dimensions it is possible that essentially all uni or

multi horizons black holes with two axial Killing vectors have been found by now

(up to iterations between them). All these findings are represented in Fig. 3 that

include the doubly spinning black objects. In contrast, the situation in six or more

dimensions is much more obscure. Only the MP black hole10 is explicitly known

and the black rings,17 helical black rings and blackfolds57 only perturbatively. For

black holes with asymptotically (A)ds boundary conditions exact black holes32–34

and thin black rings.35 These phases, and the proposal of,17 are shown in Fig. 4. The

most interesting analysis comes from comparing the different black hole solutions

in higher dimensions to elucidate and learn which properties change when tuning

the number of dimensions. We present the phase diagrams in the micro-canonical

ensemble (area vs. angular momenta with fixed mass) in this section.
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Fig. 3. Phase diagram of all known uni horizon black holes in five space times dimensions. The doubly
spinnign black objects have its second angular momentum equaly fixed j2 = 0.1 as well as the strands
of the helical black ring to maximize the area.

Fig. 4. Proposal for the completion of phase curves in D ≥ 6. The plot on the left are the patterns
for asymptotically flat black holes with a single spin proposed in.17 In AdS, the plot on the right, the
pattern is compressed to the range J ≤ M at small M. We stress that the details of the connections (e.g.,
first order vs. second order transitions) remain unknown and are arbitrarily drawn.

8. The selection rule

Black objects in certain regimes have a black membrane phase and behave accord-

ingly. One could then use the inverse logic and build new black holes, by bend-

ing these horizons to form compact objects with appropriate boundary conditions,

from a black string/brane. This idea was widely employed in17,57 for generating

thin black rings, helical black rings and blackfolds. In the process of construct-

ing the higher dimensional black ring,17 it was found that the absence of naked

singularities required a zero-tension condition that corresponds to balancing the

string/brane tension against the centrifugal repulsion. In other words, General Rel-

ativity encodes(selects) in the equations of motion of black holes the regularity

conditions on the geometry.

This condition is in tight correspondence with the conservation of the stress

energy tensor. The quasilocal formalism71–73 gives the appropriate definition for

the stress energy tensor in higher dimensions74 that, in absence of matter, satisfies

a local conservation law
Daτab = 0 (31)

where the covariant derivative is with respect to the boundary metric hab. The

condition (31) is then satisfied in the absence of conical singularities.75 The con-

servation and explicit expressions of the stress tensor can be found in.76 This extra

ingredient is the balance(zero tension) condition encoding the selection rule of GR

for regular black hole configurations.
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As an example we find the balance(zero tension) condition for a D-dimensional black

ring with dipole charges, as solution of Einstein-Maxwell-dilaton theory with the

dilaton coupling a = 4/N − 4n/(n+ 2). At high spin its geometry will be that of a

straight black string with boost and charge (parametrized by α and γ respectively).

Therefore, (31) determines the specific value for the boost parameter required for

this agreement between the two geomteries. A straightforward computation fixes

sinh2 α = (1/n) +N sinh2 γ (32)

The charges of the thin D-dipole black ring are the ones of the charged boosted

black string with a fixed boost value (32). In D = 5 these agree with.77

9. Outlook

We were able to provide a catalogue for current known species of D-black holes. In

spite of all this headway, the complete list of all possible topologies that the event

horizon of a higher dimensional black hole can display, for each of the three relevant

asymptotic behaviors (Minkowski, AdS and dS), is still unknown. Only few explicit

metrics of higher dimensional black holes are known and so, it would be worth

completing the task and find the more exotic species. It would be also interesting to

investigate the stability and to further explore the selection rule for regular black

hole solutions in GR.
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