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Abstract

The current computational era heralds a multitude of challenges for linguists,
mathematicians and computer scientists alike. The investigation of linguistic fea-
ture consistencies, their implications in historical linguistics and the detection
of possible geographical and phylogenetical influences in feature behaviors will
steadily unveil the importance of each language characteristic and its associated
historical role in language evolution. The wish to develop new methods has made
the integration of various disciplines necessary. Consequently, the role of com-
puter science (and more specifically bioinformatics) has risen in the study of lin-
guistic processes. By combining the strengths of bioinformatics algorithms, math-
ematical procedures, statistical knowledge and databasesdeveloping methodolo-
gies, various strategies have been developed and applied tothe phylogenetic re-
construction of language evolution, but up till now only on small scales. The
analysis of a worldwide typological database has many potential applications for
the study of language universals, feature consistencies, and of phylogenetic im-
plications of linguistic differences. In this research I highlight recent progress of
strategies related to typological data, on the basis of the data offered by the World
Atlas of Language Structures (WALS, [41]).

This thesis attempts to find suitable analyses for dealing with linguistic ty-
pological data. These methods are focused on discovering “good” data for phy-
logenetic reconstruction algorithms, detecting (inter-)dependencies between the
characteristics of languages, and on performing multiple statistical methods for
selecting the data that correlates best with either genealogical or geographical re-
lationships.

While the aim of qualitative analysis is a complete, detailed description of the
data, and no attempt is made to assign frequencies to the linguistic features which
are identified in the data, in quantitative research one classifies features, counts
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them, and even constructs statistical models in an attempt to explain what is ob-
served. Findings can be generalized to a larger population,and direct comparisons
can be made between two data sets, so long as valid sampling and significance
techniques have been used. Thus, quantitative analysis allows the discovering of
which phenomena are likely to be genuine reflections of the behavior of a set of
languages or varieties, and which are merely chance occurrences. However, the
picture of the data which emerges from quantitative analysis is often less precise
than those obtained from qualitative analysis. In quantitative analysis, an item
either belongs to classX or it does not. In some cases, quantitative analysis is
therefore an idealization of the data. Also, quantitative analysis tends to sideline
rare occurrences. To ensure that certain statistical tests(such as the chi-square
test) provide reliable results, it is essential that minimum frequencies are obtained
- meaning that categories may have to be collapsed together,therefore resulting in
a loss of data richness.

This research will concentrate on quantitative analysis, by selecting appropri-
ate measurements in order to detect relevant phylogenetic information. I tried to
discover consistent features with the world-wide distribution of languages pre-
sented in the WALS, as well as phylogenetic informative ones. Using such char-
acteristics in future phylogenetic analyses would hopefully enhance the results.

This thesis is structured as follows. Chapter 1 introduces the basic computa-
tional/bioinformatics and linguistic background. The WALS data set is presented
in Chapter 2 together with the coding problems found. Chapter 3 gives detailed in-
formation about various methodologies for improving the distance measurements,
while the content of Chapter 4 describes my approach on detecting good “phy-
logenetic” features. In Chapter 5 new phylogenetic reconstruction methods are
specified as well as a new approach to detect the fitness of a data set to a phyloge-
netic tree. In Chapter 6 I specify the QALD software of the thesis, describing its
utility and functionality. This software can be used to analyze various languages,
features, and the according results of the methods presented in this thesis. The
conclusions of this research are summarized in Chapter 7.

All research ultimately has a qualitative grounding
(Donald Campbell)

There’s no such thing as qualitative data. Everything is either 1 or 0
(Fred Kerlinger)
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Chapter 1

Introduction

1.1 Linguistic background

1.1.1 Typology

1.1.1.1 Definition of linguistic typology

Linguistic typology (in this work I will henceforth simply refer to ‘typology’),
represents the attempt to classify languages into types. This definition of typol-
ogy implies that the research has to discover shared patterns across languages.
Based on such shared patterns, a language is considered as belonging to a spe-
cific type, while a typology of languages is a classification of languages into those
types. These definitions already suggest a close connectionto a cross linguistic
comparison. As presented in [17], typology can be classifiedinto two main kinds,
according to their object of study:

• holistic typology: classification of whole languages into types and subtypes
on the basis of shared structural characteristics (not to beconfused with
genealogical or areal classification);

• partial typology: classification of specific structural features across lan-
guages (e.g. word order or case marking).

