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MAIN AIM (S) OF THIS TALK

m highlight some issuethat are relevant to any tentatigeantum theory of
gravity, and show room for a QFT formalism

m introduce theGroup Field Theornapproach to QG (focus on 3d case)
m discusssome recent resulta GFT and point out what still needs to be done
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m what do space and time emerge from, at quantum level?

m can we define a quantum theas/space & time, thus in absence of space and time?
m if QFT framework, what are the fundamental quanta? .uantpof space itself....

m butcanitbe a QFT?

m note: most of above relevant even if QG is “just’quantum GR
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QG QUESTIONS

FAILURE OF PERTURBATIVE QUANTIZATION AROUND FLAT SPACE

Quantum gravity is not a quantum field theory of gravitons ahdpace:
Ouv = Nuw + Ny — S(hw) —Z= /thf e S

such theory is perturbatively non-renormalizable (no nibes effective field theory)
m missing ingredients?
m new symmetries? (supergravity?)
= unification? only gravity+matter can be quantized as above?
= non-local fundamental structure? beyond point-like disjegstrings,...)
m degrees of freedom? metric not correct variable?
= GR itself only effective field theory (not to be quantized asty?

m background independence!
m cannot fix spacetime geometry as background
m 0k, are there other background structures (also in GR)?
m above does not rule out QFT as framework.......
......... but QFT needsomebackground....
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BACKGROUND STRUCTURES INGENERAL RELATIVITY

What are the background structures in GR?

which of them is our quantum (field) theory of gravity to be dhen?

which of them are turned into dynamical features of the wthds, new d.o.f.)?
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spatial topology
spacetime topology
space of geometries on given topology (Wheeler's supee3pac

which of them is our quantum (field) theory of gravity to be dhen?
which of them are turned into dynamical features of the wthds, new d.o.f.)?

GFT keeps dimensionality, signature and local symmetrygron discrete setting
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dynamics—> 'HWdW\If(hij)

covariant approach

(i) = i Pge 0, eq. Slg) = [ d*VIRG) —

having made sense of the above, “only problem” is semi-iakkmit

making sense of itdiscretize= divide S, M into chunks— A
= hjj, g, — finite variables{Le}, S(g) — Sa(Le) (discrete QG)

— quantum Regge calculus, dynamical triangulations......
new problem: continuum limit
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QG QUESTIONS

LESS CONSERVATIVE(EVEN MORE FORMAL)Z DYNAMICAL TOPOLOGY?

2nd (3rd9) quantization Of graVityaddings, Strominger, Banks, Coleman, Hawking, Kuchgttam, McGuigan,...)
a) field on space of geometries (say, S
b) all possible interactions (creation/annihilation) ofuerses (topology change)?

* + N -
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2nd (3rd9) quantization Of graVityaddings, Strominger, Banks, Coleman, Hawking, Kuchgttam, McGuigan,...)
a) field on space of geometries (say, S
b) all possible interactions (creation/annihilation) ofuerses (topology change)?

U (hy) — ¢(hy) on (super-)space of geometrigsini o 0N S
idea of quantum theory:

S
Feynman diagraml: @ @ .
—

z= /Dqs e ¥ =3 "W\zy ="\ /Dg gsem
M M

“impossible” to define in proper mathematical wayconceptual issues

— making sense of it by going discrete/local? matrix models, GFT
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QG QUESTIONS

GRAVITY /GEOMETRY. FUNDAMENTAL OR EMERGENT? GOING DISCRETE?

is the notion of gravity and/or geometry fundamental?
if not, what are the pre-geometric data defining the ‘sultgtgkinematics) of QG?
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what is the quantum dynamics of the quantum (pre-)geomeitia?
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is the notion of gravity and/or geometry fundamental?
if not, what are the pre-geometric data defining the ‘sultgtgkinematics) of QG?
and then,

what is the quantum dynamics of the quantum (pre-)geomeitia?
Usingdynamical lattices (or any discrete structuisehighly non-trivial step:

= it means droppin@ll background structuresef GR, together with continuum
m all have to be recovered in continuum approx.; non-trifial!

discrete, finite sets of data (classical or quantum), evearifing from discretizin
a smooth geometry, can be understood as “pre-geometrisfiareetime”data, fro
which spacetime and geometry ammergent
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QG QUESTIONS

