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Abstract

We investigate the initial value problem for the Einstein–Euler equations of
general relativity under the assumption of Gowdy symmetry on T 3, and we
construct matter spacetimes with low regularity. These spacetimes admit both
impulsive gravitational waves in the metric (for instance, Dirac mass curvature
singularities propagating at light speed) and shock waves in the fluid (that is, dis-
continuities propagating at about the sound speed). Given an initial data set, we
establish the existence of a future development, and we provide a global foliation
in terms of a globally and geometrically defined time-function, closely related to
the area of the orbits of the symmetry group. The main difficulty lies in the low
regularity assumed on the initial data set which requires a distributional formulation
of the Einstein–Euler equations.

1. Introduction

1.1. Background

We consider matter spacetimes with T 3 Gowdy symmetry which, by defini-
tion, admit a two-parameter group of isometries generated by two orthogonally
transitive, commuting Killing fields. (See Section 2, below.) Under this symmetry
assumption, the initial value problem for the Einstein equations has received much
attention in recent years, both in the vacuum case and in the matter case when
the matter is governed by the Vlasov equation of the kinetic theory of gases. In
the present paper, we are interested in the evolution of perfect fluids, and in the
context of Gowdy symmetry, we aim at constructing a globally foliated, future
development of a given initial data set. The main novelty in this work lies in the
presence of shock waves which appear in the fluid and, in turn, generate curvature
discontinuities propagating in the spacetime.
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Recall that a spacetime is a (3 + 1)-dimensional differential manifold M that
is endowed with a Lorentzian metric g with signature (−,+,+,+), satisfying the
Einstein field equations

Gαβ = κ Tαβ, (1.1)

where κ > 0 is a constant and all Greek indices lie in the range 0, . . . , 3. Here,
Gαβ := Rαβ − (Rγ γ /2)gαβ denotes Einstein’s curvature tensor, Rαβ the Ricci
curvature, and Rγ γ the scalar curvature of the manifold. The stress-energy tensor
Tαβ appearing in the right-hand side of (1.1) describes the matter content of the
spacetime which, for perfect fluids, reads

Tαβ := (μ+ p) uαuβ + p gαβ, (1.2)

where the scalar field μ represents the mass-energy density of the fluid and u its
velocity vector. The spacetime is assumed to be time-oriented and u is normal-
ized to be a future-oriented, unit timelike vector field. We also assume the linear
density-pressure law

p := k2 μ, (1.3)

in which the constant k ∈ (0, 1) represents the sound speed in the fluid and does
not exceed the light speed normalized to be 1.

Under the assumption of T 3 Gowdy symmetry made in the present paper and
after introducing areal or conformal coordinates (see Section 3, below), the Ein-
stein field equations take the form of a coupled system of nonlinear wave equations
with differential constraints. Since the pioneering work by Gowdy [14], (vacuum)
Gowdy symmetric spacetimes have been extensively studied [5,4,7,8,11,17,18,24]
and Penrose’s strong cosmic censorship conjecture [16,25] was eventually estab-
lished by Ringström [31,32]. A generalization of these spacetimes that contain
matter governed by the Vlasov equation was recently presented in [1,2,10,26,28,
33].

As far as compressible matter is concerned, the mathematical investigation of
Gowdy-type spacetimes was initiated by LeFloch and Stewart [22] (see also
[3]), who introduced a converging approximation scheme for the initial value prob-
lem and derived several a priori bounds in suitably chosen coordinates. Therein, it
was found necessary to cope with weak solutions to the Einstein equations, under-
stood in the distributional sense and containing propagating discontinuities (shock
waves). In [3,22], the authors established a local-in-time existence result in the
class of spacetimes with bounded variation. The present work is a continuation of
this work and is aimed at constructing a global foliation of such spacetimes.

Recall that spacetimes with bounded variation were constructed by
Christodoulou in his work [6] that settled positively the weak version of Penrose’s
cosmic censorship conjecture in the context of spherically symmetric spacetimes
and for scalar fields. Recall also that Groah and Temple [15] established a local-
in-time existence result for spherically symmetric matter spacetimes. In such space-
times, no gravitational waves are permitted and the matter equations are coupled
with a differential equation accounting for (non-evolutive) geometrical features.



A Global Foliation of Einstein–Euler Spacetimes

The study of solutions of low regularity is motivated by the fact that these can
arise from smooth initial data. In the case of the Euler equations without gravity,
this is well known and it is physically plausible that adding gravity should not make
a fundamental difference. A proof that this loss of regularity occurs in general rel-
ativity was given in [30]. That result concerned plane symmetric solutions of the
Einstein–Euler equations, and they are a special case of the solutions studied in
what follows. A direct comparison is made difficult by the fact the time coordinate
used in [30], a constant mean curvature coordinate, is different from that used in
the present paper.

1.2. Objectives of this Paper

The assumption of Gowdy symmetry made in the present paper allows us to
address the properties of dynamical gravitational degrees of freedom. We consider
the initial value problem, and search for the spacetime as a future development
of a prescribed initial data set. This amounts to prescribing an initial hypersurface
endowed with a Riemannian metric and its second fundamental form, together with
the mass-energy density and current vector determined by the fluid on this hyper-
surface. Our main result provides global existence for the Einstein–Euler equations
within a class of spacetimes with low regularity which may contain both impulsive
gravitational waves and shock waves:

• When a shock wave arises in the fluid, the fluid variables become discontin-
uous and, as a consequence of Einstein’s equations, the spacetime curvature
becomes discontinuous.

• In addition, our theory allows for distributional curvature singularities prop-
agating at light speed. Such waves are referred to as impulsive gravitational
waves.

• Our framework also encompasses the situation where the fluid contains low
density regions, even vacuum regions.

The theorem established in this paper can be regarded as a statement on the nonlin-
ear stability of (vacuum) spacetimes with Gowdy symmetry on T 3 when compress-
ible matter is included. Indeed, our matter spacetimes can be made to be arbitrarily
close (in a well-defined functional norm) to vacuum spacetimes, by choosing the
total amount of matter energy on the initial hypersurface to be arbitrarily small.

More precisely, by combining geometrical and analytical arguments, we estab-
lish the existence of a global foliation based on a geometrically defined time-
function coinciding with the area of the orbits of the symmetry group. Our approach
is motivated by pioneering works by Moncrief [24] (Gowdy spacetimes) and Ber-
ger et al. [4] (vacuum spacetimes with T 2 symmetry), which established the
existence of such a foliation for vacuum spacetimes. However, we bring in a con-
ceptually new and mathematically challenging aspect in that we consider solutions
that have very low regularity. In the class under consideration, many (high-order)
estimates derived in [4] no longer hold and must be bypassed. The regularity of our
spacetimes is considerably lower than the one constructed in earlier works and, for
this reason, our analysis encompasses a larger class of spacetimes.
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Concerning the regularity of the spacetimes constructed here, the following
features should be stressed:

• Natural estimates for the geometry. As we will show, it is natural to impose that
the essential metric coefficients belong to the Sobolev space H1 of functions
which, by definition, are square-integrable, together with their first-order deriv-
atives. This regularity is dictated by the energy-type functional associated with
the problem under consideration.

• Natural estimates for the fluid. As we will also show, it is natural to impose
that the energy density and the current vector belong to the Lebesgue space
L1 of integrable functions, but no further regularity can be imposed on their
derivatives. Our setting allows the fluid variables to contain vacuum states and
the essential velocity component to approach the speed of light.

For further results on the existence and qualitative properties of spacetimes with
matter when very low regularity is assumed, we refer to LeFloch and Stewart
[22,23].

An outline of this paper follows. In Section 2, we present our assumptions and
main results; see Theorem 2.1. In Section 3, we express the Einstein–Euler equa-
tions first in a general foliation and then in areal and in conformal coordinates. Next,
in both the expanding and the contracting directions handled in Sections 4 and 5,
respectively, we introduce suitable notions of weak solutions to the Einstein–Euler
equations (Definitions 4.5 and 5.1) adapted to the setting under consideration, and
we derive analytic and geometric properties. Finally, having successfully deter-
mined the natural weak regularity assumptions required on the initial data and
enjoyed by the solutions to the Einstein–Euler system, we conclude with the com-
pactness framework established in LeFloch [20] and presented in Section 6 below.

