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Summary. We consider the response of a free-mass interferometric gravitational
wave detector to plane gravitational waves arriving from an arbitrary direction
with an arbitrary linear polarization in the long-wavelength approximation. After
deriving the well-known single-detector antenna pattern 7z, we address the
problem of a detector fixed on the Earth observing gravitational wave bursts that
arrive from the direction of the Virgo cluster with random polarization and
random arrival time.

First we calculate the rms sensitivity of a single detector (7 as a function of
its latitude and orientation on Earth. Then we consider coincidences between two
fixed detectors. Let each detector have a threshold X, being the minimum
detectable value of 2. The coincidence probability C clearly depends upon the
thresholds X; and X, of the two detectors. However, we are able to prove a
remarkable result for random burst of gravitational waves, that the mean squared
product of the antenna patterns (7373) equals the average of the coincidence
probability of the two detectors over all thresholds,

2)1/2

1 1
f f C(Xl*: Xz*) Xm*, dXZ*-
0J0

Itis therefore possible to extract meaningful information about coincidences from
the purely geometrical function (7373). We argue that this function probably
underestimates realistic coincidence probabilities, but does so uniformly, so it
allows comparisons to be made between different sites and different orientations
at the same site. By plotting this function for several pairs of likely detector
locations in the USA and Europe for random waves from Virgo, we find a number
of interesting results, among which are: (i) coincidences between detectors in the
USA are very sensitive to small changes in their relative orientations, and (ii) the
coincidence probability between a detector in the USA and one in Europe is
generally a factor of about 2 smaller than probabilities within America or Europe.
We also perform similar calculations for sources randomly distributed on the sky.
Finally, we discuss the implications of these results for the choice of orientation of
the planned detectors and for the numbers of detectors world-wide.
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1 Introduction

Experiments aimed at the detection of gravitational waves, in which changes in the relative
motions of three or more widely separated and nearly free test masses are monitored using laser
interferometers, are now being developed in several laboratories.

The experiments will be sensitive to kilohertz-frequency waves, which are expected to come
from supernovae and other stellar-mass collapse events, the richest nearby source of which is the
Virgo cluster. The detectors will be large (arm lengths of several kilometres) and expensive, and
therefore there are likely to be few of them (=<5 in the world in this century). Once a detector is
built, it will be difficult to move it or even to change its orientation. These detectors have a
quadrupolar antenna pattern, so their location and orientation on Earth affect their sensitivity to
gravitational wave bursts and especially the likelihood of detections of the same event by two or
more detectors. Coincident detections of bursts are crucial, not only in giving more confidence in
the reality of the event but also in providing directional information from the time delays between
detectors. On the other hand, because events may be rare (less than once a month), directional
antennas miss valuable data. Accordingly, in this paper we study the effect that a detector’s
location has on its sensitivity, and the effect that the latitudes, relative longitudes and orientations
of two detectors have on the probability of coincident detections. We find that for relatively close
detectors, such as two in North America, the coincidence probability is rather sensitive to the
orientation of the antennas’ arms relative to the local compass directions, while for one detector
in America and another in Europe, the coincidence probability is rather lower. It is nevertheless
possible to find consistent orientations for American and European detectors that simultaneously
maximize all their coincidence probabilities. Whether this is desirable is something we will discuss
below.

In Fig. 1 we have schematically represented an interferometric detector as a central mass
(labelled 1) and two others (2 and 3) some distance [y away in perpendicular directions, all of them
freely suspended and acting as free particles in the horizontal plane in their response to an
incident gravitational wave. For a complete physical description of such a detector we refer the
reader to the fundamental papers by Drever (1982) and Weiss (1979). While we have drawn the
arms perpendicular to each other, detectors with 60° included angle have been discussed
(Maischberger et al. 1985), and we will accordingly allow for such detectors in this paper.

The response of such a detector consists basically of the change d/ in the relative length of the
two arms (we shall be more precise below). The size of this response depends on a number of
factors:

Figure 1. Schematic diagram of a three-mass interferometric gravity-wave detector.
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(1) The dimensionless amplitude 4, polarization and waveform of the incoming gravitational
waves. The response is linear in 4. The gravitational wave bursts should be unpolarized.
Continuous wave-sources such as pulsars usually emit circularly polarized radiation.
First-generation detectors will probably be sensitive only to bursts dominated by kilohertz
frequencies, but later improvements may allow the study of lower frequencies, e.g. for waves
from pulsars.

(2) The orientation of the detector with respect to the direction of travel of the wave and the
opening angle 22 between the arms. Detectors are linearly polarized and gravitational waves are
transverse. Their relative orientation is determined by the detector’s situation on Earth, by the
location of the source on the sky, and by the time of arrival of the signal (since the detectors are
carried by the Earth’s rotation). We shall refer to these as the geometrical factors affecting the
detector’s response.

(3) The level of noise in the detector and its statistical distribution. In practice a variety of noise
sources will set an effective minimum 6/, on the measurable response §/. We shall make the
convenient but somewhat naive assumption that any 8/ larger than 8/, is detected and any smaller
one is lost.

Our aim is to study the geometrical factors in a detector’s response. Once a detector is sited, its
location and geographical orientation are difficult to change, whereas factors affecting the noise
limits on sensitivity will be continually changed by the experimenters. Other factors are random
or out of the experimenter’s control: the amplitude, polarization, and time of arrival of the waves.
Continuous-wave sources will be local and therefore distributed over the sky. Burst sources can
be detected at larger distances, so we will at first assume that they are predominantly in the Virgo
cluster, although we will see that this does not affect our conclusions much.