Holistic typology implies that there are various ways to classify languages. The
kind of classification depends on the intended purpose and onthe linguistic ele-
ments that are analyzed:

1



Chapter 1. Introduction 2

• genealogical: classification into families descended froma common ances-
tor, e.g. Sino-Tibetan languages, Austronesian languages;

• areal: classification by geographical region, e.g. the languages of Southeast
Asia;

• typological: classification by shared structural features, e.g. tone languages,
SVO languages, ergative languages.

These classifications are, in principle, independent of each other: Chinese is an
SVO language, Tibetan an SOV language, while languages belonging to the Indo-
European family may be VSO (Welsh), SVO (Italian) or SOV (Armenian). But in
practice, the classifications are not entirely independent(for historical reasons):
most languages of the Austronesian family are VSO or SVO (dueto shared inher-
itance), while most languages of mainland Southeast Asia are tonal (due to areal
diffusion). Nevertheless, I am interested in genealogicallanguage classification
using typological data and, but I acknowledge the importance of the geographical
influences.

1.1.1.2 The history of genealogical classification and linguistic typology

Of the two subjects, linguistic typology and genealogical language classifica-
tion, the latter has the much older tradition. Its beginningcan be traced back
to early 13th-century attempts concerned with establishing genealogical relation-
ships among languages [13]. The shortDiatriba de Europaeorum linguae, written
in 1599 by Joseph Justus Scaliger [68], is one of the most cited examples of an
early attempt of genealogical classification of languages.Scaliger established -
apart from Greek which was frequently seen as the source language of Latin -
the Romance, Germanic, and Slavic language families, on thebasis of shared vo-
cabulary items among the languages belonging to the particular group, e.g. the
word for ‘god’ (deus, god, andbog, respectively). Nevertheless, there was no
hint in his work that these three families in turn were related. However, the Czech
Sigismund Gemenius (1497-1554) had shown in a comparative dictionary, several
generations before Scaliger, that Greek, Latin, Germanic and Slavic were geneti-
cally related, cf. [34].

Like much older scientific work in the study of languages, linguistic typology
- though essentially developed during the 19th century - appears to have forerun-
ners, as first attempts can be traced far back to the 16th century. For instance
Coseriu [16], makes references to a 40-page essay on “compounded” and “orig-
inal” languages from 1761 by the political economist Adam Smith (1723-1790)
as a source for Friedrich Schlegel’s typological classifications. Schlegel’s brother
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August Whilhelm (1767-1845) referred to Smith in his own effort at language ty-
pology in 1818. August Wilhelm, in his 1818 monograph, givesfull and exclusive
credit to his brother’s exposé, at the same time introducing a further subgrouping
on the bases of an “analytical/synthetic” distinction. Others [47, 61] have pointed
to Gabriel Girard’s (1677-1748) distinction between “languages analogues” (i.e.,
those which have a fixed word order, like French) and “languages transpositives”
(i.e., those which have a flexible word order, like Latin) as the immediate source
of Smith’s “compounded/uncompounded” dichotomy, withoutproving that Gi-
rard had any influence on either of the Schlegel brothers. However, even if the
Schlegel brothers were not the inventors of language typology, but synthesizers
of proposals by their predecessors or contemporaries, it remains safe to say that
the beginning of a “scientific” attempt at language classification on the basis of
morphological structure has its origin in their work.

1.1.1.3 Typology classification. Implicational universals

Historically, the first manifestation of typology in modernlinguistics is typology
classification, i.e. the process of describing the various linguistic types found
across languages. The linguistic types (or strategies) arethe linguistic structures
that are found across languages based on an external definition of a category.
Mainly, patterns are defined and then found in various languages, being the start-
ing point in typological classification. Starting with Greenberg [38], a more reduc-
tionistic approach has been developed in which only parts oflinguistic structure
are classified. Some samples of these types, like word order,positions of the Gen-
itive, etc. can be found in [64].