2. Global Foliations of Matter Spacetimes

2.1. Symmetry and Regularity Assumptions

First, we need to specify the symmetry and regularity conditions characteriz-
ing the class of spacetimes (M, g) under consideration. Throughout we consider
matter spacetimes satisfying the Einstein–Euler equations (1.1)–(1.3). We assume
that they admit an Abelian T 2 isometry group with spacelike orbits generated by
two linearly independent, commuting, spacelike killing fields, K , L , whose twist
constants vanish, that is,

cK := εαβγ δK αLβ∇γ K δ = 0, cL := εαβγ δK αLβ∇γ Lδ = 0, (2.1)

where εαβγ δ denotes the totally anti-symmetric elementary tensor. This latter con-
dition expresses the assumption that the frame of covectors (g(K , ·), g(L , ·)) is
integrable in the sense of Frobenius, and was identified by Chruściel [7] in order to
single out (vacuum) Gowdy spacetimes [14] within the larger class of T 2 symmet-
ric spacetimes. Note in passing that the scalars cK , cL must be constant throughout
any T 2 symmetric vacuum spacetime, as was observed by Geroch [12,13]. Matter
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spacetimes satisfying the conditions above are said to have Gowdy symmetry. The
topology of the manifold, denoted by M , must also be specified, and we assume
here that the spatial slices have the T 3 topology. All of the above conditions deter-
mine the class of spacetimes with Gowdy symmetry on T 3, under consideration
in the present paper. In the vacuum case, these are precisely the so-called Gowdy
spacetimes first studied in [14].

We are interested in the future Cauchy development of a given initial data set,
and the global topology will turn out to be M = [c0, c1) × T 3 for some c0 <

c1 � ∞, and the spacetime to be foliated by spacelike hypersurfaces along which a
time-function (denoted below by t or τ ) remains constant. The main unknowns of
the theory are the Lorentzian metric g describing the geometry, together with the
scalar field μ and the vector field u characterizing the matter content (via (1.2)).
In local coordinates x = (t, xa)(a = 1, 2, 3), Einstein’s field equations (1.1) will
be decomposed into evolution and constraint equations for the metric coefficients
which should also be coupled with the Euler equations for the evolution of the fluid
variables (see (3.1), below). It will be convenient to express the Euler equations as
evolution equations for the mass-energy density ρ and the momentum j , measured
by an observer moving orthogonally to the hypersurfaces determined by the time-
function. By construction, j is tangent to the leaves of the foliation, and prescribing
the fields ρ, j is equivalent to prescribing the fields μ, u (see (3.2), below).

We now discuss the regularity of the spacetimes under consideration. Our reg-
ularity assumptions must allow for propagating discontinuities and, in view of the
expression of the energy functional associated with the Einstein–Euler equations
(see Lemma 4.1, below), it is natural to require that on each slice labeled by the
parameter t , both fields ρ(t, ·), j (t, ·) belong to the space L1(T 3). In short, we
write

ρ, j ∈ L∞
loc([c0, c1), L1(T 3)). (2.2)

All the Lebesgue and Sobolev spaces under consideration are endowed with the
volume form induced by the Lorentzian metric. By definition, for almost every t the
function ρ(t) is well-defined and integrable, and the function t �→ ‖ρ(t, ·)‖L1(T 3)

(that is the integral of the function ρ(t)) is bounded uniformly for almost all t in any
compact subinterval of [c0, c1). As we show later, the regularity (2.2) is sufficient
to formulate the Euler equations in the sense of distributions. In addition, following
the general theory of nonlinear hyperbolic systems [9,19], we impose that ρ, j
satisfy certain entropy inequalities (see (4.12), below) which select the physically
meaningful solutions to the Euler equations.

On the other hand, again in view of the expression of the energy functional we
impose that on each slice the essential metric coefficients belong to the Sobolev
space H1. In short, we write

g ∈ L∞
loc([c0, c1), H1(T 3)). (2.3)

It should be noted that our precise definition, given in Sections 4 and 5 below,
are (slightly) more general and allow certain components of the metric to be less
regular than H1.
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Due to the assumed symmetry, it will turn out that (2.3) implies that the metric
coefficients remain locally bounded, that is, g ∈ L∞

loc, and our regularity condi-
tion suffices to express Einstein’s equations in a weak sense. Indeed, the Riemann
curvature of g and all of its traces and, therefore, the Einstein tensor are then well-
defined as distributions [21]. Note finally that the regularity described here may in
principle depend on the foliation under consideration, and may not be as geometric
as one may wish.

We refer to such a set (M, g, ρ, j) having the regularity (2.2)–(2.3) as a finite
energy spacetime with Gowdy symmetry on T 3.

2.2. The initial Value Problem

To formulate the initial value problem we prescribe a Riemannian metric g
on T 3 together with a 2-covariant symmetric tensor field k, both of them satisfy-
ing the assumption of Gowdy symmetry on T 3. By definition, the Lie group T 2

acts as an isometry group on the torus T 3 generated by two (linearly independent,
commuting) vector fields,

LX g = LY g = 0, [X,Y ] = 0,

satisfying the condition of vanishing twist constants (2.1). We also prescribe a scalar
field ρ and a vector field j defined on T 3, also satisfying the Gowdy symmetry
assumption, and we require the regularity

g ∈ H1(T 3), k ∈ L2(T 3), ρ, j ∈ L1(T 3). (2.4)

(As already pointed out, we actually cover slightly more general data in which
certain components of the fields g, k are less regular.) Finally, we assume that these
data satisfy Einstein’s constraint equations

R + (
tr k

)2 − ∣∣k
∣∣2 = 2κ ρ, tr

(∇ k
) − ∇ (

tr k
) = κ j, (2.5)

where ∇ and R denote the covariant derivative operator and scalar curvature of
(T 3, g), respectively, and the trace and norm are determined from the metric g.
Under the regularity (2.4), the curvature terms R, tr

(∇ k
)
, and ∇ (

tr k
)

are well-
defined as distributions [21], while the remaining terms in (2.5) belong to L1(T 3).
Of course, (2.5) actually implies that the scalar field R is more regular and, actu-
ally, integrable in space. In fact, we will not use directly the definition from [21];
instead, later in this text, a complete definition of weak solutions appropriate to the
problem under consideration will be introduced.

We refer to
(
g, k, ρ, j

)
as a finite energy, Gowdy symmetric, initial data set on

T 3 for the Einstein–Euler equations.
We are now in a position to state the main result of the present paper. Recall

first that an important quantity associated with Gowdy-symmetric spacetimes is the
area function R (defined up to a multiplicative constant) of the orbits of the sym-
metry group generated by the Killing fields. Since the metric coefficients are only
in H1, the gradient ∇ R may only be defined almost everywhere for the Lebesgue
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measure. However, using the Einstein equations we will prove later (cf. Proposi-
tion 5.2, below) that ∇ R is actually continuous. In addition, a standard argument
showing that ∇ R is a timelike vector field remains valid under our regularity con-
dition and even for compressible matter. This condition on the area function can be
expressed explicitly in terms of the initial data: when the spacetime metric is sought
for in conformal coordinates (see (3.26), below), the initial data prescribed for the
time derivative of the area function (denoted by R0 below in Section 5) should be
everywhere positive (expanding case) or everywhere negative (contracting case).

This property allows us to distinguish between two cases, depending whether
the spacetime is expanding or contracting, that is, the area of the orbits of symmetry
is increasing or decreasing toward the future, respectively. Furthermore, without
genuine loss of generality we assume that the initial hypersurface has constant area
function, which imposes certain restrictions on the initial data set but, experience
with (vacuum and regular, at least) Gowdy symmetric spacetimes tells us that this
is not a restriction on the class of spacetimes themselves, only a minor restriction
on the choice of the initial hypersurface.

The following main theorem encompasses both the expanding and the contract-
ing cases.

Theorem 2.1. (Einstein–Euler spacetimes with Gowdy symmetry on T 3) Let(
g, k, ρ, j

)
be a finite energy, Gowdy symmetric, initial data set on T 3 for the

Einstein–Euler equations, and assume that these initial data have constant area,
and are everywhere expanding or everywhere contracting. Then, there exists a
finite energy, Gowdy symmetric spacetime (M, g, ρ, j) satisfying the Einstein–
Euler equations (1.1)–(1.3) in the distributional sense, and the following proper-
ties hold. The manifold (M, g, ρ, j) is (up to diffeomorphisms) a Gowdy-symmetric
future development of

(
g, k, ρ, j

)
, which is globally covered by a single chart of

coordinates t and (θ, x, y) ∈ T 3, with

M =
{ {

(t, θ) / 0 < c0 � t < ∞} × T 2, expanding case,
{
(t, θ) / c0 � t < c1 � 0

} × T 2, contracting case.