We give here a short summary of our methods and conclusions. In Section 2 we study the
response of a single detector to a wave of arbitrary polarization and direction of source, working
in the long-wavelength approximation (reduced wavelength 4/27>arm length /y). The antenna
pattern of the detector, as defined as

)

-z 1.1
e (1.1)

n

depends only on the source and polarization angles relative to the detector’s axes, and has a
maximum value of 1. (If the detector arms make an angle 2Q2, the maximum is sin2L.) It will be
the quantity of most interest to us. In Section 3 we convert this expression to one giving 77 as a
function of the location and orientation of the detector on Earth, the polarization and source
position in the sky and the time of arrival of the wave. By fixing the source in the Virgo cluster and
averaging over random polarizations and times of arrival, we find the rms value of # as a function
of the detector’s latitude and orientation. (The longitude of the detector disappears when we
average over times of arrival!) This allows one to estimate the fraction of events with detectable
amplitudes which a detector will miss because of unfavourable geometrical factors. In Section 4
we turn to coincidence observations with two detectors whose antenna patterns are called 7; and
7,. Without specifying a threshold sensitivity for each detector it is impossible to calculate a
coincidence probability, but in the spirit of this paper we wish to consider only the geometrical
factors. A threshold-independent measure of the relation between 7, and 7, is the correlation
coefficient

(mn2)
(3>

I

o
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of the amplitudes, where angle brackets denote averages over random polarization and arrival
times. This is relatively easy to calculate but it is unfortunately unsatisfactory, since it is linear in
71 and 7,: an event giving large values of 7, and 7, of opposite sign would be regarded by
observers as a coincident detection, but such events tend to reduce the value of 0. We therefore
consider the antenna’s power pattern

X=n (1.2)
and compute the mean overlap of the power patterns
F12=<X1X2>. (13)

We show, in fact, that there is a closer relationship between F;, and the probabilities of
coincidences that one might have expected. Let C(Xj,, X5,) be the probability that if detector 1
and detector 2 have thresholds X, and X,, respectively (having values between 0 and 1), then
they will both be triggered by events randomly distributed in polarization and arrival time. Then
we show that:

1 A
<X1X2)=f f C( X1y, X3,) dXy, dXs,. (1.4)
0 Jo

Thus we may regard (X,X,) as the mean of the coincidence probability over all thresholds.

The calculation of F;, was performed in the algebraic computing language MACsyMA, and
required considerable machine resources. We shall only display it for selected values of its
arguments. In particular we fix the locations of the detectors and plot F;, as a function of their
orientations. We do this only for detectors located in Nevada, Maine, Scotland and Southern
Germany. These are at present the most likely sites for first-generation detectors.

We conclude Section 4 with a discussion of the mean coincidence probabilities for
randomly-distributed burst sources. Here all pairs of detectors have a mean coincidence
probability considerably higher than for Virgo sources. In Section 5 we discuss the results.

2 Single-detector response function

Since all the likely sources of gravitational waves are very far away from the Earth, the signal we
hope to detect will have a very small amplitude and can be considered a plane wave. This allows us
to study the problem by using the linearized version of Einstein’s field equations, which are
derived in most serious textbooks (e.g. Misner, Thorne & Wheeler 1973). In particular, defining
the metric perturbation 4, and its trace-reverse ﬁ,w by

8uv=Nuw+hy,  hy=h,—Yn,hen®, 2.1)

with n,,, the Minkowski metric and | ,, | <1, then Einstein’s equations may be written as follows,
where O=V?%-62%/9t%:
Ohg,=0

i } (2.2)
n“ﬂ hya B= 0

Assuming we work in T.T. gauge (see Misner et al. 1973), i—zm, becomes (in matrix form and for a
wave propagating in the Z direction

00 0 0

- 0 A hyexp(id) O

FamT)=| 0 ) 0 w—k2)] 2.3)
0 hyxexp(id) —h, 0 :
00 0 0
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(see Misner et al. 1973 or Schutz 1985). The coefficients 4, and & are the amplitudes of the two
independent polarizations.

To work out the detector’s response &/ we shall use the equation of geodesic deviation (see, for
its derivation, Schutz 1985)

d2§a
717=ng5 UPUYES, (2.4)

where UPis the tangent vector field to a given geodesic congruence, £%is the connecting vector
field of the congruence and R, is the Riemann tensor for the given Levi-Civita connection. We
may use this equation only if the distance &%is significantly smaller than a wavelength. In our case
only the geodesics associated with the three test masses 1, 2 and 3 are of interest. In our
coordinates the components of U”are needed only to lowest order [any corrections to U#depend
on h,g, and will give higher order contributions to equation (2.4)].

Therefore we can assume

UP=68. (2.5)
Taking into account (2.5) in (2.4) we have

ng_—a

i .6)

In particular it is easy to prove that (see Schutz 1985)
RGo5=0 (2.7)
R =~ 1o R K(ET) 2.8)

where Greek indices run from 0 to 3 and Latin indices from 1 to 3.