The next obvious question is whether the resulting typologies (classifications)
of different characteristics (domains) correlate with each other or not. Whether
these correlations are directly dependent on genealogicalor geographical patterns
is an open question that this research tries to answer. The goal of such research
is to uncover regularities or even universals of linguisticstructure. An often used
analysis is the so-calledimplicational universal.
An implicational universal states a dependency between twologically indepen-
dent parameters, e.g. one may state that if a language has a typeX, then it will
also have typeY . The implicational universal then become a major tool for ex-
pressing typological generalisations. However, as Cysouwdescribes in [20], there
is a major problem with this generalisation, mainly that a frequency in a sample
that appears to be remarkably high or low does not necessarily mean anything.
This is due to the fact that the saliency of a frequency in a typological sample de-
pends on the deviation from the statistical expectation, not on the absolute number
of occurrences.
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1.1.1.4 Areal-linguistic implications for typology

Areal patterns have strong implications for work in typology and universals, though
usually unrecognized in the earlier linguistic literature. A self-explanatory exam-
ple is the case of word - order typology. It has been argued that certain word-
order types come into existence in languages only through areal influence and
borrowing [15]. Both [38] and [42] dealt with the 24 possiblebasic word-order
types, of which only 15 were thought to be actually represented by existing lan-
guages. However, it turns out that for some of these 15 types,and for certain
others for which representative languages were subsequently discovered, all the
exemplifying languages owe crucial aspects of their basic word-order to areal
borrowing; this applies to Greenberg’s types 7, 18, 19 and 20. Type 7 (Verb-
first/Postpositional - Noun/Genitive - Noun/Adjective - Noun) is represented only
by Zoque (a Mixe-Zoquean language of southern Mexico); Zoque borrowed VOS
word order from neighbouring Mayan languages, creating itsodd-type 7 com-
bination. Type 18 (SOV/Prepositional/Noun - Genitive/Adjective - Noun), not
previously recognized to have exemplifying languages, is represented by Tigre
(Ethiopian Semitic), which is like non-Ethiopian Semitic languages, except for
SOV, which is acquired from Cushitic. Type 19 and 20 have alsobeen proven to
be areal influenced, e.g. by samples of Amharic borrowing from Cushitic, and
Northern Tajik borrowing from Turkic, respectively.

Figure 1.1: The geography of the main language families in the world.

Both typology and areal linguistics are important tools forhistorical recon-
struction in linguistics. Typology helps us to understand expected changes and
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constraints on possible changes, and thus is very importantfor reconstruction.
Areal linguistics helps to recover aspects of linguistics history that are due to dif-
fusion and convergence (Figure 1.1). However, the two are alike in one respect:
both can hinder linguistic reconstruction. In the comparative method, correspond-
ing forms shared among related languages are the basis for postulating ancestral
forms in the proto-language. Nevertheless, undetected areal borrowings can ex-
hibit similarities, seemingly corresponding forms, that sometimes are assumed to
be the results of common inheritance, and are erroneously reconstructed as fea-
tures of the parent-language [33].

1.1.2 Previous work

1.1.2.1 Typological and lexical databases

Over the last decades, typological databases started to gain an important role, but
they are mostly subject oriented. WALS, on the other way, does not concentrate
on a specific geographical location or on specific linguisticfields. Two important
problems are usually still found in the typological databases [9] :

• Typological databases typically rely on a static and pre-defined category list
which tends to conflict with the data as more languages are entered. Further,
this restricts the database to research that is completely sanctioned by the
category list.

• Typological databases are typically integrated into a single file containing a
wide variety of information making it difficult (if not impossible) to re-use
any part of this information in other databases or to search for typological
correlations across databases.

The need for resolving these disadvantages suggests that more research activity is
needed from computer science experts and database scientists.

Over the last few decades, a large amount of new lexical resources has arisen:
machine-readable dictionaries, lexical databases, full-form lexicons, morphologi-
cal databases, semantic networks, dictionary databases, etc. Most of these lexical
systems have been modelled after lexicographic sources. A lexical database is a
lexical resource system meant primarily for computationalexploitation. This can
be used in a search engine providing human users with lexicalinformation, but
also in NLP (Natural Language Processing) applications, computer - aided lan-
guage - learning systems, computer - aided linguistic research, etc. There is still
an open problem of how to compare word lists and make them interoperable.
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1.1.2.2 The trend in current typology

An important part of my research was conducted in the spirit of trying to detect
possible correlations with either geographical or genealogical patterns, as well as
to detect which of the data points are appropriate for each kind of correlation.