Here, c1 ∈ (c0, 0] is a constant, and the time variable is chosen to coincide with
the area of the surface of symmetry in the expanding case, and with minus this area
in the contracting case.

The above theorem relies on a notion of weak solution which will be described in
full detail in this text (in Sections 4 and 5); importantly, this definition incorporates
the initial data in a weak sense as well.

It is interesting to ask if c1 can be taken to be equal to zero. Note for comparison
that if the perfect fluid occurring in the theorem is replaced by collisionless mat-
ter described by the Vlasov equation then the analogous theorem does hold with
c1 = 0, as was established in [35]. For a fluid with a linear equation of state there
are solutions for which the theorem does not hold with c1 = 0 as follows from the
discussion in Section 12.2 of [29]. At the same time it seems, as will be discussed
in more detail in Section 3.4, that these solutions are exceptional in this regard.
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The above statement provides a global foliation of the constructed spacetimes.
Due to the time irreversibility of discontinuous solutions to the Euler equations,
compressible matter spacetimes can only be defined in the future of the initial
hypersurface. This is in contrast with vacuum spacetimes and Vlasov spacetimes
which can be defined in both time directions.

An important and very challenging open problem is to establish the strong
cosmic censorship (that is, the inextendibility of the future Cauchy development)
for the spacetimes constructed in Theorem 2.1. In the expanding case, the future
inextendibility of the spacetime follows from the fact that the area function tends
to infinity along every future timelike direction. The generic inextendibility of
(vacuum) Gowdy spacetimes in the contracting direction was established in major
contributions by Chruściel et al. [8] (polarized case) and Ringström [31,32],
and recently also established by Dafermos and Rendall for the Vlasov model
[10] (cf. Theorem 4.1 therein).

Observe that the uniqueness issue is not addressed here, since within the func-
tional framework under consideration such a result is not even known for the Euler
equations in the flat Minkowski geometry. The entropy inequalities are however
fully motivated, and are known to imply uniqueness for certain restricted classes
of initial value problems or smaller classes of regularity of solutions; we refer the
reader to [9,19] for details. Note also that although the areal foliation constructed
in Theorem 2.1 is geometric in nature, it is tied to the Gowdy-symmetry assump-
tion, and it would be interesting to investigate the existence of a global foliation by
constant mean curvature (CMC) slices.

3. Einstein–Euler Equations

3.1. A (3 + 1)-decomposition of the Euler Equations

We present here a formulation of the Euler equations in a divergence form,
which we will later use to define a notion of weak solutions. All calculations in
the present section are carried out in the smooth setting. Recall that the Bianchi
identities for the geometry implies the Euler equations for the fluid

∇αT βα = 0, (3.1)

in which the energy-momentum tensor determined by (1.2). We will eventually
express these equations in local coordinates adapted to the Gowdy symmetry but, as
a preliminary step, we consider a general foliation by spacelike hypersurfaces, deter-
mined as the level sets of a time-function t . Choosing a vanishing shift vector and
introducing the future-oriented unit normal nα , the lapse function N > 0, vanishing
shift-vector, and the second fundamental form kαβ to the foliation, we can write

nα := −N∇αt, N−2 := −g(∇t,∇t),

k(X,Y ) := g(∇X Y, n) = −g(∇Y n, x).

Here, for each hypersurface, X,Y denote arbitrary vector fields tangent to any given
hypersurface (with Y arbitrarily extended to a neighborhood of that slice).
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Using the normal n, we determine the projection operator hαβ := gαβ + nαnβ ,
satisfying the obvious conditions hαβnα = 0 and hαβXα = Xβ whenever nαXα =
0. We decompose the matter tensor T αβ into its normal and tangential components,
as follows:

ρ := T αβnαnβ, jα := −T βγ hαβnγ , Sαβ := T γ δhαγ hβδ , (3.2)

so that T αβ = ρnαnβ + jαnβ + jβnα + Sαβ . The scalar ρ is the mass-energy
density measured by an observer moving orthogonally to the slices of the foliation
and j is its momentum vector which is tangent to the hypersurfaces. Using the
expression (1.2) of the energy-momentum tensor, we find

ρ = (μ+ p)
(
uαnα

)2 − p, jα = −(μ+ p)
(
uβnβ

)
uγ hαγ .

Note that T αβuαuβ = μ, so that μ is the mass-energy density measured by a
(Lagrangian) observer moving with the fluid.

In coordinates (t, xa)(a = 1, 2, 3) adapted to the foliation so that t is constant
on each slice, we have (gαβ) = −N 2 dt2 + (gab) and

n0 = −N , na = 0, kab = − 1
2N ∂t gab,

ρ = N 2T 00, j0 = 0, ja = N T 0a,

S00 = 0, S0a = 0, Sab = T cd ha
c hb

d .

(3.3)

Since uαnα = u0n0 = −N u0 and −1 = uαuα = −N 2(u0)2 + gabuaub, we thus
find

ρ = (μ+ p)N 2(u0)2 − p, ja = (μ+ p)Nu0ua,

Sab = (μ+ p) uaub + p gab. (3.4)

Now, writing the Euler equations (3.1) as

0 = ∇αT βα = ∇α
(
ρ (nα + jα) nβ + jβnα + Sβα

)

= nβ∇α (ρnα+ jα)+ ∇αSβα + (∇α jβ)nα + ∇αnβ (ρnα+ jα)+ jβ∇αnα,

and decomposing them into normal and tangential components, we find

0 = −∇α (ρnα + jα)+ nβ∇αSβα + nαnβ(∇α jβ),

0 = hβγ∇α jγ nα + hβγ∇αSγα + hβγ∇αnγ (ρnα + jα)+ jβ∇αnα.

At this juncture, we observe that in order to define a concept of solution to the
Einstein–Euler equations as we will do later, it is important to keep these equations
in divergence form. The suitable form of the equations consistent with the defi-
nition of distributional geometry presented in [21] will be obtained provided we
take into account the volume element associated with the Riemannian metric (3)g
induced on the slices, as well as the volume element associated with the Lorentzian
metric g. With this aim in mind, we introduce the rescaled matter fields defined as
follows:

ρ̃ := ω ρ, ω := (det (3)g)1/2,
ĵ := N j̃ := N ω j, Š := N 2 S̃ := N 2 ω S.

(3.5)
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The scalars μ and p are rescaled in the same way as ρ, with an obvious notation.
Observe that scalar, vector, and 2-tensor fields are scaled differently.

After some further calculations, the Euler equations (3.1) take the form

∂t ρ̃ + ∂a ĵa = 
1,

∂t ĵ a + ω (3)∇b

(
ω−1 Šab

)
= 
a

2 ,
(3.6)

where (3)∇ is the connection induced on the hypersurfaces, and


1 := N−1
(
−∂a N ĵa + kab Šab

)
,


a
2 := N−1

(
∂t N ĵa + ∂b N Šab

)
+ 2N ka

b ĵb − ρ̃ N∇a N .
(3.7)

This completes the derivation of a general (3 + 1)-decomposition of the Euler
equations. Note that the equations (3.6) have a divergence form.

Now, under the Gowdy symmetry assumption the Euler equations simplify,
provided we use coordinates x = (t, x1, x B) (with B = 2, 3) adapted to this sym-
metry, so that the coordinates (x2, x3) ∈ T 2 describe the 2-surfaces spanned by the
Killing fields K , L . In agreement with the derivation of (3.6)–(3.7), our choice of
coordinates (t, x1) is made so that g01 = 0 (see the metric expression (3.13) and
(3.26), below). Furthermore, imposing

u2 = u3 = 0 (3.8)

is compatible with our symmetry assumptions. So, recalling that uα is a future-
oriented, time-like, unit vector, we find

N 2(u0)2 − g11(u
1)2 = 1. (3.9)

The velocity vector is determined by the single function u0.
The (non-vanishing) components of the matter tensor then take the form (with

B,C = 2, 3)

ρ = (μ+ p)N 2(u0)2 − p, j1 = (μ+ p)Nu0u1,

S11 = (μ+ p) (u1)2 + p g11, S1B = 0, SBC = p gBC .