Now let us introduce orthogonal Cartesian coordinates x, y, z such that the x—y plane contains
our detector and (somewhat unconventionally) the x-axis bisects the angle 22 between the
detectors’ arms (Fig. 2). This arrangement is the most convenient one for our later discussion of
coincidences. Next we introduce another three coordinates X, Y, Z with the plane gravitational
wave. Z is parallel to the propagation direction of the wave and X and Y are the axes of the

3
north ’
/
y /
/ A
/ -
e,
// X o
west east
south

Figure 2. The relationships of the detector’s arms (dashed lines making an angle 2Q2), the detector’s x—y axes (with
the x-axis bisecting the angle between the arms), and the local compass directions (defining the angle a that we will
use later).
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Figure 3. The relation between the detector’s axes (x, y, z) and the wave’s axes (X, Y, Z). The angles 6 and ¢ are the
usual spherical polar coordinates of the wave’s direction of travel as measured in the detector’s frame. The angle y is
a measure of the polarization angle of the wave; it represents a rotation about the Z-axis. The line N is the line of
nodes, not the local north.

polarization ellipse of the wave. In Fig. 3 we introduce the usual Eulerian angles 6, ¢,y [where 8
and ¢ give the incoming direction of the wave and y is the angle between one semi-axis of the
ellipse of polarization wave and the node direction N (see Goldstein 1965)].

Since the experiment is performed in the (x,y,z) coordinates (the detector’s frame of
reference), it is necessary to introduce explicitly the orthogonal matrix transformation from
(X,Y,Z)to (x,y,2)

coS P cos p—cos dsin @ sin i, —(sin y cos ¢+cos @sin g cos ), sin #sin ¢
(AYy=| cosysin@+cosBcos@siny, —sin y sin ¢@+cos & cos ¢ cos Y, —sin @ cos ¢
sinfdsiny, sindcosy, cosé

where we have adopted the convention [already used in (2.8)] of using capital Latin letters for the
frame (X, Y, Z) and lower case for (x,y, z).
From equations (2.6), (2.7) and (2.8) one deduces that

d2K

2 =%k KO ER, (2.10)

and from equation (2.9), for the orthogonal transformation A, we have

E=ARER and EX=(A)fE.
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Consequently from (2.10) we easily get
d* _ .
— =—1 ARRRATI(ANKES, (2.11)
’ ,

At the order of & we are working with, we can assume £'(£)=£'(0) on the right side of (2.11) since
any corrections to £’ depend on 4;; and will give higher order contributions to (2.11). The Fourier
components of (2.11) in the band of frequencies of interest therefore obey the equation

O&'=—1s ARhRTTI(ANKEI(0). (2.12)
The change in length of any one arm is easily found in terms of the unit vector n; parallel to it
Sl lo=—=12[(Ax Ay — Ay A b, + (A Ay — Ay Ay ) exp (i8)hs ] n;n;. (2.13)

The quantity measured by the interferometer is 6/, the difference between the values of 6/, for the
two arms. Given that the arms have unit vectors (cos , —sin Q, 0) and (cos @, sin Q, 0), we find

Ol/ly=—sin2Q[(Ax Ax— AYAY)h, +(Ax AV + Ay A%) exp (i8)hy]. (2.14)
Let us consider two extreme cases for the gravitational waves:

(1) If the waves are linearly polarized then without loss of generality we may take 4, =h>0 and
h.=0. Then (2.14) becomes

Sl=sin 2Q[cos 2¢ sin 2y cos B+ V2 (1+cos? ) sin 2¢ cos 2y | lph. (2.15)

This is equivalent to expressions already obtained by others (e.g. Estabrook 1985, Weiss
(unpublished) and Forward 1978), when account is taken where necessary of the different
orientation of the x—y axes with respect to the detector’s arms that we have adopted.

(ii) Circularly polarized gravitational waves. In this case, let us assume h.=h,=h>0 and
0=x/2 in (2.3). Equation (2.14) is rewritten as:

Sl=[V2sin 2¢(1+cos? §)+icos 2¢ cos 8] exp (—2iy) hlysin (2Q). (2.16)

Notice that (2.15) and (2.16) are periodic in ¢ and ¢ with period 7z, and in fact d/ just changes
sign as either angle increases by sz/2. This reflects the quadrupolar nature of the detector (¢) and
the polarization of the wave (y).

In Fig. 4 we have plotted contours of equal value of 6//hl, for a linearly polarized gravitational
wave having 1 =0°. Not surprisingly, the antenna pattern attains local maxima for 8=0°, 180° and
¢=45°, 135°, i.e. when the wave is incident normal to the plane of the arms with the same
polarization as the detector. When ¢=0°, 90° our function is identically equal to zero,
independently of £. Physically this is due to the fact that the vibration direction of the wave makes
equal angles with the detector’s two arms in the plane (x, y) and therefore implies 6/;=4dl,.

In Fig. 5 we have considered again a linearly polarized gravitational wave with ¢=45°. From
the figure we see that at #=90° (wave incident in the plane of the detector) our function is
identically equal to zero, for all ¢ values (for all direction in this plane) and, at the same time,
when ¢=45°, 135° (i.e. when the wave is incident in the plane containing one arm of the detector
and perpendicular to the other), it is zero for all  values. The explanation of these facts is again
clear from symmetry arguments. The maximum value for ¢ =45° is reached when 6=0°, 180° and
¢=0°, 90°, which is physically the same configuration as the maximum in the case y=0°: a wave
incident normally to the detector’s plane and with the same polarization as the detector.