Since the late 1980s, and most prominently through the work of Dryer [28, 29]
and Nichols [58], it has become clear that hardly any typological variable is evenly
distributed in the world. Most distributions are subject tonon-accidental geo-
graphical skewing. For example, testing the hypothesis that verb-final or free
word order correlates with dependent-marking in transitive subjects (A) or objects
(P) against a genealogically balanced sample from AUTOTYP [9]and WALS
[8, 41] presented a careful and thorough analysis. There is asignificant associ-
ation (Fisher Exact p = .014, N = 179), if one examines the entire data together.
But if a closer look is taken at the distribution of the available data, continent-by-
continent, it turns out that only in Eurasia is the association significant. Every-
where else the distribution can be predicted from marginal frequencies of the two
variables. A large number of such examples can easily be found, and they under-
line Dryer’s warning [28] that, unless geographical factors are controlled for, a
statistical association does not support a hypothesis of universal preference. This
is not surprisingly, as it is known that large areas like Eurasia have an intricate
history of type spread [45, 58], and in general, the history of language contact and
population movements substantially affects typological distributions.

Clearly many current typological distributions can only beunderstood as the
result of actual (pre-)history, both locally and globally.Findings from anthropo-
logical and historical disciplines might provide valuableinformation about histor-
ical signals. Nevertheless, the most plausible available explanations of statistically
significant macro-areas, such as those around the Pacific, orthose covering Eura-
sia [10, 11, 58, 59, 60] suggest that they are the surviving traces of distributions
that were formed at early periods of large scale population movement and lan-
guage spreads.

But, as argued by Maslova [57], the distributions determinethe threshold
above which one accepts universals that are due to the natureof language rather
than to the nature of human population history: an association of variables must
not only be statistically significant in a representative sample and independent
of known geographical and genealogical affiliation [28, 63], but it must also be
shown to be independent of earlier (or even initial) stages at which there could
have been significant skewing at work. In other words, associations can be taken
to reflect strictly linguistic universals only if they can beshown to be sufficiently
instable historically so that one can assume a stationary distribution for the current
situation. This again requires a fundamentally diachronicunderstanding of what
causes typological distributions, viz. different type shift probabilities [8].
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Large datasets almost invariably reveal exceptions to universals, and this, to-
gether with a substantial increase of newly described languages and assisted by
prominent conceptual argumentation [18, 27], have practically eliminated notions
of absolute universals and impossibilities. Modern studies of typological distrib-
utions involve statistical methods, from association tests (cf. Cysouw in press, for
recent review [21]) to multivariate scaling methods [19, 52]. Regarding the stud-
ies on areal data, typology has seen the introduction of new mathematical methods
(e.g. the Isopleth Method: [73]), and current attempts to integrate Geographical
Information Systems bring bright hope for progress in this domain.

One common property of all these methods is that they work with indepen-
dently and narrowly defined variables, instead of the gross types (active language,
agglutinative language) of classical holistic typology, or categorical notions of a
so called Sprachbund. The general assumption is that if there are large-scale con-
nections between linguistic structures, or between linguistic structures and geog-
raphy, they consist in probabilistic (and therefore exception-ridden) correlations
between independently measured variables; they are not expected to follow from
absolutely defined or ideal types. In a similar vein, modern typology has moved
away from analyzing entire languages and instead takes individual structural pat-
terns (constructions, rules, constraints etc.) as objectsof study. Linguistic diver-
sity is captured by large sets of fine-grained variables, notby grand type notions.

The analysis of such variables poses statistical problems shared by other his-
torical population sciences – most prominently, one has access to only less than
1% of all languages that have ever been spoken by our species,and so the cur-
rent population with all its historically-grown distributional biases will always be
overrepresented in our samples. Moreover, in typological sampling, one typically
attempts exhaustive and well-balanced coverage of known genealogical diversity,
so that signals of universal preference or areal populationhistory are not disturbed
by relatively recent inheritance effects. In response to these problems, typologists
are now adopting Monte-Carlo-like methods, and first steps have also been under-
taken toward randomization-based reliability tests on coding [46]. Unlike classi-
cal distribution-based methods, these methods do not support statistical inference
to an underlying population of all human languages. All statistical inference is
limited to the current sample at hand. Modern typology is a discipline that de-
velops variables for capturing cross-linguistic similarities and differences (quali-
tative typology), explores universal and local skewings inthe distribution of these
variables (quantitative typology) and proposes theories that explain the skewings
(theoretical typology). The ultimate goal is to understandwhat is, where, andwhy,
and this makes it clear that major contributions that typology offers are not con-
fined to Cognitive Science as narrowly understood. The goalsof the 21st century
typology are embedded in a much broader anthropological perspective: to help
understand how the variants of one key social institution are distributed in the
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world, and what general principles and what incidental events are the historical
causes for these distributions.