TOWARD GFT: MATRIX MODELS FOR 2D QUANTUM GRAVITY

m general idea: generalise combinatorics of Feynman diagfeom 1d to 2d,
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TOWARD GFT: MATRIX MODELS FOR 2D QUANTUM GRAVITY

m general idea: generalise combinatorics of Feynman diagfeom 1d to 2d,
from graphs to discrete surfaces, from point particles toljjdcts

N
s M i,j=1,..,N N x N hermitian matrix
m action:

1 1 . .
SM,g) = Eter — %II’MS = EMIjKjank| — %MlemnMiﬂ Vimknli

Kigi = o' d'; Vimknli = 6'm 6™ ' (Kil)_kl_ = Kii
jKli

= fundamental building blocks are 1d simplices with no addiil data;
microscopic dynamics: no GR, pure 2d combinatorics

m transition amplitudes defined in terms of Feynman diagrams
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QG QUESTIONS

MATRIX MODELS - FEYNMAN DIAGRAMS AND SIMPLICIAL COMPLEXES
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QG QUESTIONS

MATRIX MODELS - FEYNMAN DIAGRAMS AND SIMPLICIAL COMPLEXES

(K™ i :
building blocks for Feynman diagrams: i o

Vimknli / k
TN

m simplicial intepretation:

T" ~ 2d simplicial complexA (triangulation) %k
~ 2d discrete spacetime =7

Feynman amplitudes: join vertices with propagators and @un common variables

(indices)i
7z — Z gVF NX(F)
r
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MATRIX MODELS AND SIMPLICIAL 2D GRAVITY

= continuum (Riemannian) 2d GR;d°x \/§ (—R(g) + A) = —4rx + AAs
m discrete 2d GR: chop surfa&into equilateral triangles of area

L[dx T (-R@) + A) — - x + 2t
= from our matrix model we get in fact (with = e €andN =e" € ):

z =3 ghN® = Y er @ -8 L § /DgA NG
r A A

(trivial) sum over histories of discrete GR on given 2d coaxpl
plus sum over all possible 2d complex@&sall topologies

m question: control over sum over triangulations/topols@ie
= large-N limit - sum governed by topological parameters

Z =) gaNT =% N"?Z(g) = N*Z(9) + Z1(9) +N"2Z(9) + ...
A h

m in the limitN — oo (semi-classical approximation of discrete system), only
spherical (trivial topology, planar, genus 0) contribute
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QG QUESTIONS

MATRIX MODELS AND CONTINUUM 2D GR

m question: does it match results from continuum 2d gravith jpategral?
m task: continuum limit for trivial topology

v

= expandZo(9) ing: 20(9) = Sy V' (£) " 2vese (0- 67 (1> 2)

m expectation value of area of surface:
(A) = a(ta) = (Vr) = af;InZo(g) ~ 52, forlargeV

m thus we can send area of triangle—~ 0 andt = V — oo (continuum limit), while
sendingg — dc, to get finite continuum macroscopic area

m this defines continuum limitphase transition of discrete systgm!

m results match those of continuum 2d gravity path integr& €3 effective theory)

m can also define continuum limit with contributions from ninivial topologies -
double scaling limit

m very many results in 2d quantum gravity context, and in ather.......
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QG QUESTIONS

FROM POINT PARTICLES TO FIELDS FROM MATRICESTENSORS TOGFT

point particles — fields

SX) = 3¢+ 2 s6) = 5 [ axo00?+3 [ dxor’
rlnatrices
SM) = %Mqui +

A
+ 3 Mij MMy u
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TENSOR MODELS
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simplicial complexes as FD to 3d ones (and higher)

= St
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m M — Tk i,j,k=1,..,N NxN x N tensor

m action:(T) = T? — AtrT* = %Zi’jykTijkaji = A 2 iimn Tiik Tiam Tmjn T
kinetic term= Kijki’j’k’ = 6ii’5jj’6kk’ = (Kil)ijki/j/k/ = propagator
vertex term= Viji e’ mmtnn = i’ 67 O O’ Onnt Orey
with combinatorial pattern of edges in tetrahedron

nZ=[DTe%) = A\rzp

m Feynman diagrams again formed by vertices, lines and facésow 1) also
form “bubbles”(S cells), and 2) are dual to 3d simpliciahgalexes
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(pseudo-manifold = neighbourood of point not homeomorphia 3-Ball)
= why are they not good?

