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ABSTRACT

A new variational criterion sufficient for secular instability of rapidly rotating stars to bar modes
driven by gravitational radiation reaction is derived. Application to disk models indicates that
differentially rotating stars can be stable beyond where they should be unstable according to the
tensor virial method. We show why the tensor virial method is invalid.
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I. INTRODUCTION

Secular instability of (Newtonian) rapidly rotating stars due to the action of viscous dissipation and/or gravita-
tional radiation reaction has received considerable attention over the last several years. Much of the work has focused
on the presumably dominant instability to two-armed bar modes in differentially rotating stars (e.g., Ostriker and
Tassoul 1969; Ostriker and Bodenheimer 1973), since astrophysically realistic equations of state result in loss of
centrifugal equilibrium at the equator before the onset of a secular bar instability when the rotation is uniform.
However, as emphasized by Hunter (1977), when viscosity is the dominant dissipative mechanism a differentially
rotating star will change its rotation law, presumably toward uniform rotation over the bulk of the star (Durisen
1973), at least as rapidly as any barlike deformation is likely to grow. The question of secular instability to bar
modes for differentially rotating stars is well posed only if gravitational radiation reaction or something else which
has no effect on the axisymmetric equilibrium is the dominant dissipative mechanism.

The usual test for secular instability has been to search for a zero-frequency bar “‘mode’ in a tensor virial approxi-
mation to the hydrodynamic equations (Tassoul and Ostriker 1968) along a sequence of differentially rotating con-
figurations of increasing angular momentum. Ostriker and Tassoul (1969) have claimed that the tensor virial method
locates a bifurcation to a Dedekind-like sequence of stationary bar configurations and the onset of secular instability
exactly, at a value of ¢, the ratio of rotational kinetic energy T to the negative of the gravitational potential energy
W, very close to 0.138 for a wide variety of models (Ostriker and Bodenheimer 1973). More recently, Friedman and
Schutz (1975a) and Hunter (1977) have argued that the tensor virial method, because of its relationship to a varia-
tional principle with a specific trial function, can provide only a sufficient condition for the onset of secular instability,
and that the true bifurcation point at marginal secular instability to gravitational radiation reaction is at ¢ = ¢, <
t., where ¢, is the tensor virial estimate.

In this Letter we report on new results which show that the real situation is quite different. The tensor virial cri-
terton is neither necessary nor sufficient for the onset of secular instability along a sequence of differentially rotating
models, and therefore provides no information. We have derived a revised variational criterion which is a sufficient
condition for secular instability to gravitational radiation reaction. Numerical calculations using this revised criterion
on two-armed modes indicate that the actual value of ¢. is typically greater than ¢,, perhaps by as much as 209, or
SO In some cases. Mass limits on differentially rotating white dwarfs (Ostriker and Tassoul 1969; Durisen 1975) and
binding energy limits for supermassive stars (Wilson 1972) based on tensor virial results are somewhat more strict
than really justified. On the other hand, secular instability to multiarmed modes (Friedman and Schutz 1977b) may
act to lower' previous estimates of mass limits on rotating neutron stars (e.g., Shapiro and Lightman 1976). .

We explain the new methods to the extent necessary for their astrophysical application. Full technical details of
the Newtonian derivations will be given separately (Friedman and Schutz 1977¢,5), as will additional numerical
results (Bardeen, in preparation).
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II. THE VARIATIONAL FORMALISM

Consider an axisymmetric rotating star in equilibrium. We work in cylindrical coordinates 7, ¢, . The density p
and pressure p are related by an equation of state p = p(p, s), where s is the specific entropy. The fluid rotates with
an angular velocity Q(r, z) about the z-axis. Now perturb the star by displacing each fluid element from its equilibrium
position 7, ¢o = ¢ + 2of, 20, with £ = Q(ry, 7o), to a new position r = ro + £ (7o, 0, 20, &), ¢ = o+ &%, 2 = 20+
£2. Keep the mass and entropy of the fluid element constant. .