Finally, in Fig. 6 we have plotted |6l |/lyh, from (2.16), for a circularly polarized gravitational
wave. As we may see, our function has two zeros: €=90°, ¢=0° and 90°. At §=0°, 180°, it is
constant and equal to 1 because the gravitational wave’s plane and that of the detector coincide. It

© Royal Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1987MNRAS.224..131S&amp;db_key=AST

\l\\\ 408

. \ - 00 -.6e0 T

/ -.409 \ e
° ..899

- 00
— " \\ \n,»ss / /
—]——-.608 a0 80, - _ eeg-
‘\\I\\\ /
~.49@ o ee 00y -
- - .208 00z -

ooy —— '
] 8ag mmb. \\\l
o
] // & .
&

2
— &0 ®

: $

o6 gy . 8eg
: \‘1 [

e 400 T T [CEp—

B. F. Schutz and M. Tinto
|

138

\LSIET . Jneg QVANAILB6T .

0°, as given by

Figure 4. Contours of the antenna pattern 77 defined in (1. 1) for a wave having linear polarization, ¥
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Figure 7. The relations among the detector’s axes (x, y, z), the Earth’s axes (x’, y', z') and the wave’s axes X, Y, 2).

Here 8 and y are the detector’s latitude and longitude, respectively, and « its orientation as in Fig. 2. AsinFig. 5, the
angles & and ¢ give the incoming direction of the wave, but here this is measured with respect to the Earth’s axes.
Again, the angle y determines the polarization angle of the wave. Since ¢ and y are angiesin the same (x’, y') plane,

only ¢—y is relevant to the wave-detector interaction.
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is important to observe that the function |61|/hl, for a circularly polarized gravitational wave is
exactly twice the square root of the function 6/ 2/h*13 of a linearly polarized gravitational wave,
averaged on the polarization angle . For simplicity we shall limit our attention only to linearly
polarized gravitational waves. We will return to elliptical polarization in a future paper.

B. F. Schutz and M. Tinto

3 Response of a detector as a function of position on Earth

Now we introduce a third set of coordinates to allow us to place our detector in a given position on
the Earth, at latitude 3, longitude y and with its bisector making an angle a with the local meridian
(see Fig. 7).

In Fig. 7 the angles (6, ¢, ¥) are the Euler angles of the orthogonal transformation from the
previous axes (X, Y, Z), associated to the gravitational wave, to the orthogonal axes (x',y’, z')
centred in the Earth and having the z’-axis parallel to the Earth’s rotation axis; from now on they
will be referred to as the Earth’s axes. If we define A to be the orthogonal transformation from
(X,Y,Z2)to (x',y',2'),

A: (X, Y,Z)->(x',y',2"),

and B the transformation from (x’,y’, z") to (x,y, z):
B: (x',y',z")—>(*,y,2),

then we deduce

C=B-A: (X,Y,Z2)—>(x,y,2).

g | | Lo Ly ! IS N N T
. 300 .300 .308 . 300 . 300
.7 —
—— 325 .325 .325 .325 .325
——— 350 .350 .350 .35 .350 -
5 375 ————— 375 375 —————— 375 .375
. __ agp — %88 ——— __ 455 . .400 408 ——
ey S s A3 azs — |
—
e A0 sy 450 s
3— 75 S =
S
7 58 7
- — .508 -
“l \ \
=K —
L]
v — 25\ -
Q. 3
-. 1 —
o 0
| Seg ___——" -Sep — -
.475 —
T, — — a1 T
~ 3 S . 475 475 ——
. —_— e — —
459 __ . a5@ < — P 458 T
A 425 gy 2 —— e 25 T
_ S_KJBB 4gp — %00 ——  app - — —— .408 —
378 — 375 —————— 375 ————— . 375 — ———— 375 —
— .350 .350 .358 .350 L3586 ——
7 .328 .325 .325 .325 325 ——
. 300 .300 .3Jee . 300 .30 ———
-.9
I | T ] T | I ] 1 I I | ] | I | I
.0 .2 .4 .6 .8 1.0 1.2 1.4 1.6 1.8
2

a-10"

Figure 8. The rms antenna power (X /2 for waves coming from the centre of Virgo (6=102°), averaged over arrival
times and polarizations, expressed as a function of the latitude £ and orientation & of the detector. Above +40°
latitude the curves are insensitive to orientation.
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We take the angles in A to be the same as before.
The explicit form of B is obtained from A’ by replacements

¢—y—37/2, y—a—-x/2 and O->x/2-0:

cosasinfcosy—sinasiny, sinacosy+cosasinfsiny, —cosacosf
B=| —(cosasin y+sinasinf cos ¥), —sina sin fsin y+cos @ cos ¥, sinacosf |.
cosfcos y, : cosfsiny, sinf

The expression for 8/ is the same as (2.14) with A replaced by C=B- A, and the C) are now
functions of a, 5, 6, y, and (y—¢). Without any loss of generality we can take y=0 for a single
detector, replacing changes in longitude by changes in the direction of the incoming wave.
Because we average on the angle i we shall assume

h.=0, hy=h>0,
and consequently we have
n=0l/lph=sin2Q(C% C%— C} C%). (3.1)

Over a large number of observations we can expect the time of arrival and polarization of the
gravitational waves to be random. We therefore take the angles ¢ and  to be random variables
uniformly distributed on the interval (0,2x) and evaluate the following expectation value

ol 241/2
<X)1/2=<<l—h>> =F(a,p. ). (3.2)
0

We note that, trivially,

m={=-)=0 (.3
ny= I =0. .
Using MacsyMa on the University College, Cardiff Honeywell DPS-8/70 M we have calculated
the function F(a, B, 6) for the special case of waves arriving from the Virgo cluster, for which

6=102°

for the incoming plane gravitational wave.