From their definition, we easily obtain the Christoffel symbols

�1
BC = −1

2
g11∂1gBC , �1

11 = 1

2
g11 ∂1g11,

and we are in a position to compute explicitly a key term in (3.6):

ω (3)∇b

(
ω−1 Š1b

)
= ∂1 Š11 + �b

bc Š1c + �1
bc Šbc − ω−1∇bωS1b

= ∂1 Š11 + �1
11 Š11 + �1

BC ŠBC .
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Recalling that μ̃ and p̃ are defined by rescaling as ρ̃ in (3.5), we arrive at the
formulation

∂t ρ̃ + ∂1 ĵ1 = 
1,

∂t ĵ1 + ∂1 Š11 = 
2,
(3.10)

the right-hand terms being given by


1 := N
(

k11 (μ̃+ p̃) (u1)2 + (tr k) p̃
)

− N ∂1 N (μ̃+ p̃) u0u1,


2 = 
1
2 := N

(
∂t N (μ̃+ p̃) u0u1 + ∂1 N

(
(μ̃+ p̃) (u1)2 + p̃ g11

))

− N 2

2

(
g11∂1g11

(
(μ̃+ p̃)(u1)2 + p̃ g11

)
− g11gBC∂1gBC p̃

)

+2 N 3k1
1 (μ̃+ p̃) u0u1 − ρ̃ g11 N ∂1 N . (3.11)

Denoting by (2)g the determinant of the surface of symmetry and observing that

gBC∂1gBC = 1

det((2)g)
∂1(det (2)g),

tr k = − 1

2N

1

det((3)g)
∂t (det (3)g) = − 1

2N
∂t (lnω),

(3.12)

we conclude that in order to express the right-hand sides
1, 
2 of the Euler equa-
tions (3.10), we need compute only the zero-order terms

N , g11, g11, det (3)g, det (2)g,

and the first-order terms

∂t N , ∂1 N , ∂1g11, ∂1(det (2)g), ∂1(det (3)g), k1
1 .

Based on (3.10)–(3.12), we are now in a position to write the field equations in
local coordinates.

3.2. Areal Coordinates

Recall that this discussion is carried out in the smooth class; weak solutions in
areal coordinates will be discussed in Section 4, below. We begin with the so-called
areal coordinates (t, θ, x2, x3) in which the metric is determined by four scalar
functions U, A, η, α, depending on the variables (t, θ) only:

g = e2(η−U ) (−α dt2 + dθ2)+ e2U (dx2 + A dx3)2 + e−2U t2 (dx3)2, (3.13)

and the variables θ, x2, x3 range over the interval [0, 2π ] and are 2π -periodic. The
coordinates t, θ parameterize the quotient manifold M/T 2, while ∂/∂x2 and ∂/∂x3

denote the Killing fields and x2, x3 are coordinates on the torus T 2. By construc-
tion, the area of the two-dimensional spacelike orbits of symmetry coincides with
the time variable, since

det

(
e2U A e2U

A e2U e−2U t2 + A2 e2U

)
= t2.
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The fields of 1-forms

e0 :=α1/2e(η−U ) dt, e1 := eη−U dθ, e2 :=eU (dx2 + A dx3), e3 :=e−U t dx3

determine an orthonormal frame, whose associated dual frame is

α−1/2e−(η−U ) ∂

∂t
, e−(η−U ) ∂

∂θ
, e−U ∂

∂x2 , eU 1

t

(
−A

∂

∂x2 + ∂

∂x3

)
.

Returning to the matter variables and recalling the “projected” energy-
momentum tensor Sab introduced in (3.2), we extract its essential components

P1 := S(e1, e1) = e2η−2U S1,

P2 := S(e2, e2) = e2U
(

T 22 + 2 A T 23 + A2 T 33
)
, (3.14)

P3 := S(e3, e3) = e−2U t2 T 33, P23 := S(e2, e3) = t T 23 + t A T 33.

From now on, we use subscript indices to denote partial derivatives with respect
to t, θ . After a tedious calculation, Einstein’s evolution equations extracted from
(1.1) take the form of three nonlinear wave equations for the metric coefficients
U, A, η

Utt − αUθθ =
(

−1

t
+ αt

2α

)
Ut + αθ

2
Uθ +�U (α, t)+ α�U (t),

Att − α Aθθ =
(

1

t
+ αt

2α

)
At + αθ

2
Aθ +�A(α)+ α t �A, (3.15)

ηt t − α ηθθ = αt

2α
ηt + αθ

2
ηθ + 1

2
αθθ − α2

θ

4α
+�η(α, t)+ α�η(t),

in which the lower-order metric terms are

�U (α, t) := e4U

2t2 (A
2
t − α A2

θ ), �A(α) := −4(Ut At − αUθ Aθ ),

�η(α, t) := (−U 2
t + αU 2

θ )+ e4U

4t2 (A
2
t − α A2

θ ),

and the lower-order matter terms are

�U := 1

2
e2(η−U ) (ρ − P1 + P2 − P3), �A := 2 e2(η−2U ) P23,

�η(t) := − 1

t2 A2 e2(η+U )P2 − e2(η−U )P3 − 2

t
A e2ηP23.

On the other hand, Einstein’s constraint equations extracted from (1.1) provide us
with three first-order differential equations for the metric unknowns η andα, that is,

1

t
ηt = U 2

t + αU 2
θ + e4U

4t2 (A
2
t + α A2

θ )+ e2(η−U )α ρ,

1

t
ηθ = − 1

2tα
αθ + 2 UtUθ + e4U

2t2 At Aθ − e3(η−U )α1/2 j1, (3.16)

1

t
αt = −2 α2 e2(η−U )(ρ − P1).
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To finally express the Euler equations, we need the zero-order metric quantities:

g00 = −N 2 = −α e2(η−U ), g11 = e2(η−U ), g11 = e−2(η−U ),

N = α1/2 eη−U , det((2)g) = t2, det((3)g) = t2e2(η−U ),

as well as first-order ones:

tr k = −α−1/2 e−(η−U )
(

1

t
+ ηt − Ut

)
,

k11 = −α−1/2eη−U (ηt − Ut ),

k1
1 = g11k11 = −α−1/2e−(η−U )(ηt − Ut ).

These expressions allow us to rewrite the equations (3.11) in areal coordinates:

(ρ̃)t + ( ĵ1)θ = 
1,

( ĵ1)t + (Š11)θ = 
2,
(3.17)

with now


1 = −e2(η−U )(ηt − Ut )(μ̃+ p̃) (u1)2 −
(

1

t
+ ηt − Ut

)
p̃

−1

2
∂θ

(
αe2(η−U )

)
(μ̃+ p̃) u0u1

and


2 = 1

2
∂t

(
α e2(η−U )

)
(μ̃+ p̃) u0u1 + 1

2
∂θ

(
α e2(η−U )

)

×
(
(μ̃+ p̃) (u1)2 + p̃e−2(η−U )

)

−α (ηθ − Uθ )
(

e2(η−U ) (μ̃+ p̃)(u1)2 + p̃
)

−2αe2(η−U ) (ηt − Ut ) (μ̃+ p̃) u0u1 − 1

2
ρ̃ (αθ + 2α(ηθ − Uθ )) .

Finally, to “close” the system, it is necessary to have explicit expressions of the
conservative and flux variables ρ̃, ĵ1, Š11 (arising in (3.17)) in terms of the energy
density μ and the velocity function

V := α−1/2 u1

u0 .

Noting that α (u0)2 − (u1)2 = e−2(η−U ), we obtain

e2(η−U ) (u0)2 = 1

α(1 − V 2)
, e2(η−U ) (u1)2 = V 2

1 − V 2 .

In view of ρ = μ+ (p + μ)e2(η−U )(u1)2, the rescaled mass-energy density reads

ρ̃ = t e(η−U )
(
μ+ (p + μ)

V 2

1 − V 2

)
. (3.18)
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For the momentum we find j1 = e−(η−U ) (μ+ p)V (1−V 2)−1, so that the rescaled
momentum variable reads

ĵ1 = t α1/2eη−U (μ+ p)
V

1 − V 2 . (3.19)

Finally, from Š11 = tαe3(η−U )
(
(μ+ p)(u1)2 + pg11

)
, we obtain

Š11 = te(η−U )α

(
(μ+ p)

V 2

1 − V 2 + p

)
. (3.20)

Consequently, we can express 
1 and 
2 in terms of μ, V and obtain


1 = −eη−U
(

t (ηt − Ut )(μ+ p)
V 2

1 − V 2 + (1 + t (ηt − Ut )) p

)

−tα1/2eη−U
(αθ

2α
+ ηθ − Uθ

)
(μ+ p)

V

1 − V 2

and


2 = t

2
α−1/2eη−U (αt + 2α(ηt − Ut )) (μ+ p)

V

1 − V 2

+ t

2
eη−U (αθ + 2α(ηθ − Uθ ))

(
(μ+ p)

V 2

1 − V 2 + p

)

−2t α (ηθ − Uθ ) eη−U
(
(μ+ p)

V 2

1 − V 2 + p

)

−2t α1/2eη−U (ηt − Ut ) (μ+ p)
V

1 − V 2 ,

which completes the derivation of the Euler equations in areal coordinates

(
t e(η−U )

(
μ+ (μ+ p)

V 2

1 − V 2

))

t
+

(
t eη−Uα1/2 (μ+ p)

V

1 − V 2

)

θ

= 
1,

(
t eη−Uα1/2 (μ+ p)

V

1 − V 2

)

t
+

(
te(η−U )α

(
(μ+ p)

V 2

1 − V 2 + p

))

θ

= 
2.