m no topological expansion of amplitudes - no control oveptogy of diagrams

= no way to separate manifolds from pseudo-manifolds

= no direct/nice relation with 3d simplicial (classical orajuium) gravity - not enough
structure/data in the amplitudes, and in boundary states

m ind > 2, gravity is -much- less trivial, both classically and
quantum-mechanically

m first possible way forward: dynamical triangulations agato (see Loll’s talk)
m second possible way forward: need to add dat&roup Field Theory
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1
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QG QUESTIONS

FROM POINT PARTICLES TO FIELDS FROM MATRICESTENSORS TOGFT

point particles — fields
1 A
%) = 3¢+ 3 s6) = 5 [ axo00*+ 3 [ dxor’
L 1
matrices . Group Field Theory
1
) = & gt + S6) = 5 [ [dd0(0:, 020002 g:) +
A
+ % Mij MM %k +t3 /[dg] $(91, 92)#(92, 93)H(9s, O1)
! Nl !
tensors . Group Field Theory

1
ST = 2T+ S6) = 3 [ 0960102, 8:)(e0, 22, 1) +

A
=+ = Tijk Tiam Tmni Tj

3 +% /[d‘él] #(01, G2, 03)#(Js3, G4, Gs)

#(0s, s, 01)#(Ts, G4, G2)




GROUPFIELD THEORY

The Group Field Theory formalism

general reviews:
Freidel, '05, Oriti, '06, '07, '10

work by:

Baratin, Ben Geloun, Bonzom, Boulatov, De Pietri, Fainbaltreidel, Girelli, Gurau,
Livine, Louapre, Krajewski, Krasnov, Magnen, Noui, Oog@riti, Perez,
Reisenberger, Rivasseau, Rovelli, Ryan, Smerlak, Tanasa,

GFTs can be defined, a priori, in any dimension and signahane: focus on 3d
Riemannian gravity— use SU2) (local gauge group of gravity)
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3D QUANTUM GRAVITY AS A GFT : KINEMATICS OF 2D QUANTUM SPACE

“tensor models plus pre-geometric data’guided by LQG, $itigd QG, NCG
m Triangle inR?; (2nd quantized) kinematics encoded in field
 (space of triangle geometrigs
m triangle geometries parametrizedthyeesu(2) Lie algebra elements attached
to edges= discrete triad variables (discretization of triad fieldsrg edges)

@ (X1,X2,X3) € 5u(2)3 — (X1, %2, X3) €R
m su(2) is non-commutative space;should reflect this non-commutativity
m from LQG (simplicial BF): phase space for edge7 *SU(2) ~ su(2) x SU(2)
m usenon-commutative Fourier transfor@ujid, Freidel, Livine, Mourad, Noui,..)
C(SU(2)) « C(su(2))
= based omon-commutative plane waves
ey(x) : su(2) x SU(2) — C: (x,g) — €279 (fundamental representation)
m {eg(x)} basis ofC(su(2)) ~ C.(R%) = functions onR® with star product “**

(ah *agz) (X) = éZTr Xg1) * eIZTr(><gz = e'sz(Xglgz) = ey 92( )

6 = /S 1 J99@00 0(0) = [t (65 )
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3D QUANTUM GRAVITY AS GFT : KINEMATICS OF 2D QUANTUM SPACE

m straightforward extension to functions ©f(2)  saratn 0o, 10)

(%0, %0, X5) = / 1A (01, G2 Gs) €, (X0) e, (¥2) 5 (%)

group elements= parallel transports of connection along links dual to thgesd
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m in terms ofp(g1, G2, ),

(01, G2, 88) = P (01, G2, G6) = / dano(h, hg. hg.)
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m In order to define a geometric triangle, edge vectors haveldse'’:

o(X1, %2, %) = (C* ) (X1,%2,%3), C(X1, X2, X3) = do(X1+X2+Xa)
with delta functions:

p = [dgg st [ y@an) = [ dyda)0) =1

m in terms ofp(g1, G2, ),
P08 8) = Pol0n 00 = | aho(hg hae b
su(2
m by Peter-Weyl decomposition into $) irreps €123, is 3j-symbol):

