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A variational expression is used to prove that all axisymmetric modes of the Kerr se-

quence of rotating black holes are stable.

Recent theorems of Hawking! and Carter® indi-
cate that the Kerr family of rotating black holes
is likely to be the unique end point of any gravita-
tional collapse in which an event horizon forms.
The stability of these configurations is therefore
a question of some astrophysical interest, at
least to the extent that such collapse is itself a
common occurrence. Numerical calculations by
Press and Teukolsky® indicate that the entire
physical part of the Kerr sequence (angular mo-
mentum < M?G/c) is in fact stable, but as yet, no
analytic proof has been found. In this Letter we
report a proof that all axisymmetric modes of
the Kerr sequence are stable. Full details will
be published elsewhere.

There are three steps to the proof. We show
first that the linearized field equations form a
self-adjoint system for unstable axisymmetric
modes, whose eigenfrequencies are therefore
purely imaginary. Then, by examining some
analytic properties of Teukolsky’s®* equations, we
find that the eigenfrequency of each such mode
varies continuously along the Kerr sequence. We
infer that instability in an axisymmetric mode
can only set in when its frequency vanishes, an
eventuality which we exclude by invoking Carter’s
theorem?

The Kerr metric has the form

ds? = = (®)2 + (W2 + (w?)? + (W®),
where, in Boyer-Lindquist® coordinates,

w® =(Ap2/D)”2dt,

. D\"2( 2May
w’=sm9<?) <d(p- 5 4t),

wz - (pz/A)I/ZdT,

w*=pdb,

and where

p®=7%+a?cos?f,
A=72-2Mr+d,
D=(7%+a%? - a®Asin®6.

The Kerr parameters M and a are the mass and
specific angular momentum of the solution they
index, which has an event horizon at r=7_,=M
+(M? = a®*2, The one-forms w? are a pseudo-
orthonormal basis of locally nonrotating observ-
ers. All tensor indices below will refer to that
basis; Latin indices run from 0 to 3 and Greek
indices from 2 to 3.

Chandrasekhar and Friedman® derived a varia-
tional principle for the equations governing axi-
symmetric perturbations of any axisymmetric
stationary solution of Einstein’s equations. When
no matter is present, their action can be written
in the gauge-independent form

I=fdtlh, *6G+ 6Go*6G], (1)

where %;; is the perturbation in the metric, and
060G 1is the corresponding first-order perturba-
tion in the Einstein tensor. The quadratic func-
tional I has two important properties: First, it
is Hermitian apart from integrations by parts
over the spatial variables; and second, in a gauge
where #,,=0, only second time derivatives ap-
pear.

Suppose now that %;; is a solution to the per-
turbed field equations, so that /=0; further,
choose a gauge in which /%,,=0, and assume a
time dependence of the form e ~*°* for some com-
plex eigenfrequency o. Then, solving the equa-
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tion /=0 for the squared frequency we find

o= lim |, "dr Ja@Bh,*, b, )+ {Ja@stn, =, 0, )}, 2N, "ar Jaga,x, 0, )0%, (2)

oy

where the quantities A and B are Hermitian and
S anti-Hermitian in their arguments. By a fur-
ther gauge condition, for example, %#,“=0, A
can be made manifestly positive definite.” The
integrals of A, B, and S are evaluated on a hy-
persurface ¢{=const; they generally diverge as
r=7v,, but the ratio of numerator and denomina-
tor in Eq. (2) is constant for all 7.

Because A and B are both real, the imaginary
part of 0® comes from the surface term S. This
reflects the fact that S is a measure of the radia-
tion crossing the surfaces at » and at infinity.
We will now show that for unstable modes, the
contribution to o® from these surface terms van-
ishes, and that ¢® is therefore real.

In the asymptotically flat region far from the
horizon, the modes have the behavior 4;;~» ™
X exp|-i0(¢ =7 — 2M1In7)]). Then unstable modes
(those for which Imo >0) fall off exponentially in
7 on the hypersurface {=const, from which it fol-
lows that the surface term at spatial infinity
vanishes. A detailed analysis of the linearized
equations near the Kerr horizon shows similarly
that the integral $§dQS on a surface at »=7,+ ¢
vanishes like £241m9ag y~y,, In the limit Imo
-0 the surface terms are finite and nonzero but
the integral of the quantity A diverges, so that S
again makes no contribution to ¢®. (Presumably
these results do not depend on the precise nature
of the Kerr horizon, and should be true, for ex-
ample, of a horizon distorted by a distribution of
mass outside it.) Thus the system of linearized
equations is self-adjoint for unstable modes; o2
is then real, and o=1b for b real and positive.

We can now state the following lemma: If the
unstable part of the trajectory o(a/M) of some
axisymmetric mode is a continuous function of
a/M along the Kerr sequence and has no endpoints
for a <M, the instability in the mode must set in
when its eigenfrequency vanishes (when o=0).
The lemma follows immediately from the above
considerations and the fact that all modes of the
Schwarzschild solution (a/M =0) are stable.®? We
may also note that because a formula of the form
(2) can again be derived from an analogous varia-
tional expression when matter is present, a sim-
ilar lemma applies to the axisymmetric modes
of axisymmetric stellar models. That is, if the
eigenfrequencies are continuous along some se-
quence of stellar models, then instability can set
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in only via a zero-frequency mode.