(3.21)

Finally, assuming the linear equation of state (1.3), we conclude that the fluid
variables μ, V satisfy the nonlinear hyperbolic system of two balance laws

(
t eη−U 1 + k2 V 2

1 − V 2 μ

)

t
+

(
t eη−U α1/2 (1 + k2)V

1 − V 2 μ

)

θ

= t μeη−U
′′
1 ,

(
t eη−Uα1/2 (1 + k2)V

1 − V 2 μ

)

t
+

(
t eη−Uα

k2 + V 2

1 − V 2 μ

)

θ

= t μeη−U
′′
2 ,

(3.22)
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with coefficients depending upon the metric functions U, η, α, and


′′
1 := −

(
k2

t
+ (ηt − Ut )

k2 + V 2

1 − V 2

)
− α1/2

(αθ
2α

+ ηθ − Uθ
) (1 + k2)V

1 − V 2

and


′′
2 = α−1/2

(αt

2
− α(ηt − Ut )

) (k2 + 1) V

1 − V 2 +
(αθ

2
− α(ηθ − Uθ )

) V 2 + k2

1 − V 2 .

As we will see later the second equation in (3.22) should still be multiplied by α−1,
leading to the final form of the Euler system

(
t eη−U 1 + k2 V 2

1 − V 2 μ

)

t
+

(
t eη−U α1/2 (1 + k2)V

1 − V 2 μ

)

θ

= t eη−U S1

1 − V 2 μ,

(
t eη−U α−1/2 (1 + k2)V

1 − V 2 μ

)

t
+

(
t eη−U k2 + V 2

1 − V 2 μ

)

θ

= t eη−U S2

1 − V 2 μ,

(3.23)

with

−S1 := k2(1 − V 2)

t
+ (ηt − Ut ) (k

2 + V 2)+ α1/2
(αθ

2α
+ ηθ − Uθ

)
(1 + k2)V

and

−S2 := α−1/2
( αt

2α
+ ηt − Ut

)
(k2 + 1) V +

(αθ
2α

+ ηθ − Uθ
)
(V 2 + k2).

Observe that the metric coefficient A does not arise in the Euler equations.
It remains now to compute the expressions of P1, P2, P3, P23 required in the

right-hand side of (3.15). Computing the coefficients of the inverse of the metric,
specifically the coefficients g22 = t−2e2U A2 + e−2U , g23 = −t−2e2U A, and
g33 = t−2e2U , we find

P1 = μV 2 + p

1 − V 2 = V 2 + k2

1 − V 2 μ, P2 = P3 = p = k2 μ, P23 = 0

and, therefore, by recalling that ρ = (μ+ pV 2)/(1 − V 2),

�U := 1

2
e2(η−U ) (μ− p) = 1 − k2

2
e2(η−U ) μ, �A := 0,

�η(t) := −e2η k2
(

e−2U + A

t2 e2U
)
μ.

(3.24)

Note also that the expression of the right-hand of the equation for αt

1

t
(1/α)t = 2(1 − k2) e2(η−U ) μ

= 2
(1 − k2)(1 − V 2)

1 − k2V 2 e2(η−U ) ρ. (3.25)
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3.3. Conformal Coordinates

Recall that this discussion is carried out in the smooth class; weak solutions
in conformal coordinates will be discussed in Section 5, below. One may also use
coordinates (τ, θ, x, y) in which the metric has the “isothermal” form

g = e2(η−U ) (−dτ 2 + dθ2)+ e2U (dx + A dy)2 + e−2U R2 dy2 (3.26)

and thus depends on the four scalar functions η,U, A, and R of the variables (τ, θ),
only. The area R of the surfaces of symmetry is now an independent unknown
function. Formally, the function α is replaced by 1, and the variable t is replaced
by R, and one therefore still has to determine four metric coefficients.

In comparison with the areal coordinates, the Einstein–Euler equations take a
somewhat simpler form in conformal coordinates. There are now four evolution
equations:

Uττ − Uθθ = �̃U + �̃U ,

Aττ − Aθθ = �̃A(1)+ R �̃A,

ηττ − ηθθ = �̃η + �̃η,

Rττ − Rθθ = �̃R,

(3.27)

where

�̃U := − 1

R
(RτUτ − RθUθ )+�U (1, R),

�̃A := 1

R
(Rτ Aτ − Rθ Aθ )+�A(1), �̃η := �η(1, R),

and

�̃U := �U (R), �̃A := �A, �̃η := �η(R),

�̃R := Re2(τ−U )(ρ − P1).

Hence, the lower-order terms are given by (essentially) the same expressions as in
Section 3.2, the t-derivatives being replaced by τ -derivatives, and α, t replaced by
1, R, respectively. In conformal coordinates, there are only two constraint equations

Rθθ
R

= 1

R
(ητ Rτ + ηθ Rθ )− (U 2

τ + U 2
θ )− e4U

4R2 (A
2
τ + A2

θ )− e2(η−U ) ρ,

Rτθ
R

= 1

R
(ητ Rθ + ηθ Rτ )− 2 UτUθ − e4U

2R2 Aτ Aθ + e2(η−U ) j1,

(3.28)

which can be regarded as first-order differential equations for Rθ . Furthermore, the
Euler equations (3.23) can similarly be written in conformal coordinates.



A Global Foliation of Einstein–Euler Spacetimes

3.4. Spatially Homogeneous Solutions

In this section the equations will be expressed in areal coordinates. A special
type of solutions are those for which all variables are independent of the coordinate
θ and so all the evolution equations reduce to ordinary differential equations. These
are what are known as spatially homogeneous solutions. They admit an action of
a three-dimensional Abelian group by symmetries and so in the usual terminology
of general relativity they are of Bianchi type I. It follows from the momentum con-
straint that u1 = 0. By a linear transformation of the spatial coordinates the initial
data A(0) and ∂t A(0) for the variable A can be set to zero. It then follows from the
evolution equation for this quantity that A vanishes at all times. The transformation
is naturally defined on the universal covering of M and need not project to M itself.
This fact is, however, irrelevant for the study of the dynamics. Thus in the homoge-
neous case it may be assumed without loss of generality that A vanishes identically
so that the metric is diagonal. The Bianchi type I solutions of the Einstein equations
can be determined explicitly provided a new time coordinate T is introduced which
is a function of the areal time coordinate t . The explicit form of the metric is (see
for instance [34, p. 199])

− a2k2
dT 2 + T 2p1a2q1dθ2 + T 2p2 a2q2 dx2 + T 2p3a2q3dy2, (3.29)

where the pi and qi are constants for i = 1, 2, 3 which satisfy the Kasner relations
p1 + p2 + p3 = 1, p2

1 + p2
2 + p2

3 = 1, and qi = 2
3 − pi . The function a(T ) is

defined by a1−k2 = α+m2T 1−k2
where α and m are positive constants. Comparing

this with the general form of the metric in areal coordinates reveals that

t = T −p1+1
(
α + m2T 1−k2

) p1−2/3
1−w

.

This cannot be solved explicitly so as to get T as a function of t and thus an explicit
expression for (3.29) in areal coordinates. It is nevertheless clear that the mapping
from T to t can be inverted uniquely. The initial singularity occurs at T = 0. The
parameter p1 belongs to the interval [−1/3, 1]. Provided p1 < 1 it can seen that t
goes to zero as T → 0 and this corresponds to the situation c1 = 0 in the theorem.