The perturbed hydrodynamic equations are written

A +BH+c® =0, ¢y
where £ = 9%/91. The vector operators 4, B, and C are defined by
A4:(8) = pgiit’, 2

where £2% = §n¢:2 and g;; is the metric tensor,

Bi(§) = 20Q(giit’, ¢ + €init) , )
where € is the antisymmetric tensor with nonzero components »(—r) for ijk even (odd) permutations of 123, and
Ci(®) = pQgitiee + 200387, — VilvpViE*) + (Vip) 07'Vi(08¥) — Vi(E:Vip) + 8:1prE*Vi(Q2) + oVi(5eD) . (4)

Here V, is the covariant derivative operator, ¥y = (8 In p/d In p),, and 8;® is the Eulerian perturbation in the gravita-
tional potential induced by the Eulerian perturbation in the density

Bp = —Vil(ot") . )
The operators 4, B, and C are, respectively, Hermitian, anti-Hermitian, and Hermitian in that, for instance,
(S G * A©AV* = S ) * An(w)aV . ©
Equation (1) can be derived by varying the action
I=3S1E)*Au®) + ()*Bu(®) — )*Cu(®)]dVat ; )

this is just the Lynden-Bell and Ostriker (1967) variational principle. From the time-independence and axial sym-
metry of the operators follows the existence of a dynamically conserved energy functional or canonical energy

E, = 3S1(E)* 4O + ) *Cu(®DlV (8)
and a dynamically conserved canonical angular momentum
Jo = —ReS[(£)*Ax(&s) — 3(8)*Br(&e)1dV . )

III. PREVIOUS ARGUMENTS

If the only dissipative mechanism is gravitational radiation reaction, Friedman and Schutz (1975b) have shown
that an energy functional which becomes.the Newtonian E. in the nonrelativistic limit can only decrease as the result
of radiation of gravitational waves by the perturbation. The rate of decrease of E. for a (nearly) Newtonian star is
equal to the rate that physical energy is lost in gravitational waves.

They consider a sequence of, in general, differentially rotating models with increasing angular momentum. The
normalization-independent quantity E.// (£)*5:dV is presumed positive-definite for nonaxisymmetric displace-
ments at the slowly rotating end of the sequence. If its lower bound decreases smoothly through zero at some point
along the sequence, then at this point a dynamical mode passes through zero frequency. Beyond this point the dy-
namical mode has E. < 0; and if (as any nonspherical mode should) it does generate gravitational waves, it is secu-
larly unstable in that it grows without bound in the linear theory on a time scale set by the coupling to the radiation.

A simple argument for secular instability whenever E. is negative for some nonaxisymmetric trial displacement &
has been given by Hunter (1977). Hunter proves that E./ S (£#)*£.dV is bounded from below. If E. < 0 initially, it
and the displacement can never return to zero. The radiation will presumably decrease E. indefinitely, and the mag-
nitude of ¥ as measured by /" (£)*£:dV will increase without bound in the linear theory. :

These arguments are incorrect. For almost any rotating star there are trial displacements with angular dependence
¢ that make E. < 0 for every nonzero value of m. The physical perturbations these displacements represent can
die away in time even though the displacement and its canonical energy must always remain nonzero.
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IV. TRIVIAL DISPLACEMENTS

Schutz and Sorkin (1977) pointed out the existence of a class of displacements we shall call “trivial,” for which the
Eulerian perturbations in density, pressure, and velocity vanish. These displacements just relabel the fluid elements
within the star. They represent a kind of “gauge’” freedom in the description of the perturbations. Such quantities
as the change in total physical energy AE and the change in total physical angular momentum AJ are “gauge”’-
invariant, but the canonical energy and angular momentum E. and J. are not. It is always possible to choose a
“‘gauge” in which AE = E.and AJ = J., but without such a restriction on £ an initial E, < 0 cannot by itself imply
any instability. If the initial AE > 0 for all §, the gravitational radiation of a finite energy AE removes the physical
perturbations.

A trivial displacement n satisfies

ép = —=Vi(on*) =0, (10)
s = —n*Vs =0, (11)
and
i =9+ Qn'y — VR = 0 (12)
The general solution to these equations is
7 = %e‘i"V,-thf , (13)

where f is an arbitrary function of 7, ¢, = ¢ — @, and z. In any region of the star where ¥s 5 0, 4 must be propor-
tional to s(r, z); otherwise, except for continuity requirements, % is an arbitrary function of 7 and z.

,For simplicity we only evaluate E. for a barotropic star, so @ = Q(r). Consider a trivial displacement with f =
(fr, z)e™@=3 and f and % real. Then

_1 40y mf o = )+ 271
B =5 Sav (204 rS0) 2 (2000 — hfo) + S hs). (1)

Even if vs > 0 everywhere, so # = s, the appropriate choice of f can make E, have any value. The barotropic con-
dition excludes the possibility that s.. = 0 everywhere with Ws > 0. Only a toroidal “star” with 22 + 7dQ/dr = 0
everywhere can have E, identically zero for all trivial displacements.

