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AN ADI SCHEME FOR A BLACK HOLE PROBLEM
Gabrielle D. Allen and Bernard F. Schutz

University of Wales College of Cardiff, Cardiff, Wales, UK

Abstract. We outline an implicit finite differencing scheme for solving hyperbolic
partial differential equations, and describe a 3-D black hole problem to which the
scheme is applied.

1 INTRODUCTION

One issue in numerical relativity is how to solve the hyperbolic partial differential
equations (PDEs) which appear as evolution equations for the geometric and matter
variables. Typically a finite grid is introduced, and the PDEs are replaced by finite
difference approximations, so that the geometric and matter variables are numerically
calculated at the grid points. However, once we choose to use finite differencing we
have to decide between an explicit or tmplicit scheme.

Traditionally explicit differencing schemes have been used, these are easy to derive
and to implement in a code. They suffer, however, from a time step constraint
needed to maintain stability. For the d-dumensional wave equation this constraint is,
At < A/cvd, where A is the grid spacing and c is the wave speed. Alternatively
an implicit scheme is in general unconditionally stable, that is the size of the time
step may be decided by accuracy considerations alone. Implicit schemes are usually
avoided because they involve inverting huge matrices, however in Cardiff we have
been developing Alternating Direction Implicit or ADI schemes. These ADI schemes
can be constructed to remain as accurate as explicit or implicit schemes, as stable as
implicit schemes, and yet as computationally tractable as explicit schemes.

2 AN ADI SCHEME FOR THE WAVE EQUATION

Consider the usual 3-D wave equation with sources

190

20 — 1
S5~ VO =mp(x,b). (1
Defining
" = @7, 1= B(nAL A A KA),
620" =7, ., 207, + 07, .., etc,

we can write one possible ADI scheme for (1}, due to Lees (1962), as a system of three
tridiagonal matrix equations, each of which must be solved over the grid to advanct
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the solution by one timestep
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Here r is the Courant parameter,r = cAt/A and 0 is the implicit weighting parameter.

Eliminating the intermediate solutions ¢*"*! and ¢**"*+! reduces (2) to the standard
second order centred implicit approximation with the addition of an extra term of
order O(At*), thus overall a second order scheme is retained. A stability analysis
reveals that if § > .25 this scheme is unconditionally stable.

3 THE BLACK HOLE PROBLEM

To test our numerical schemes on a non-linear relativistic problem we are now apply-
ing them to a perturbed Schwarzschild black hole problem. Using a linearised formu-
lation we find that the evolution equations resemble the 3-ID wave equation making
the application of the ADI scheme trivial. Also modelling the linearised problem we
are free from the problems associated with evolving black holes. This problem has
been investigated previously using Green-function techniques e.g. Oohara (1986).

3.1 The Evolution Equations

To derive the field equations for the perturbations we expand the Einstein ﬁdd cqua—
tions, Rap — 1gapR = 8% T,p, (c = G = 1), about a given background metric g{}), and
background matter distribution T'%. We thus write

galj - gau + haﬂv Taﬂ - T(O) + gaﬂw (3)

where hos < g% and 0,, describes the matter causing the perturbations. We can
then write the zeroth and first order ﬁeld equations
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1
_—v<v(haa + —vav R, + -vﬁv B, — %vﬁvuh
1
+59 (‘”\7 V.h— “”\7 Vih™ 4 2g§,‘;;12(°’17" - §R(°)ha[, (5)

R‘O’h’ += R“”hT + ROy k" = 8710,

Here the Riemann tensor, Rf,og)w, and the covariant derivatives, V,, are calculated
with respect to the background metric, gfﬁ,’, only.
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We have to choose coordinate gauges for both the background spacetime and the
perturbation field. Our ADI schemes have been formulated in Cartesian coordinates
since we believe that for generality the coordinate system used should have no special
association with the black hole(s). This has lead us to use quasi-Cartesian isotropic
coordinates (¢,z,y,2) for the background Schwarzschild spacetime, giving the back-
ground line element
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where r = \/(-:1:2 +y?+ 2?) and M is the black hole mass. For the linearised equations
we work in the harmonic or de Donder gauge which constrains h,g via
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This condition greatly simplifies the perturbation field equation (5), which reduces
to a wave-like equation for cach of the ten components b4
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where A, is the trace-reversed perturbation tensor, and the fact that the background
spacetime is Ricci-flat, Ry = 0, has been used.

The evolution equations, (8), in the quasi-Cartesian isotropic background coordinates
were expanded using Macsyma. The TEX output generated by Macsyma for the
evolution equation of the h,, component is shown in Figure 1.

3.2 The Constraint Equations

The perturbation tensor, k,;, must satisfy constraint equations on the initial timeslice
and subsequently on following timeslices. The constraint equations are the harmonic
gauge condition and its first time derivative

Bt =0, () =0. ()

It can be shown that the harmonic gauge condition (9) is preserved by the evolution
equations (5). Thus we only need solve (9) to obtain initial values for the simulation.
From the constraint equations we obtain a set of elliptic equations. These are solved
by assuming that initially all the spatial perturbations, &;;, are zero, leading to fouf
coupled second order elliptic equations to be solved for hy, hyy, heys he.. The unphyst-
cal waves on the grid caused by setting h;; = 0 will ‘wash’ off the grid at the start o!
the simulation. The constraint equations have been solved using an SOR method.
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Figure 1. The evolution equation for the h,, component of the perturbation, calcu-
lated using Macsyma.

3.3 The Matter Equations

The matter making up 0,5 1s assumed to follow geodesics of the background metric
gfﬁ;. The matter is taken to be an extended point particle, with rest mass p (g <€ M),
and proper volume V. The energy-momentum tensor is then defined as

oo _ izt de? (AN
b SV odt dt \dr) ’ (10)

The geodesic equations are solved for the position and velocity of the particle using
a second order leapfrog scheme.

4 IMPLEMENTING THE ADI SCHEME
The gauge constraints (9) were used to eliminate the first order time derivatives from
the evolution equations (8), giving 10 second order hyperbolic equations of the form

P, (20 — M)?
16 —2r

G 167 G ¥ s = 1650, (11)
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where 8/, ; is now a ‘source’ term which includes terms in hop and hgg;, as well as the
matter source term #,5. Comparing (11) with the usual wave equation (1) it is seen
that the ADI scheme (2) is now easy to apply. The new ‘source’ terms 0, ; were finite
differenced and written into Fortran code using Macsyma.

Outgoing wave boundary conditions have been applied to the grid exterior. They
fit in with the ADI scheme in a natural way, the condition on the boundaries at
constant x is applied with the first equation of (2) ete. The boundary conditions
used are perfectly absorbing for spherically symmetric waves. A static boundary
condition has been applied at the event horizon, r = M/2.

5 CURRENT WORK AND CONCLUSION

We hope to soon demonstrate that it is possible to include ADI schemes in a black
hole problem, and that using such schemes we will be able to take much longer
timesteps than those possible with explicit schemes while retaining a second order
computationally feasible stable scheme.

We will also be investigating this problem in a rotating frame, using new ADI1 schemes
developed by Alcubierre (1992). These schemes use causal reconnection to allow grid
velocities faster than the speed of light, whilst maintaining stability and second order
convergence.

Ultimately we want to model a coalescing black hole problem where the black holes
orbit a number of times on roughly circular paths before coalescing. In this regime, in
a frame co-rotating with the black holes, ADI schemes would appear to be a necessity.
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