In Fig. 8, we have plotted contours of equal values of the angular function F(a, £, 102°) for a
fully open detector, 2Q=90°. (We remind the reader that & and § are respectively the orientation
and the latitude of the detector.) In particular we observe that the function is perfectly symmetric
with respect to the equatorial plane. This is because two detectors with the same orientation & and
at opposite latitudes  and — g will assume symmetrical positions with respect to the direction to
Virgo at times 12 hr apart.

The maximum value of the sensitivity is at #=0 (on the Earth’s equator) and at the +
orientation with respect to the Earth’s coordinates, that is =45°, 135°. Going towards higher
latitudes, our function smoothly decreases; above a latitude of 40° it is very insensitive to the
orientation angle «. In Figs 9 and 10 we have plotted the same angular function evaluated at
#=96° and 108° respectively, which correspond to sources on the fringes of Virgo. At the middle
latitudes at which the first detectors will be built, the antenna power patterns do not differ
significantly for these different source directions. Accordingly, in our discussion of coincident
observations in the next section we will take all sources in Virgo to be at §=102°.

What information about detectors do Figs 8—10 contain? The values of the rms antenha power
are to be compared with the maximum value attainable when the wave and antenna are optimally
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Figure 9. As Fig. 8 for #=96°, for sources on the fringe of Virgo. Above +30° latitude there is little change from
Fig. 7.
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Figure 10. As Fig. 8 for #=108°, for sources on the other edge of Virgo. Again there is little change above +30°
latitude.
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aligned, which is 1. Thus a detector at 45° (New England) will have on average about 40 per cent
of its optimum response to gravitational waves of a given amplitude. Put another way, such a
detector will have a good chance of detecting only those events that arrive with an intrinsic
amplitude 4 that is two and a half times as large as the detector’s threshold.

To use these figures for detectors with acute opening angles 29, all values should be multiplied
by sin2€2. Conclusions about relative sensitivity are unaffected.

If sources are isotropically distributed on the sky, then an antenna’s location and orientation do
not affect its sensitivity. The value of ( X') averaged over , ¢ and 8 (with 8 weighted by sin &, of
course) gives an rms sensitivity

1/2 1
(X s, 6= —\E=0.447. (3.4)
So a detector in the latitudes 30°-50° is about as sensitive to isotropic sources as to Virgo
sources with the same amplitude at the Earth.

4 Coincidence experiments
4.1 COINCIDENCE AND CORRELATION FUNCTIONS

Independent detections of any given gravitational wave event by different detectors is vital for its
reliable identification as a gravitational wave. This is because the events may not be much larger
than the noise level. In Gaussian noise a 5o excursion will be likely once in every 7x10° sampling
times. For a kilohertz detector the sample time is of the order of a millisecond, so So events occur
five times an hour. Real gravitational wave bursts occur once a month or so, and may not be more
than 50 in amplitude for the first detectors. Independent detectors on the same site provide one
way of increasing signal-to-noise, but the extra signal from another detector located elsewhere
will probably also be necessary. Moreover, from the time difference between the two detections
one can infer a circle on the sky from which the event must have come.

As we remarked earlier, the probability of coincident observations of a given event depends
not only on the geometrical factors (overlap of antenna patterns) but also on the thresholds of the
detectors relative to the amplitude of the wave. We will now show that there is a remarkably
simple relationship between the geometrical factors and the mean of the coincident probability
over all the thresholds. Suppose that gravitational wave events, of a given amplitude # and from a
fixed location in space (e.g. Virgo), are distributed in arrival time (or apparent hour angle ¢) and
polarization angle 3 with a probability distribution p(¢, ¥). Then the mean antenna power
pattern of antenna 1 is

2T P2
(Xy)= fo fo X,(¢, ¥)p(p, v) dp dy @.1)

and similarly for antenna 2. This is the square of what we have plotted in Figs 7-9, assuming
p=1/47%. Let Xy, be the threshold of the squared amplitude, the minimum detectable value of
(61,/hly)?. The single-antenna detection probability for a given 4 is

S1(X14)= p(9,y) dg dy, (4.2)

X1> X1

where the integral is over the region of ¢—y space in which X; exceeds X;,. The coincidence
probability is

i Xo)=[  p@.w)dpdy, @3)

Xo> X4

© Royal Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1987MNRAS.224..131S&amp;db_key=AST

rTI87TMNRAS. 2747 “I31T

144 B. F. Schutz and M. Tinto

Now consider the mean of the product of the antenna power functions:

(X, Xa)= [ Xy, ) X, W)p(, ) dp . (4.4)

Let us change variables of integration to X; and X, themselves. Denoting the Jacobian of that
transformation by

J=03(p, )/ 0(X1, X2), (4.5)

we can write (4.4) as
1 et

(X1X2>=f j X Xop|J|dX, dX,. (4.6)
0 Jo

The limits of integration are the extreme values that X can take. Now we integrate this by parts on
X; to get

1 1 _ X1=1 1 1
<X1X2>=f Xz[_<X1J pl7| Xm) +f (J
0 X X,;=0 JO X

The integrated terms vanishes at both limits. After a similar integration on X, and a change of
notation X;—Xi,, X;— X; (and similarly for X;) we obtain:

1,017,101 (1
(X1X2>=J J (f f plJldx; dXz) Xy, dXss.
0oJo \Jx.Jx,.