V. PHYSICAL DISPLACEMENTS

It is possible to restrict one’s choice of trial displacements to a special class of “physical”’ displacements { which in
a certain sense (Friedman and Schutz 1977a) are “orthogonal” to all trivial displacements. The physical displacements

 satisfy the constraint B .
E*VAV[Er + Qo) ik + @] = 0, (15)
where % is an arbitrary function of 7, ¢, z in a region where vs = 0; otherwise # = 5. Equivalent to equation (15) is
the requirement that the Lagrangian perturbation in the circulation vanish,

A Fode' =0, (16)

for any closed curve ¢ lying in a constant-entropy surface. The condition (15) or (16) does not constrain the physical
Eulerian perturbations; it really is just a choice of “gauge’” in the description of the perturbations.
Explicit calculation shows that the physical changes in energy and angular momentum are, to second order,

AE = - Soa $odrlav + E. 17)
27 o

and
AJ =L j‘p[A £ -dx‘]dv +7 (18)
21[' ! i )

where ¢’ is the curve which in the unperturbed star is a circle at constant 7 and z around the axis of symmetry and
the integration is over such rings. Since the ¢’ are special cases, by axisymmetry, of the curves ¢ in equation (16),
we see that if the constraint of equation (16) is applied through second order in { the physical displacements auto-
matically give AE = E, and AJ = J.. Only the first-order constraint of equation (15) is needed to evaluate E. and

J . and therefore AE and AJ once this assumption is made. L .
Since gravitational radiation reaction acts through a modification of the Newtonian gravitational potential (see
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Misner, Thorne, and Wheeler 1973), the actual displacement developing as the result of any gravitational-radiation-
reaction-driven secular instability must satisfy equation (16) to all ordersin {. If AE = E,initially, AE = E, through-
out the time development of the secular perturbation.

VI. CONSEQUENCES FOR THE TENSOR VIRIAL METHOD

The tensor virial method (Tassoul and Ostriker 1968) identifies the point of marginal secular instability along a
sequence of models of increasing Ostriker parameter ¢ with the existence of a zero-frequency “mode” of the tensor
virial moments of the hydrodynamic equations when the displacements are constrained to obey

£ = rei—ub g4 = fie—ut) £=0. (19)

At this point the canonical energy E. vanishes for a zero-frequency trial displacement of the form (19). One concludes
that E. < 0 for some trial displacements beyond this point along the sequence and probably even before, but we have
seen that this can imply secular instability only if the displacement is a “physical” displacement, so E, = AE.

When the star is barotropic, so @ = Q(r), equation (15) is satisfied for a zero-frequency tensor virial displacement
if and only if the rotation is uniform, 2,, = 0, and probably the restriction to barotropic models is unnecessary. The
true point of marginal secular instability may be either before or after the point indicated by the tensor virial method
along a sequence of differentially rotating stellar models.

VII. A VALID SECULAR INSTABILITY CRITERION

At the point of marginal secular instability along a sequence of models the minimum value of E./ S (8)*£:dV for
all physical displacements & is zero; once there are physical displacements with E, < 0, gravitational radiation reaction
will drive a genuine instability. A nontrivial nonaxisymmetric displacement will radiate unless it is zero frequency,
in which case E, = 0 and the perturbed configuration is unreachable from an initial physical perturbation with
E. < 0. This argument applies separately for each angular eigenvalue m > 2.

Because the displacements are constrained by equation (15), the old argument for a zero-frequency mode at the
point of marginal secular instability is no longer valid. Whenever a zero-frequency dynamical mode does exist, E. is
still stationary, but not necessarily a minimum, for arbitrary physical variations about the eigenfunction.

In spite of the lack of proof, we believe that a zero-frequency dynamical mode whose eigenfunction is qualitatively
similar to the tensor-virial trial displacement very probably does mark the exact point of marginal secular instability
to two-armed perturbations. “Qualitatively similar’” means no nodes in the r-dependence or z-dependence of ¢ and
£* to go with the €% angular-dependence. This generalizes to m-armed modes.

The search for a zero-frequency dynamical mode is numerically complex for a rotating star, so it seems useful to
correct the tensor virial approach by suggesting a modified trial displacement which does satisfy equation (15) for
differentially rotating stars. From now on we consider only displacements with axial eigenvalue m = 2.