P(01,02,0) = Y P, Din, (01) D, (92) Diyn, (93) CIUZS,

i1:J2:i3
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GROUPFIELD THEORY

3D QUANTUM GRAVITY AS GFT: KINEMATICS OF 2D QUANTUM SPACE

m ¢ is building block of (quantum) 2d space

® (9,9, 9) — @@, i,i) —s

m fields can be convoluted (in group or Lie algebra pictureyaced (in
representation picture) with respect to some common argumegluing of
multiple triangles along common edges more complex simplicial structures,
or, dually, more complicated graphs (many-GFT-particiéest)

a3

CYER)

a0

m generic observable/state/boundary configurat®fw) = >, On (¢*")

m in representation space, generic (polynomial) state eléabby spin networks
(also kinematical quantum states in Loop Quantum Gravipr@ach)
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m Define classical action fap123 = (X1, X2, X3)
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m Define classical action fap12s = (X1, X2, X3)
m interaction term: four geometric triangles glued pairageng common edges to
form tetrahedron
m Kkinetic term: gluing of tetrahedra along common triang®sedge identification
= No gravity, no continuum, no GR input

S= % /[d)(]3 0123 % 123 — %/[CMG (123 * (D345 * V526 * P64l
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GROUPFIELD THEORY

3D QG AS GFT: CLASSICAL DYNAMICS OF QUANTUM SPACE

m Define classical action fap12s = (X1, X2, X3)
m interaction term: four geometric triangles glued pairageng common edges to
form tetrahedron
m Kkinetic term: gluing of tetrahedra along common triang®sedge identification
= No gravity, no continuum, no GR input

1 A
=5 /[dX]3 (123 * P123 — —/[CMG (123 * 345 * (V526 * Pe41

whereg; x ¢i:= (¢ * ¢—) (%), with ¢ (X) = ¢(—x)
m propagator and a vertex:

t
YI%G

i3 ‘
X1 (A

#y te

Xp3 jexad

3
/SU(Z) dh H(5_xi * en) (Vi) /s Hdh H 5 % e, ) (%)

u2) "t i=1
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GROUPFIELD THEORY

3D QG AS GFT: CLASSICAL DYNAMICS OF QUANTUM 2D SPACE

m geometrical meaning:

m pair of variables in two fieldéxe, ye) associated to the same edge: edges vectors
seen from the frames associated to the two triangésharing it

m vertex functions: the two variables are identified, up tapektransport, and up to a
sign for two opposite edge orientations
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GROUPFIELD THEORY

3D QG AS GFT: CLASSICAL DYNAMICS OF QUANTUM 2D SPACE

m geometrical meaning:

m pair of variables in two fieldéxe, ye) associated to the same edge: edges vectors
seen from the frames associated to the two triangésharing it

m vertex functions: the two variables are identified, up tapektransport, and up to a
sign for two opposite edge orientations

m in group pictur@souiatov, 92y

3 4
K(@.0) = [an [ o@ha?) Vi) =[] [on []oten nle

tr=1 tAY

m geometric meaning: flatness of each wedge (portion of fazidertetrahedron):
piecewise-flat context, trivial matching at boundary
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GROUPFIELD THEORY

3D QG AS GFT: CLASSICAL DYNAMICS OF QUANTUM 2D SPACE

m in representation space:

Se) = 5 D P e
{it,{m}
A jr j2 s
= a1 D P, PRim P, Phnm, { b
m from which:
—1
K =K"= 51'1J71émlm1512J725mzﬁb6]31_36”%%
VARSI SUP S SN SNP S SNP S SN SN SUND SP NP B LI I
T Ciada Oy i, O O st gf, Omafu Ojgs Omsis Clgjs Omee |, i g

m geometry rather obscure - however, dynamics directly imsesf quantum
numbers labelling quantum states of the theory
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GROUPFIELD THEORY

3D QG AS GFT: MICROSCOPIC QUANTUM DYNAMICS

m the quantum theory is defined by the partition function, igrffsean expansian

z-= /D¢eis[4’] = ; Sjn{r] Z(T)
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GROUPFIELD THEORY

3D QG AS GFT: MICROSCOPIC QUANTUM DYNAMICS
m the quantum theory is defined by the partition function, igrffsean expansian

z-= /DMS”’] = ; Sjn{r] Z(T)

m building blocks of FD are:
m lines of propagation, with 3 labelled strands (dual to gias),

m vertices of interaction (made o3 labelled strands re-routed following the

combinatorics of a tetrahedron)
m this produces: 2-cells, identified by strands of propagapiassing through

several vertices, and then closing (for closed FD), duatiges; ‘bubbles=
3-cells bounded by the above 2-cells, dual to vertices opbaial complex

m Feynman graphE are fat graphs/cellular complexes topologically dual to 3d
triangulated (pseudo-)manifolds of ALL topologies
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Feynman amplitude&(T") obtained by convoluting vertices with propagators
They can be expressed, equivalently, in Lie algebra, grouppesentation picture