An exception occurs when p1 = 1 since in that case c1 is strictly positive. The
behavior of the geometry as t → c1 in this case has been analysed in [29]. The
Kretschmann scalar Rαβγ δRαβγ δ tends uniformly to infinity so that this is really a
curvature singularity. On the other hand the metric can be extended to t = c1 in
such a way that it remains continuous and non-degenerate. Moreover, with respect
to this extended metric the hypersurface t = c1 is null. This is what is known as a
weak null singularity. Note that the above calculations show that within the class
of spatially homogeneous solutions the exceptional solutions are nowhere dense.
It is not clear what will happen with more general inhomogeneous solutions but
all available information indicates that further solutions of this kind will be at best
rare and possibly not exist at all.
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4. Expanding Spacetimes

4.1. A Weak Formulation of the Einstein Equations

We now discuss weak solutions to the Einstein–Euler equations, by relying on
areal coordinates and considering the case of expanding spacetimes, in which the
area function R is increasing toward the future from an initial value denoted by c0.
Hence, the initial value problem is posed with data prescribed on the hypersurface
t := c0 > 0. Instead of η, it will be convenient to use the new variable

ν := η + 1

2
ln α,

so that the geometry is now determined by the four scalar functions U, A, α, ν.
The natural regularity imposed on these functions is determined in the following
lemma.

Lemma 4.1. (Energy estimate) In areal coordinates the total energy

E = E(t) :=
∫

S1
E α−1/2 dθ,

E := (U 2
t + αU 2

θ )+ 1

4t2 e4U (A2
t + α A2

θ )+ e2(ν−U ) ρ,

is a monotone decreasing function of the variable t � c0 and, more precisely,
satisfies

d

dt
E = −2

t

∫

S1
D dθ,

D := α−1/2 U 2
t + 1

t2 e4Uα1/2 A2
θ + 1

2
α−1/2e2(ν−U )(ρ + P3) � 0.

The underlying structure is analogous to two quasilinear wave equations for the
variables U, A, taken to have finite total energy

∫

S1

(
(α−1/2U 2

t + α1/2 U 2
θ )+ 1

4t2 e4U (α−1/2 A2
t + α1/2 A2

θ )

)
dθ,

coupled to the “first” Euler equation for ρ taken to have finite total mass-energy
∫

S1
ρ e2(ν−U ) α−1/2 dθ.

Even in the class of weak solutions, the relations in the above lemma hold as
equalities in the sense of distributions.

In view of the expression of E , as long as α, α−1,U, ν remain bounded, that is

|α| + |α|−1 + |U | + |ν| � 1, (4.1)

and provided the initial energy E(c0) is finite, which we now assume on every
compact subset of [c0,+∞), Lemma 4.1 allows us to control the L2 norm of the
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functions Ut ,Uθ , At , Aθ on every slice of the foliation, as well as the L1 norm
of the mass density, from the same quantities evaluated on the initial slice. Recall-
ing the expression (3.18) of the density in terms of the fluid variables μ, V , we see
that the energy estimate imposes

Ut ,Uθ , At , Aθ ∈ L∞
t (L

2
θ ), M := μ

1 − V 2 ∈ L∞
t (L

1
θ ), (4.2)

at least on every compact set in time. In view of (3.15), we see that U and A satisfy
(second-order) wave equations and that two initial conditions must be prescribed
for each variable, that is,

Ut (c0) = U
0

∈ L2
θ , U (c0) = U ∈ H1

θ ,

At (c0) = A
0

∈ L2
θ , A(c0) = A ∈ H1

θ .

The initial data for ν is then computed from the constraint equation (3.16); see
(4.13) below.

Next, in view of the constraint equation (see (3.16))

1

t
νθ = 2 UtUθ + 1

2t2 e4U At Aθ − e2(ν−U )α−1/2 j1, (4.3)

and since | j1| � ρ we deduce that νθ ∈ L1
θ . Similarly, for the time derivative we

have

1

t
νt = U 2

t + αU 2
θ + e4U

4t2 (A
2
t + αA2

θ )+ e2(ν−U )P1 � 0, (4.4)

and using |P1| � ρ ∈ L1(
t ), we obtain νt ∈ L1(
t ). It is natural to assume the
regularity

νt , νθ ∈ L∞
t (L

1
θ ). (4.5)

Instead of these differential constraints, we can also use the evolution equation for ν
which follows from (3.15), in which case two initial conditions are required on the
variable ν

νt (c0) = ν
0

∈ L1
θ , ν(c0) = ν ∈ W 1,1

θ .

Finally, the constraint equation on the function α (see (3.16) again) shows that
αt

1 − V 2 ∈ L∞
t (L

1
θ ), (4.6)

while no regularity condition can be imposed on the spatial derivative αθ . One
should prescribe α on the initial slice, that is,

α(c0) = α ∈ L1
θ .

Having identified the basic functional spaces of interest for each variable, we
now consider the algebraic structure of the equations. We must reformulate the
Einstein equations in a form that makes sense under the limited regularity above,
only. The following key observation can be checked by direct calculation from
(3.15).
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Proposition 4.2. (Weak form of the Einstein equations) The evolution equations
for the functions U, A, and ν take the form

(
t α−1/2Ut

)
t − (

t α1/2 Uθ
)
θ

= e4U

2tα1/2 (A
2
t − α A2

θ )+ t α1/2 �U ,

(
t−1 α−1/2 At

)
t − (

t−1 α1/2 Aθ
)
θ

= −4t−1 α−1/2 (Ut At − αUθ Aθ )+ α1/2 �A,
(
t α−1/2 (ν + (1/2) logα)t

)
t − (t α1/2 νθ )θ = t α−1/2 (−U 2

t + αU 2
θ )

+ e4U

4tα1/2 (A
2
t − α A2

θ )+ α1/2 �ν, (4.7)

where �ν = �η.

Finally, we supplement (4.7) with an equation for the function α

α(t, θ) = α (θ) exp

(
−2(1 − k2)

∫ t

0
t ′

(
e2(ν−U )M (1 − V 2)

)
(t ′, θ) dt ′

)
,

(4.8)

where α is a prescribed data in L∞
θ satisfying α > 0. Clearly, since |P1| � ρ the

function α is globally bounded: 0 < α � α .
Importantly, in the proposed setting the Einstein equations (4.7) now make sense

under the regularity conditions (4.2)–(4.6). For instance, α−1/2Ut is the product of
an L∞ function by an L∞

t (L
2
θ ) function, and its derivative is defined in the distri-

butional sense.

Remark 4.3. 1. The function ν may be also determined by the constraint equation,
that is,

ν(t, θ) =
∫ θ

0

(
2t UtUθ + 1

2t
e4U At Aθ − t (1 + k2)eν−U M V

)
(t, θ ′) dθ ′,

(4.9)

which is an integral equation for the unknown ν.
2. We emphasize that, instead of the equation for ν, the original evolution

equation for η cannot be used to derive a priori estimates, since it would require
second-order derivatives of α—which cannot be obtained in general for the non-
vacuum Einstein equations. This is clear from the equation in αt : it involves the
fluid density which generically contains jump discontinuities and, therefore, is not
sufficiently regular to allow us to control second-order derivatives of α.

4.2. Finite Energy Solutions

Let us further discuss the matter variables and introduce a suitable notion of
solutions to the Euler equations. Recalling that M = μ/(1 − V 2) and using the
variable ν instead of η, we see that the equations (3.23) become

(
t α−1/2eν−U (1+k2 V 2)M

)

t
+

(
t eν−U (1+k2)V M

)

θ
= t eν−Uα−1/2 S1 M,

(
t eν−U α−1(1+k2)V M

)

t
+

(
t eν−U α−1/2(k2+V 2)M

)

θ
= t eν−Uα−1/2 S2 M,

(4.10)
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with

−S1 := k2(1 − V 2)

t
− αt

2α
(k2 + V 2)+ (νt − Ut ) (k

2 + V 2)

+α1/2 (νθ − Uθ )(1 + k2)V

and

−S2 := α−1/2 (νt − Ut ) (k
2 + 1) V + (νθ − Uθ ) (V

2 + k2).

The selection of physically admissible solutions to the Euler equations will be
based on the conservation law of the number of particles

∇αNα = 0

satisfied by sufficiently smooth solutions, where the vector field Nα has the form
Nα = r uα with

dr

r
:= d p

μ+ p(μ)
= k2

k2 + 1

dμ

μ
,

hence

r = μk2/(k2+1).

For simplicity, we have assumed here that a single thermodynamical variable suf-
fices to determine the state of the fluid under consideration. According to this
approximation, for the theory to encompass discontinuous solutions, we must relax
the above equality and impose that solutions satisfy the inequality

− ∇αNα � 0, (4.11)

which we refer to as the fundamental entropy inequality.
More generally, an infinite list of (mathematical) entropies is available.

Definition 4.4. A vector field F is called an mathematical entropy flux for the
Einstein–Euler equations if every smooth solution to these equations satisfies
the balance law

∇αFα = G,
where Fα and G both contain lower-order terms only, that is, zero- and first-order
terms in the metric variables and zero-order terms in the fluid variables. It is said to
be convex if the component F0 is convex in the conservative variables of the Euler
equations (that is, in the variables (ρ̃, j̃1)).