By comparison with (4.3), we can see that this is

p|J|d)"(1> Xm] dX,. 4.7

1

1 01
F12=<X1X2>=f f C( X1, Xo4) d Xy, d X, (4.8)
0 Jo

Thus, the mean overlap of the antenna power patterns (X;.X>) is the same as the average
coincidence probability, i.e. averaged over all possible thresholds X;, and X,,. Given that
detector thresholds are likely to change with time, it is not unreasonable to be guided by ( X;.X;)
when choosing a site for an antenna.

4.2 INTERPRETATION OF THE MEAN COINCIDENCE PROBABILITY

In Figs 11 and 12 we plot contours of constant (X;X,) for a number of pairs of detectors. The
values of (X;X,) are typically 3—6 per cent, which might suggest that the probability of a
coincidence between two detectors is very small. This is not correct, however. The coincidence
probability depends on the thresholds X, and X,,: thresholds near zero mean that the signal is
strong relative to the noise level, and it will therefore be detectable almost regardless of what
direction it comes from. Thresholds near 1, on the other hand, mean that the signal is relatively
weak, and it will be detectable only in a narrow range of incoming directions and polarizations. So
thresholds near 1 have low coincidence probabilities. Now consider the averaging over thresholds
in (4.8). The integral is over a unit square in X; ,—X,, space. Current detector design anticipates
that X, will be less than 0.25 for bursts of amplitude #=10"2!. For such a case, expected
thresholds will be in the sixteenth of the square nearest the origin, where coincidence
probabilities are highest. The average in (4.8) therefore weights low coincidence probabilities too
strongly for this (hopefully realistic) case.
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Figure 11. (a)—(f) display contours of constant { X; X, ) as functions of the orientations of various pairs of detectors,
for sources in Virgo. See the text for a full discussion.
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Figure 12. As Fig. 11 but for sources isotropically distributed on the sky.
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Figure 12—continued
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By how much does ( X X, ) underestimate the expected coincidence probability? A full answer
to this requires a calculation of actual coincidence probabilities, which we plan for a subsequent
paper. But here we can do a simple calculatation that will give us some idea of how to scale ( X; X,)
to make it more realistic. Consider two identical antennas next to each other, on the equator,
both in the ‘+’ orientation, and receiving bursts from a source directly above the equator. In this
case the coincidence probability is the same as the signal-detector detection probability, which
can be found from (2.15). As the Earth turns, the source scans through 8 for ¢ =45°, and its
polarization ¢ is random. So the coincidence probability is the fraction of -1 space in which
|8l/1yh|*> X .. For X,,=0.25, it is not hard to calculate that this is 47 per cent. On the other hand,
the value of (X, X,) is the mean value of | //lyh |* over the same space, which is 16 per cent. So in
this case (X;X,) underestimates the coincidence probability for X, =0.5 by a factor of 3. Now,
more realistic pairs of antennas have lower coincidence probabilities, but this is due to the
geometrical factors that (X;X;) is sensitive to. We believe, therefore, that for any pair of
antennas the mean coincidence probability is probably about a factor of 3 smaller than the true
coincidence probability for X;,=X5,=0.5. On the other hand, we expect that the relative
coincidence probabilities (i.e. between different baselines and different orientations) are
well-represented by the relative mean coincidence probabilities. This should be borne in mind
when reading the next two sections and studying Figs 11 and 12.

4.3 COINCIDENCES FOR BURSTS FROM VIRGO

In Fig. 11(a—f) we plot contours of constant (X; X,) for a number of interesting cases where the
source of the waves is the Virgo cluster. We fix the locations of two detectors and plot {( X; X, ) as a
function of their orientations ; and «,. (Recall that « is the angle between the antenna’s bisector
and the local east direction. Thus, a ‘+’ orientation is =45° and a ‘X’ is 90°.) Because of the
quadrupole nature of the detector, we need only have plotted the figures for 0°<a<90°, but we
have gone up to 180° for clarity. Maxima in these plots are optimum orientations for coincidences.
Although, as we have remarked, we have calculated ( XX, ) analytically, we do not reproduce it
here because of its complexity. Any reader who wants a computer printout of it may obtain one by
writing to the first author (BFS).

Because there are so many independent variables in ( X; X, ), we have had to specify some to get
understandable plots. In doing this we have been guided by the principal detectors currently
being developed. Thus we have explored baselines among Nevada, Maine, Scotland, and
southern Germany. The figures do not change much if a detector is moved a few degrees, such as
from Nevada to southern California. The six figures, 11(a—f), describe the six independent
baselines among these four sites. The figures assume detectors with perpendicular arms,
2Q,=2€2,=90°. The more general case can be obtained simply by multiplying the contour values
by sin®2Q,sin’2Q,. (This is why we have used the bisector to specify the orientation a.
Measuring a from one of the arms would make the transformation of Fig. 11 to the general case
more involved.)