In the Lie algebra (non-commutative) representation waiolA. Baratin, DO, '10):
(1) = /Hdn T &% ™ot
L f

H; = total holonomy around boundary of fatec T", dual to edge of triangulatioi
This is simplicial path integral of 1st order 3d gravity

continuum theoryS(e,w) = [ tr (e A F(w))

for open FD, one gets 3d gravity with boundary terms (fixednolauy triad)

Explicit link with simplicial gravity path integrals
(solution to first problem of tensor models)
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3D QG AS GFT: GFT FEYNMAN AMPLITUDES

In group variables only, one obtains:

zr_/ HdnH(SHf Hi = HhL
Sl

U@ "L L=tt/ € of

volume of space of flat (discrete) connections (consistéifit @ontinuum picture)
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In group variables only, one obtains:

Z() = HdnH(SHf Hi = H h

SU2) " L=tt/ € of

volume of space of flat (discrete) connections (consistéifit @ontinuum picture)

In terms of group representations:
it oj2 s
(2 1) e
o~ (IS o T J )

Ponzano-Regge spin foam (state sum) model
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3D QG AS GFT: GFT FEYNMAN AMPLITUDES

In group variables only, one obtains:

zr_/ HdnH(SHf Hi = HhL
Sl

U@ "L L=tt/ € of

volume of space of flat (discrete) connections (consistéifit @ontinuum picture)

In terms of group representations:

(HZ)HZJerl U{!l 2 :Z}

Ja s

Ponzano-Regge spin foam (state sum) model
spin foam models are sum over histories of spin networks IpLQuantum Gravity

exact duality spin foam modeb simplicial gravity path integral
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GFT: SUMMARY

m GFTs argcombinatorially) non-local field theories on groups (Ligebras),
interpreted a&nd quantized theoriggeneralization of matrix models)

m of simplicial geometryand

m of canonical LQG (QFT of spin networks)
field ¢ represents “2nd quantized simplex”or “2nd quantized spirvertex”
arguments of field have interpretation of pre-geometria dat
microscopic dynamics dictated by discrete (minimal) gemimeonsiderations
both geometry and topology are dynamical

GFT realize duality of simplicial gravity path integralscaspin foam models
GFT can be common framework for various QG approaches:
m Loop Quantum Gravity and spin foam models
m GFT states are Spin Networks, GFT perturbative expansifinegetheir dynamics
m GFT Feynman amplitudes are Spin Foam models (sum over igistoir spin networks)

m Quantum Regge Calculu§&FT Feynman amplitudes define simplicial QG path
integrals, with unique (for given GFT) measure
m Dynamical TriangulationsGFT describes QG (perturbatively) as sum over
triangulations, weighted by simplicial path integral
allow (almost) straightforward application of QFT tools
being a “pre-geometric theory”, recovering smooth geoyn@nd other
background structures of GR) and GR dynamics is non-trieisk
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RECENT RESULTS

m diffeomorphisms in GFT
m GFT perturbative renormalization
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RECENT RESULTS

DIFFEOMORPHISM SYMMETRY IN3D (DISCRETE) GRAVITY

In discrete gravity diffeos are not defined; however, oneidantify a discrete
analogue of them and a corresponding symmetry of discréina@at least in 3d
with A = 0) (Rocek-Williams '84)(Freidel-Louapre '02)(DittricBahr '09):
m discrete translation symmetof triad variables (in 1st order theory):
Be — Be + éwi(0L) — dwa(0L) ¢y € su(2)
becomes discrete diffeo transformations of edge lengtRegge calculus (2nd
order theory)
m corresponds to vertex translationsiA embedding

>

m in canonical gravity, it implieflatness constraintn boundary connection:
H¥({g.}) = ¥({o.}) V closed loop |

To identify diffeomorphism symmetry, need to work in (hooromutative) triad
representation of GFT action - (necessary to) use “coloredatf
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RECENT RESULTS

DIFFEOMORPHISM SYMMETRY INBOULATOV MODEL (a Barani, F. Grevui, 0o, '10)

label vertices in tetrahedron by= 1, 2, 3, 4 - edges are labeled as= (ij) - color triangles of
tetrahedron by their 3 vertices - define 4 fieldgi (coloring needed for field transformation)

S{¢ik}) = Z/[d)ﬁ](@jk * i) (%, Xk, Xi) +
(i)