Physically admissible solutions should then be characterized by the entropy
inequalities

∇αFα � G (4.12)

understood in the distributional sense, for every convex entropy pair that vanishes
on the vacuum. As presented in [20], the family of convex weak entropies can be
described by an explicit formula which can be used to establish a compactness
result for sequences of solutions.

We are now in a position to state precisely our notion of solutions.
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Definition 4.5. (Finite energy solutions)
1. A finite energy initial data set for the Einstein–Euler equations is a family of

measurable functions U
0
,U , A

0
, A, ν

0
, ν, α ,M, V satisfying

inf
S1
α > 0, M � 0, |V | � 1,

together with the regularity conditions

U
0
, A

0
,∈ L2(S1), U , A ∈ H1(S1), ν

0
,M ∈ L1(S1),

ν ∈ W 1,1(S1), α , V ∈ L∞(S1),

and the constraint equation

ν(θ) =
∫ θ

0

(
2 c0 U

0
U θ + 1

2c0
e4U A

0
Aθ − c0eν−U (1 + k2)M V

)
(θ ′) dθ ′.

(4.13)

2. A finite energy solution to the Einstein–Euler equations (in areal coordi-
nates) is a family of measurable functions U, A, α, ν,M, V defined on [c0,∞)×S1

and satisfying the following conditions:

• The functions α,M, V satisfy (for all t1 > c0)

inf
[c0,t1]×S1

α > 0, M � 0, |V | � 1.

• The geometric coefficients U, A, α, ν satisfy the regularity conditions

Ut , At ,∈ L∞
loc([c0,+∞), L2(S1)), U, A ∈ L∞

loc([c0,+∞), H1(S1)),

νt , νθ ∈ L∞
loc([c0,+∞), L1(S1)), M S1,M S2 ∈ L1

loc([c0,+∞)× S1).

• The functions U, A, ν, α satisfy the evolution equations (4.7) and the constraint
equation (4.8) in the distributional sense.

• The fluid variables M, V satisfy the entropy inequalities

∇αFα � G
in the distributional sense for all convex weak entropy flux Fα to the Euler
equations.

• The prescribed initial data are assumed in the sense of distributions.

To be more explicit, let us for instance state the first equation in (4.7) in the
distributional sense:

∫ +∞

c0

∫ 2π

0

(
ψt t α

−1/2Ut − ψθ t α1/2 Uθ + ψ
e4U

2tα1/2 (A
2
t − α A2

θ )+ ψ t α1/2 �U
)

dθdt

+
∫ 2π

0
ψ(c0, ·) c0 α

−1/2U
0

dθ = 0 (4.14)
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for every smooth, compactly supported and spatially 2π -periodic function ψ :
[c0,∞) × [0, 2π ] → R. Observe that the initial data is taken into account in this
statement.

Under the condition in the above definition, we will also use the phrase “space-
times with finite energy”. It is important to observe that, under the regularity
assumptions under consideration all the terms arising in the equations under con-
sideration do make sense, at least as distributions. In particular, the right-hand sides
of the equations (4.10) belong to L1 on every compact subset.

5. Contracting Spacetimes

5.1. A Weak Formulation of the Einstein Equations

We continue our discussion of weak solutions to the Einstein–Euler equations,
using now conformal coordinates in the case that the spacetime is contracting.
Recall that, in conformal coordinates, the metric is determined by the four func-
tions U, A, η, R, while the fluid is determined by the functions M, V .

It is convenient to pose the problem on a hypersurface of constant negative τ0.

Definition 5.1. (Finite energy solutions in conformal coordinates) Given τ0 < 0,
an initial data set with finite energy for the Einstein–Euler equations in conformal
coordinates is a set of functions

U
0
, A

0
,∈ L2(S1), U , A ∈ W 1,2(S1), η

0
∈ L1(S1), η ∈ W 1,1(S1),

R
0

∈ L∞(S1), R ∈ W 1,∞(S1), inf
S1

R > 0

and

M ∈ L1(S1), V ∈ L∞(S1), M � 0, |V | � 1.

Given an initial data set as above, a set of functions U, A, η, R,M, V defined on
some interval [τ0, τ1] ⊂ [τ0, 0) is called a finite energy solution to the Einstein–
Euler equations in conformal coordinates if the following conditions hold:

1. The functions have the regularity

Uτ , Aτ ∈ L∞([τ0, τ1], L2(S1)), U, A ∈ L∞([τ0, τ1],W 1,2(S1)),

ητ ∈ L∞([τ0, τ1], L1(S1)), η ∈ L∞([τ0, τ1],W 1,1(S1)),

Rτ ∈ L∞([τ0, τ1], L∞(S1)), R ∈ L∞([τ0, τ1],W 1,∞(S1)), inf [τ0,τ1]×S1 R > 0

and

M ∈ L∞([τ0, τ1], L1(S1)), V ∈ L∞([τ0, τ1], L∞(S1)),

M � 0, |V | � 1, M S1, M S2 ∈ L1([τ0, τ1] × S1).

2. The Einstein equations (3.27), (3.28) hold in the distributional sense.
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3. For every convex weak entropy flux Fα to the Euler equations, the entropy
inequality

∇αFα � G

holds in the distributional sense.
4. The following initial data are assumed in the distributional sense:

(Aτ , A)(τ0, ·) = (A
0
, A), (Uτ ,U )(τ0, ·) = (U

0
,U ),

(ητ , η)(τ0, ·) = (η
0
, η), (Rτ , R)(τ0, ·) = (R

0
, R),

M(τ0, ·) = M, V (τ0, ·) = V .

The notion of distributional solution is analogous to the one already used in the
previous section; see in particular the statement (4.14) for a specific statement. It
is important to observe that our regularity conditions are sufficient (and essentially
necessary) to define in the distributional sense, all of the terms appearing in the
Einstein–Euler equations.

5.2. Monotonicity Property of the Area Function

From now on we consider a finite energy solution in the sense of Definition 5.1
and we investigate its geometric properties. In particular, by definition, the area
function R remains bounded and bounded away from zero. We consider the largest
region D+

conf of the future Cauchy development of the given initial data set which
can be covered by a single chart in conformal coordinates.

Specifically, following earlier work on classical solutions, we investigate the
properties of the gradient ∇ R and, by combining the evolution and constraint equa-
tions satisfied by R, we establish that second-order derivatives of the area function
R belong to L∞

τ (L
1
θ ), which, in turn, implies that the gradient ∇ R is continuous.

Proposition 5.2. The area function R satisfies the following properties:

1. The functions Rτ , Rθ are continuous in both variables and satisfy one of the
following alternatives:

Case (a) : Rτ < −|Rθ | for all τ, θ,

Case (b) : Rτ > |Rθ | for all τ, θ,

Case (c) : R is constant and the spacetime is flat and vacuum.

2. In Cases (a) and (b) the gradient of the function R is always timelike.
3. In Case (a) the components of the gradient ∇ R are uniformly controlled in L∞:

|Rθ | � −Rτ � 2 sup
S1

|Rτ |.
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4. The second-order derivatives Rθ t and Rθθ are uniformly controlled in L∞
τ L1

θ :

sup
τ�τ0

∫

S1
(|Rτθ |+|Rθθ |)(τ, ·)| dθ�

∫

S1
(|Rτ |+|Rθ |)(τ0, ·)| dθ+

∫

S1
ρ(τ0, ·) dθ.

(5.1)

In Case (a) (Case (b), respectively) the spacetime is contracting (expanding,
resp.) in the future timelike direction. Our primary interest in this section is on
the case of contracting spacetimes; expanding spacetimes were handled directly in
areal coordinates, as discussed in the previous section.

Proof. 1. We generalize arguments due to Chruściel [7] in the case of smooth
vacuum spacetimes. Consider the functions R′± := Rτ ± Rθ . We obtain

R′±
θ + (ητ − ηθ ) R′± = F±,

F± := R(Uτ ± Uθ )
2 + e4U

4R
(Aτ ± Aθ )

2 + Re2(η−U )
(
ρ ∓ j1

)
.

These equations, by assumption, hold in the sense of distributions. However, let
us examine the regularity of the various terms involved, as follows. Our regularity
assumptions show that (ητ − ηθ ) and F± belong to L∞

τ (L
1
θ ), so that from our

assumption that R′± ∈ L∞
τ (L

∞
θ ) we deduce the stronger regularity property

R′± ∈ L∞
τ (W

1,1
θ ).