We must now prove that no eigenfrequency ap-
pears on the imaginary axis in a discontinuous
way—without its first having passed through the
origin, ¢=0, for some smaller value of the se-
quence parameter a/M. One way to do this is to
examine Teukolsky’s? decoupled and separated
equations for the Weyl tensor component ¢,. The
separation of variables gives two characteristic-
value equations for the eigenfrequency o and for
an angular eigenvalue A. In each case, the con-
dition that a particular A and o be eigenvalues is
that the Wronskian of the solution regular at one
end of the domain with the solution regular at the
other end vanish. Thus if ©,(a/M, 0, 0) is the so-
lution to the angular equation regular at 6=0,
and © ,(a/M, A, 0, 6) is the solution regular at 6
=m, A and o will be eigenvalues when

fla/M, A, 0)=W(©,, ©,)=0. (3)

Analogously, it R, (a/M, A, 0, 7) is the solution

to the radial equation corresponding to waves in-
going at the horizon, and R.(a/M, A, 0, 7) the so-
lution corresponding to waves outgoing at infinity,
the eigenvalue condition is

gla/M, A, 0)=W(R,,, R.)=0. (4)

T4

Following a method given, for example, in
de Alfaro and Regge,® one can construct Born
series for R,,, R,, ©, and @, that are uni-
formly convergent and term by term analytic in
A, in a/M for lal<M, and in ¢ for Imo >0. There-
fore R,,, R., ©, and @,, together with their
Wronskians f and g, are similarly analytic.
Then if (a,/M, A,, 0,) is a solution to Egs. (3)
and (4) for 0,=4b (b >0) and for a, <M, there must
be a continuous set of solutions for nearby values
of a/M. For if f (a/M, Ay, 0,)#0, Eq. (3) can be
locally inverted to give A = F(a/M, o) with F ana-
lytic, whence the analyticity of gla/M, F(a/M, o),
0) guarantees a continuous solution o(a/M) near
a,/M. If, on the other hand, f,4=0, then A as a
function of ¢ has either a branch point or a pole.
We exclude poles by noting that when o=14b, A is
real and positive; it is then easily shown that the
radial equation has no solutions for sufficiently
large A. In the neighborhood of a branch point,
on the other hand, there will be a solution of the
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form A =H(a/M)o -0,)%, and again the equation
g(a/M, Ha/M)(o —0,)%, ¢)=0 has a continuous
solution for nearby a/M. Thus no trajectory can
have an end point on the positive imaginary axis
(except possibly at ¢/M=1) and the eigenfrequen-
cy of any unstable mode must have passed through
0=0.

Finally, we observe that Carter’s theorem ex-
cludes such modes. That is, Carter proves that
there are no stationary axisymmetric perturba-
tions of Kerr. But if /,,(0)e "#°* are a family of
solutions to the time-dependent field equations,
we can show that %,,;(0=0) is a solution to the
time -independent field equations as well. We con-
clude that there are no unstable axisymmetric
modes of the Kerr geometry exterior to a black
hole.

We are indebted to James Bardeen, James
Hartle, James Ipser, Charles Sommerfield, and

Rafael Sorkin for helpful suggestions.
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The one-loop divergences of coupled general relativity and electrodynamics cannot be

absorbed by renormalization,

Although quantization of general relativity has
been discussed by many authors, it is only quite
recently that the first complete calculation, at
the one-loop level, of divergences due to gravi-
tons has been supplied by ’t Hooft and Veltman.!
These authors used dimensional regularization
and a general algorithm,? based on the background-
field method,® to obtain the one-loop counterterms.
In the case of pure gravitation, the divergent
terms could be absorbed by a field renormaliza-
tion; however, this was no longer possible upon
coupling to a quantized scalar field.

While the scalar example is discouraging, one
might hope that more realistic matter sources
would keep one-loop renormalizability. We re-
port here that this is nof the case for the Einstein-
Maxwell system. We also give some results for
(1) Brans-Dicke theory (nonrenormalizable ex-
cept for the singular case w=~ £ which is equiva-
lent to Einstein theory), (2) fermion loops, and
(3) pure gravitation with a cosmological term
(formally renormalizable).

In the coupled Einstein-Maxwell Lagrangian
L=Lg+ Ly
== (—g_)llz[K-ZR(E)+%Fuyfpcgupg.vo], (1)
the fields (g,,, F,,=9,4,-8,4,) are written as
sums of background fields (g,,, F,,) and quantum
tields (kk,,, f,,). The Lagrangian being invari-
ant under gravitational and electromagnetic gauge

transformations of the quantum fields #,, and f,,,
we add to L the gauge-breaking terms

Ly=Lgg+ Lyg
= _éw/—g[(D"hw - %D‘,ha"‘)2 + (D“A“)a], (2)
where all tensor operations, including covariant
differentiation D, are with respect to the back-
ground metric g,,. The above choice corresponds
to the usual de Donder (harmonic) and Lorentz

gauges, which in turn give rise to a vector and
a scalar ghost with Lagrangian

LG
=V-g[n**(gosDy DY = Rop)n°+ @*D, Dg]).  (3)
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