A
+ a / 123(X12, X23, X31) * P234(X32, X34, Xa1) * P124(Xo1, X24, X14) * P134(X13, Xa3, X43)

m transformation of GFT fieldfor ¢, € su(2)) (translation of triangle vertices):

(T(eyy > P123) (Xa2, Xa3, Xa1) = ‘P(Xa2 — €1 + €2, X3 — €2 + €3,Xa1 — €3 + €1)’

. -1 . —1 . —1
(T{ev} > ¢123) (012, O23, Oa1) = Tr(e1(93191, ) @ Tr(€2(912953)) Tr(ea(923d; ))¢(912, 23, Oa1)
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invariance impliedlat connectioron boundary of tetrahedron (GFT vertex)

m nice match of simplicial gravity and canonical LQG resuttsingle formalism

m this is aguantum grougymmetry

m from QFT point of view, it is aglobal symmetry
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RECENT RESULTS

DIFFEOMORPHISM SYMMETRY INBOULATOV MODEL (a Barariv, F. Grevui, Do, '10)

m see intertwiner of single copy @SU(2) translation at each vertex df

@ .2 (z 3)

’11‘ Z‘z - @9
= - 49)

@4 22) (4.2)
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DIFFEOMORPHISM SYMMETRY INBOULATOV MODEL (a Barani, F. Grevui, 0o, '10)

m see intertwiner of single copy @SU(2) translation at each vertex df

@ .2 (z 3)

’11‘ Z‘z - @9
= - 49)

@4 22) (4.2)

m can investigate transformation of Feynman amplltudesurpnsmgly (from
QFT perspective) one finds tiregrandsto be invariant!

m itindeed corresponds to thigscrete diffeomorphism symmetof
corresponding simplicial gravity path integral

m itis due to simplicial Bianchi identity at each bubble (esrbf A), at least for
spherical bubbles

m symmetry is broken for non-spherical bubbles
— needbraided group field theorformalism?
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RECENT RESULTS

PERTURBATIVE GFT RENORMALIZATION - THE 3D CASE

(L. Freidel, R. Gurau, DO, '09), (J. Magnen et al., '09), (Rur&u, '09), (J. Ben Geloun et al., '09, '10), (V. Bonzom, M. &ak, '10)
Question: can you control the perturbative GFT sum over feyndiagrams
(including sum over topologies)?
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Ler Leof
FD are cellular complexel dual to 3d trlangulatlons
m divergences associated to bubbles (3-cells in FDs)
= highly involved combinatorics, all topologies and pseudanifolds— difficult
to isolate divergences, unclear which FDs need renorntiiza
m results:

m identification of ‘Type 1'graphs, generalization of 2d @amgraphs, allowing for
contraction procedure, later proved to be -manifolds- mfial topology-

m exact power counting of divergences for this class of FD

m conjecture: these are the only relevant FD in generalizatinsclimit

m very general scaling bounds, (I') < K"AS+3V/2 with n vertices
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m general perturbative boundg; < K"AS+3, with n vertices
m perturbative sum for partition function and free energyBweel summable
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spacetime as a condensate/fluid phase of fundamentaltdisomestituents,
described by QFT

continuum is hydrodynamic approximation, validTatz 0, close to equilibrium,
and forN — oo in thermodynamic limit, involving a phase transition

metric is (function of) hydrodynamic variable(s)

continuum evolution governed by hydrodynamics for coilecvariables

GR is reproduced (if lucky) from hydrodynamics only in sorineits

m questions from CM perspective: what are the atoms of spabe? is/the
microscopic theory? which CM system reproduces full GR?
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CONTINUUM SPACETIME FROMGFTS?

take GFT seriously as microscopic (quantum field) theorjhefatoms of spage
‘pre-geometric structures’, from which geometry only egesrin some limit

take onboard suggestions from condensed matter and arajoguity

hypothesis: continuum is coherent, equilibrium many-ipks physics for GFT
guanta at low temperature (hydrodynamic approx): “quargpecetime fluid”?

(modified) GR from GFT hydrodynamics?
need to

develop statistical GFT and apply tools from many-parthgsics to GFT
(renormalization group, mean field theory, coherent staie$

identify GFT phase transitions in thermodynamic limit €ilka matrix models and
DT, using QFT tools)

extract effective dynamics around different GFT vacua ampkfied models
capturing physics in different regimes (e.g. cosmologgrrilat space, ...)
extract falsifiable (Popper), novel and interesting (Lakafeyerabend) physics!
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Thank you for your attention!
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