In particular, both R′± and, therefore, Rt , Rθ are continuous in θ . This observation
justifies the following calculations.

Fix some time τ . Take any point θ1 ∈ S1 at which the function R(τ, ·) achieves
a local extremum value; then, since the function Rθ is continuous, we must have
Rθ (τ, θ1) = 0 and, therefore,

(R′− R′+)(τ, θ1) = Rτ (τ, θ1)
2 � 0.

The case of equality is studied as follows.
For almost every time τ and every θ0 ∈ [0, 2π ], we can write

∂

∂θ

(
R′±(τ, θ) e

∫ θ
θ0
(ητ−ηθ )(τ,θ ′) dθ ′

)
= F±(τ, θ) e

∫ θ
θ0
(ητ−ηθ )(τ,θ) dθ ′

� 0,

where we have observed that, since |J | � ρ, the functions F± are non-negative. It
follows that

R′±(τ, θ0) � R′±(τ, θ0 + 2π) e
∫ θ0+2π
θ0

(ητ−ηθ )(τ,θ ′) dθ ′

=: R′±(τ, θ0) H(τ ),

Recall that the functions have just been proven to be continuous and observe that
H is a positive quantity. Therefore, from the two inequalities

R′−(τ, θ0) � R′−(τ, θ0) H(τ ), R′+(τ, θ0) � R′+(τ, θ0) H(τ ),
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valid for all θ0, we deduce

R′−(τ, θ0) R′+(τ, θ0)(1 − H(τ ))2 � 0.

We recover the fact that the product (R′− R′+)(τ, ·) remains non-negative in the
interval [0, 2π ].

However, if now R′+(τ, θ0) = 0 (for instance) for some θ0, then from

R′+(τ, θ) e
∫ θ
θ0
(ητ−ηθ )(τ,θ ′) dθ ′ =

∫ θ

θ0

F+(τ, θ ′) e
∫ θ ′
θ0
(ητ−ηθ )(τ,θ ′′) dθ ′′

dθ ′

and the fact that F+(τ, ·) is non-negative, we conclude that R′+(τ, ·) changes sign
only once, going from non-positive to non-negative values across θ0, which is
impossible for a periodic and continuous function, except in the special case that
R′+(τ, ·) is constant in θ and, in addition, F±(τ, ·) vanishes identically.

The above arguments show that the function (R′− R′+)(τ, ·) is either positive
on [0, 2π ] or else vanishes identically.

2. The functions R′± (and therefore Rτ , Rθ ) are continuous in both variables.
Indeed, we already know that Rθθ ∈ L∞

τ (L
1
θ ) and, in view of the equation satisfied

by the function R,

Rττ = Rθθ + M R(R) ∈ L∞
τ (L

1
θ ).

This leads us to distinguish between three different cases for all times:

Case (a) : R′− < 0, R′+ < 0,

Case (b) : R′− > 0, R′+ > 0,

Case (c) : R′− ≡ 0 or R′+ ≡ 0.

Suppose that, for instance, R′−(τ, ·) ≡ 0 and thus R′+(τ, ·) = 2Rθ (τ, ·). From
the first part of this proof, we know that the function R′+(τ, ·) is either positive, or
negative, or identically zero. But, since Rθ (τ, ·) is 2π -periodic and continuous, it
must vanish identically. Consequently, both R′±(τ, ·) ≡ 0 and the function R(τ, ·)
is constant in θ . We also deduce from the expression of F± that this is the case
if and only if Uτ ,Uθ , Aτ , Aθ , ρ vanish at the time τ0. Moreover, it is not difficult
to check that the functions U, A must be constant and ρ be identically zero every-
where in their domain of definition in the future of the hypersurface τ = τ0. The
only non-trivial component the is the function η which then satisfies a linear wave
equation

ηττ − ηθθ = 0,

whose solution takes the form η(τ, θ) = f−(τ + θ)+ f+(τ − θ) with f± ∈ W 1,1.
By setting u± := τ ± θ , the metric takes the form

g = e−2U f−(u−) f+(u+)du−du+ + e2U (dx + A dy)2 + e−2U R2 dy2,

where the coefficients A,U, R are constants. Hence, the metric is flat.
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3. Finally, excluding Case (c) of the proposition, we can compute the norm of
the gradient of the function R and we find

|∇ R|2 = e2(η−U )
(

R2
τ − R2

θ

)
= −e2(η−U ) R′− R′+ < 0.

From the conditions in Cases (a) and (b), we deduce that the component Rτ cannot
vanish and therefore by continuity must keep a constant sign through the spacetime.

Moreover, in Case (a) we can integrate the equation in R

(∂τ ∓ ∂θ )R
′± = M R � 0.

This yields the sup norm control of both R′±, and in turn a control of both Rτ and
Rθ .

4. The estimate (5.1) follows directly from (3.28), by noticing that the right-
hand side of (3.28) is uniformly bounded in L1(S1). The latter indeed is easily
checked from the fact that Uτ ,Uθ , Aτ , Aθ are uniformly bounded in L2(S1) while
ρ is uniformly bounded in L1(S1). �


In Case (a), that is, when the spacetime is contracting in the future direction,
it will follow from our compactness framework in the next section that solutions
in conformal coordinates do exist up to τ → ∞, as long as the function R does
not vanish. As in the case of smooth spacetimes, one can distinguish between two
situations:

(a1) (U, A, η, R,M, V ) is a finite energy solution to the Einstein–Euler equations
in conformal coordinates whose domain of definition D+

conf coincides with
[τ0,+∞)× S1. In this case, the conformal coordinates do cover the whole of
the Cauchy development.

(a2) (U, A, η, R,M, V ) is a finite energy solution to the Einstein–Euler equations
defined on a region strictly contained in [τ0,+∞) × S1. Here, R admits a
constant limit value Rmax which determines the boundary of the spacetime.

6. Compactness Properties

In the previous sections, we have successfully determined the natural weak
regularity assumptions required on the initial data and enjoyed by the solutions to
the Einstein–Euler system. Theorem 2.1 now follows from the compactness frame-
work developed in [20]. The main property, stated below, is that any sequence
of spacetimes satisfying the natural bounds on the geometry and fluid variables
must subconverge in a suitably strong sense so that the limit is a spacetime with
the expected regularity. The compactness property holds for exact solutions as
well as approximate solutions (which should be dealt with by allowing for suitably
controlled error terms).

Proposition 6.1. (Pre-compactness property for the Einstein equations under
Gowdy symmetry) Consider a sequence of spacetimes with finite energy deter-
mined by the geometric coefficients U (a), A(a), η(a), R(a) in conformal coordinates
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(or U (a), A(a), ν(a), α(a) in areal coordinates) together with the (rescaled) fluid
components M (a), V (a). Suppose that the regularity conditions stated in Defini-
tion 5.1 (or Definition 4.5) hold, with the corresponding functional norms of the
initial data being uniformly bounded in the parameter a = 1, 2, . . . . Then, the fol-
lowing pre-compactness property holds: there exists a subsequence (still labelled
with the upper script a) converging in the natural functional spaces and the limit
is a solution with finite energy to the Einstein equations.

To conclude, we consider briefly the case of the Euler equations in the flat
geometry, that is, in the simplified situation that the coupling between the matter
and the geometry is neglected. Hence, we focus first on the fluid evolution governed
by the Euler equations:

(
μ

1 + k2 V 2

1 − V 2

)

t
+

(
μ
(1 + k2) V

1 − V 2

)

θ

= 0,

(
μ
(1 + k2) V

1 − V 2

)

t
+

(
μ

k2 + V 2

1 − V 2

)

θ

= 0,

where μ � 0 and V ∈ (−1, 1) are the unknown fields, and k ∈ (0, 1) is a constant.
Equivalently, in terms of the rescaled density M := μ/(1 − V 2), we have

(
M (1 + k2 V 2)

)
t + (

M (1 + k2) V
)
θ

= 0,(
M (1 + k2) V

)
t + (

M (k2 + V 2)
)
θ

= 0.
(6.1)

According to our definition, a pair of functions (M, V ) defined on some set � ⊂
(t1, t2)× S1 and satisfying M ∈ L∞

t (L
1
θ ) and V ∈ L∞ with V ∈ [−1, 1], is called

an entropy solution to the Euler equations (6.1) if the entropy inequalities

(F0)t + (F1)θ � 0

hold in the distributional sense for convex weak entropy pairs (F0,F1). Note that,
in the proposed formulation, the velocity may reach the limiting values ±1.
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