Numerical calculations of dynamical modes have been carried out (Bardeen, in preparation) for infinitesimally
thin, differentially rotating disks in which the pressure acts only in the plane of the disk and is a prescribed function
of the surface density. For a given surface density distribution, as the disk is “cooled”” and the Ostriker parameter ¢
increased from zero, there is a first two-armed bar mode to pass through zero frequency, and it is qualitatively similar
to the tensor virial displacement (19). For all disk configurations the tensor virial estimate of the point of marginal
secular instability is ¢, = 0.125 (see Hunter 1977). Interestingly, the zero-frequency mode presumably signifying the
exact point of marginal secular instability to two-armed modes is at ¢, > 0.125 when the angular velocity decreases
from the center to the rim. In one example #. = 0.1344 when the ratio of angular velocities is about 6.4.

In the few examples calculated, the eigenfunction of this zero-frequency mode very nearly has the same Eulerian
surface density perturbation 8¢ as that generated by the tensor-virial trial displacement (19). We therefore suggest
that for barotropic stars near marginal secular instability to the two-armed mode, a good estimate of the minimum
value of E. can be obtained using a trial displacement of the form

£ = rA(r)e*, £ = i(A(r) + B(r))e?™, &+ = 0. (20)

The functions A(r) and B(r) are chosen so that (1) the Eulerian perturbation in the surface density 8¢ = f 8pdz is
exactly the same as from the tensor virial displacement and (2) equation (15) is satisfied. They are solutions of

d4 r do
dB r dQ

with B = 0at7 = 0and 4 = 1 at the equator, where o = 0. o
The error in the minimum of E, at marginal secular instability is quadratic in the deviation from the exact minimiz-
ing physical displacement. It certainly seems to be small for reasonable disk models and will hopefully prove to be



No. 1, 1977 CRITERION FOR SECULAR INSTABILITY LS3

small for perfect fluid stars as well. In any case, a sufficient condition for secular instability to two-armed modes is
that E. < 0 for the displacement of equations (20)-(22).

The evaluation of E. is reasonably straightforward except for solving the Poisson equation to find é® from ép.
Explicit solution of the Poisson equation was avoided in the tensor virial method, but usually cannot be avoided here.
The infinitesimally thin disks are exceptions, since the potential perturbation then depends only on 6s and is the
same as for the tensor virial displacement (19). We find

E.= |W|G — 4) + f27rar’dr[(— é% (1 — 49 — 408, (23)

where W is the gravitational potential energy of the unperturbed disk.

A large decrease in Q from the symmetry axis to equator, particularly if the surface density gradient is relatively
less steep (in that the ratio of centrifugal force to gravitational force decreases outward), results in a value of 4
substantially less than one over most of the disk. Then the estimate of ¢, from equation (23) can be as much as 10%-
25%, larger than ¢, = 0.125. An example is the Mestel disk (Mestel 1963), whose linear velocity of rotation is uniform
all the way tor = 0. At = 0, A = % and B = %. A numerical solution of equations (21) and (22) gives ¢, = 0.148.

VIII. CONCLUSION

We have suggested a sufficient condition for secular instability to two-armed modes generated by gravitational
radiation reaction which is valid for differentially rotating stars. The tensor-virial instability estimate, while a suffi-
cient condition for uniformly rotating stars, is neither necessary nor sufficient for differentially rotating stars. Char-
acteristic growth rates of the instability for various types of stars are discussed by Friedman and Schutz (1975a).

The basic formalism of §§ II-IV also applies to multi-armed displacements, with axial eigenvalue m > 2. Friedman
and Schutz (1977b) have shown that all nonviscous rotating stars are secularly unstable via gravitational radiation
reaction to some multiarmed modes, though only to those with m >> 2 when the rotation is slow. However, the char-
acteristic growth time of the instability scales as (R/¢) (Rc?/GM )™*—+V so the multiarmed instabilities are likely
to be astrophysically important only for such objects as neutron stars with R¢2/GM not large compared with 1 and
then only for m = 3 or 4.

The disk models indicate that ¢, can be as much as 209, greater than the tensor virial estimate; if this extrapolates
to stars, the value of ¢. applicable to white dwarfs, say, should be in the range 0.14 < ¢, < 0.17. Multiarmed modes
may make the effective ¢, for neutron stars somewhat smaller than this range; the precise values have yet to be
calculated.

The evolution of a differentially rotating star when viscosity is important and it cannot accommodate its angular
momentum with uniform rotation is a complicated question (see Durisen 1973). As long as the star is dynamically
stable against nonaxisymmetric modes, it is not clear that a significant barlike distortion will ever form. If the star
is or becomes uniformly rotating, the tensor virial criterion is sufficient for secular instability to viscous dissipation
alone (see Hunter 1977; Friedman and Schutz 1977b). Interference between viscous dissipation and radiation reaction
can suppress secular instability (Lindblom and Detweiler 1977).
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