Fig. 11(a) refers to detectors in Las Vegas, Nevada (a;) and Cherryfield, Maine (,). The
maximum mean coincidence probability is about 5 per cent, for a;=75°, a,=50°, but any pair
satisfying a,=a;,—22°+6° gives ( X; X, )>4.5 per cent. The most likely value of @, seems to be 72°
(dictated by geography) for which the optimum value of a; is about 4°, i.e. basically a ‘X’
orientation. If a; is 20° away from optimum the mean coincidence probability falls by about a
quarter. In the worst case, with &y as much as 45° from optimum, the coincidence probability is
below 2 per cent, a drop of more than half. Remember from our discussion in the last section that
the coincidence probabilities should be scaled upwards by a factor of 3 to make them more
realistic. This means we can expect roughly one event in six from the Virgo Cluster to register on
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both detectors if its amplitude is twice the threshold and if the two detectors are optimally
orientated.

Fig. 11(b) is analogous to Fig. 11(a) but for detector 1in Las Vegas and detector 2 in Glasgow.
If the Las Vegas detector has @;=4° in order to get the best alignment with Cherryfield, then the
best value of @, is 20°, where ( X7 X, )=2.6 per cent. This is in fact the largest value of ( X; X, ) in the
diagram. If a, is 45° (a ‘+’ orientation) then this falls to about 2.2 per cent. These values are
substantially smaller than for the Maine—Nevada baseline: for sources in Virgo, coincidences
between Nevada and Scotland are perhaps half as likely. As a rule of thumb, we can infer from the
figure that the best value of a, for a given a; is a,=(a;+5°) for —5°<a;<40° and a,=2(a;—40°)
for 40°<a;<85°. This relation has a slope of 2, in marked contrast to the relation for all the other
pairs of detectors. This presumably is due to the fact that the planes containing these two
detectors are very nearly orthogonal, but it also has to do with their orientation relative to Virgo,
since Fig. 12(b) does not show this.

Fig. 11(c) refers to the Las Vegas—Munich baseline. Here the best orientation for Munich is
a,=10°if a@;=4°, and the value of (X, X, ) is about 3.2 per cent, a bit higher than for Glasgow-Las
Vegas and again optimum over the whole diagram. Significantly, given @; the optimum a; is
a,=100°—a;, a line of the opposite slope to those in the previous two figures. This is because
these detectors are a bit more than 90° apart on a great circle, so a rotation of one is compensated
by a rotation of the other in the opposite sense. (Consider two detectors on opposite ends of the
Earth diameter.)

Fig. 11(d) is for the baseline from Maine (;) to Scotland («;). These detectors are relatively
close, so the line of optimum alignments is again of slope 1, a,=a;—35°. If we again take a;=72°
then the best value of @, is between 30° and 35°, where ( X; X, )=2.8 per cent, nearly the maximum
over the whole diagram. This is not far from the optimum Glasgow orientation for Las Vegas,
which we saw was 20°. A compromise value of 25° would make the three detectors nearly mutually
optimal.

Fig. 11(e) refers to the Maine~Munich baseline, with Munich as detector 2. Again we have a
line of optimum angles with a slope of 1, a,=a;—45°. If ;=72° then the best value for a, is about
25°, giving ( X; X, )=2.9 per cent. If Munich is orientated at 10° to give the best coincidence rate
with Las Vegas, then this value falls to 2.4 per cent. A value of @,=15° seems a good compromise,
again making the triplet Las Vegas—Maine—Munich mutually optimum.

Finally, Fig. 11(f) treats the European baseline, Glasgow (a;) to Munich (a;). Not
surprisingly, for such close detectors all the contours have a slope nearly equal to 1, with an
optimum a,=a,—10°. The optimum value is, however, only about 3.5 per cent. This is low
compared to the American baseline, Fig. 11(a), not because the detectors do not overlap well, but
because at European latitudes the detection rate for events from Virgo is lower than at American
latitudes. It is interesting, however, that the orientations of these two detectors that are optimum
for coincidences with the American ones, a;=25° and a,=15°, are optimum here as well. It is
therefore possible to orient all four detectors in such a way that they are mutually optimum for
coincidences.

In a future paper we will investigate what this implies for the double, triple, and quadruple
coincidence rates.

4.4 COINCIDENCES FOR ISOTROPICALLY DISTRIBUTED BURST SOURCES

In Fig. 12 (a—f) we draw contours of constant

1 JT
(X1X2),9=Ef (X1X,)sin6dé, (4.9)
0
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which is the mean coincidence rate for sources isotropically distributed over the sky. The figures
treat the baselines in the same order as Fig. 11(a—f). The maximum probabilities are higher here,
by more than a factor of 2 for the European baseline. Given that the Maine detector is at 72°, the
best orientations of the others may be deduced from the figures: Las Vegas, 12°; Glasgow, 10°;
Munich, 0°. These are again a set of orientations which are nearly optimum for all baselines. They
give mean coincidence probabilities for the various baselines as follows: Maine—Nevada, 6.5 per
cent; Nevada—Glasgow, 4.4 per cent; Nevada—Munich, 4.1 per cent; Maine—Glasgow, 5.8 per
cent; Maine—Munich, 5.2 per cent; Glasgow—Munich, 8 per cent. The trans Atlantic baselines and
especially the European baseline have much improved coincidence rates for isotropic sources.
But the orientations that are best here are not the same as for sources in Virgo. If there is
flexibility in orientating the detectors on the sites that are eventually chosen, the choice of
orientation may depend upon which type of source is regarded as most likely.

5 Conclusions

Our principal theoretical result is the proof of (4.8), that the threshold averaged coincidence
probability for two detectors equals the mean of the product of their antenna power patterns. This
allows one to use threshold-independent criteria for judging the likelihood of coincidences
between detectors. The figures we have prepared contain considerable information of use both in
planning detectors and in interpreting observations. They raise a number of questions about the
choice of orientations and the strategy regarding coincidence observations. We shall just make a
few remarks on these questions here. It is too early to draw firm conclusions.

If, as our calculations suggest, the coincidence rates for marginal events (twice the amplitude
threshold) are between 10 and 15 per cent for sources in Virgo, and between 20 and 30 per cent for
isotropically distributed sources, then it is clear that two detectors in America, say, will miss a
substantial fraction of the events. If only one other detector is built in Europe, then the
orientation ought to be chosen to maximize coincidences with the American ones, since mutually
optimum orientations are available. But if two detectors are built in Europe, two different
strategies are possible: they can be orientated either to maximize coincidences with the American
ones and with each other or to minimize transAtlantic coincidences while maximizing European
ones.

The motivation for this second strategy, which we shall call ‘complementarity’, is to catch some
of the events that the American detectors miss. How many events would be caught this way
cannot be deduced from our present calculations, since it depends on the thresholds. But it is
conceivable that the network as a whole could detect twice as many events as the American
baseline alone would see. More than this seems unlikely in view of the intrinsically lower
coincidence rate of the European baseline.

The advantages of the first strategy, of aligning all detectors mutually optimally
(‘supplementarity’), are that it (i) enhances transAtlantic double coincidences, and (ii)
presumably enhances the rates of triple and quadruple coincidences. The extra transAtlantic
doubles may make up in part for the ones lost by not adopting complementarity. But its principal
and possibly decisive advantage is in the importance of triple coincidences. Since the two
European detectors would be relatively close together, they should see mostly the same events.
So a transAtlantic double coincidence is very likely to be a triple, and a coincidence involving
both American detectors and at least one European one would also very likely turn out to be a
quadrupole.

Triple coincidences are desirable for two main reasons. First, they give added confidence that
an event has occurred. If events are not otherwise corroborated (such as by the subsequent visual
detection of a supernova), this could be crucial. It is conceivable that there are large gravitational
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wave events which are not accompanied by large electromagnetic emissions, and triple
coincidences would be helpful in their identification. The second reason is that one can get much
more useful information from a triple observation: two independent time-delay observations
pinpoint the source on the sky, and the three amplitude observations contain redundant
information for determining 4 and the polarization 3. This redundancy would allow a test of
general relativity, such as of the transverse nature of the polarization or the speed of the wave.
Triple coincidences are therefore much more desirable than doubles.

The importance of triples, plus the fact that any three detectors are unlikely, by the present
calculations, to have a triple rate of higher than 20 per cent for X,=0.25, means that it is very
important that there be at least four detectors world-wide. Four detectors have four independent
triplets, which must enhance the triple coincidence rate by something like at least a factor of 2.
Further detectors are also highly desirable. In this regard it is heartening that a group in France
has begun to make plans for a detector. A further detector widely separated from the others, such
as in Asia or the Southern Hemisphere, could make a significant increase in the sensitivity of the
network as a whole.

The rates of triples and the fraction of all events that a given network of detectors will see
cannot be inferred accurately from the present calculations. We are currently calculating actual
coincidence rates (doubles and triples) as functions of the thresholds of the detectors in various
orientations, among them the preferred orientations determined by the present paper. Without
limiting the orientation freedom in some way, coincidence-rate calculations have too many
independent variables to be tractable. In that sense, the present calculations are a natural
precursor to the full coincidence-probability calculations we shall publish subsequently.

Acknowledgments

We thank Ron Drever, Jim Hough and Albrecht Riidiger for very helpful comments on an earlier

version of this paper. Massimo Tinto acknowledges the support of the Italian Ministry of
Education.

References

Drever, R. W. P., 1982. In: Gravitational Radiation, eds Deruelle, N. & Piran, T., North Holland, Amsterdam.

Estabrook, F. B., 1985. Gen. Rel. Grav., 17, 719.

Forward, R. L., 1978. Phys. Rev. D, 17, 379.

Goldstein, H., 1965. Classical Mechanics, Addison-Wesley, New York. i

Maischberger, K., Ridiger, A., Schilling, R., Schnupp, L., Shoemaker, D. & Winkler, W., 1985. Vorschlag zum
Bau eines grossen Laser-Interferometers zur Messung con Gravitationswellen, MPQ 96, Max-Planck-Inst. fiir
Quantenoptik, Garching.

Misner, C. W., Thorne, K. S. & Wheeler, J. A., 1973. Gravitation, W. E.. Freeman & Co., San Francisco.

Schutz, B. F., 1985. A First Course in General Relativity, Cambridge University Press.

Weiss, R., In: Sources of Gravitational Radiation, ed. Smarr, L., Cambridge University Press.

© Royal Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1987MNRAS.224..131S&amp;db_key=AST