1.1.2.3 Phylogenetic attempts using linguistic data

The word-list analyses became an increased research activity, varying from com-
parison of word-lists to dictionaries, texts, or books. While Cysouw performed
analyses of biblical fragments (the choice of the material being obvious from the
variety and consistency point of view), other are just usingthe Swadesh word list
[72], even if it was extremely controversially. Nevertheless, many attempts are
starting with this list that it is filled for a various number of languages, and then
different comparative methods are used.

A comparative analysis of manuscripts copies was performedduring the work-
shop in Louvain-de-Neuve, where a dataset consisting in codings of the differ-
ences between different copies were given to the participants and they were chal-
lenged to try to reconstruct the history of the manuscript. The whole experiment
was using not a real historical evolution, but asimulatedone, meaning that schol-
ars with different background and different native languages were asked to copy
a two pagemanuscript. Themistakesanderrors are believed to be the same as
the real history a few centuries ago. Nevertheless, the important conclusion of the
meeting was that the manuscript histories can be very similar with the biological
evolution (e.g., correspondence with the lateral gene transfers process, evolution
‘mistakes’, evolution improvements). As [4] showed, a simple use of ‘modern’
phylogenetic methods (Figure 1.2) provided a very close result to the real history
of the manuscript (Figure 1.3), even if according to the general opinion the main
problem was that one of the first copier was not a native speaker of the manu-
script’s language, and this might induce disturbance in those analysis. The real
history of the copiers was the following: the initial manuscript was given to 3
copiers (g, a and f), from which a was not a native speaker. My results failed
to placea as a common ancestor ofc andd, and also missed theg, h and i his-
tory, placingi as the predecessor copier (the organizer’s explanation wasthat the
g copier was a really ‘bad’ one, and this might explain my results).

In Nature, R. Gray and Q. Atkinson [37] published a rigorous analysis of word
lists for the Indo-European family, concluding not only in the phylogenetic rela-
tionships, but also in detecting the time depth of languagessplits (Figure 1.4).
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Figure 1.2: NNet result using Hamming distance.

Figure 1.3: The real history of manuscripts.
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Figure 1.4: Results from [37] with time-depth estimation. Consensus tree and
divergence-time estimates. Majority-rule consensus treebased on the MCMC
(Markov Chain Monte Carlo) sample of 1,000 trees.
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1.2 Phylogenetic background

1.2.1 Computer science and biology

Previously bioinformatics was defined as an interdisciplinary field involving biol-
ogy, computer science, mathematics and statistics to analyze biological sequence
data, genome content, and arrangements to predict the function and structure of
macromolecules. With the advent of the genome era, bioinformatics now plays
added roles in biological and medical research and accountsfor an increasing
number of publications each year [55]. Can bioinformatics tools also help the
historical linguists? Is there any similarity between biological data and linguistic
data? Do I need new tools for analyzing linguistics data, canI use the already
recognized bioinformatics ones, or should I carefully modify them in order to be
field appropriate? This research tries to give an answer to these questions with the
hope of being a starting point for future research.

Clearly, in the WALS case I do not have to worry about aligningsequences
(data), as the WALS dataset can be easily seen as a rectangular table with lan-
guages on rows and features on columns (I should specify thatthe aligning se-
quences problems can be found in linguistic analyses, for example when com-
paring word lists). But I am dealing with similar problems asin biology, like
missing data (gaps), like methods of building distance matrices or like phyloge-
netic reconstruction issues. Even worse, I have no information on feature values
interdependencies, nor other properties that bioinformatics tools account for , e.g.
physical and chemical properties of amino acids [7]. Therefore I am mainly inter-
ested in methods that analyze sequences and that can be applied to the WALS data
set. While in bioinformatics the databases evolved exponentially, being today an
enormous interconnected amount of information, the scale of linguistics databases
is still small. Nevertheless, using the already recognizedscientific methods from
bioinformatics and statistics, I hope for a faster researchdevelopment, and I am
positive that this work will simplify future analyses.

1.2.1.1 Trees, distance matrices, alignments, networks

Common bioinformatics terminology will often be used in this research, so, in the
following, short descriptions of the most important terms are presented.

Phylogenetic trees. A tree is a mathematical structure which is used to model
the evolutionary history of a group of objects (sequences, organisms, languages).
This actual pattern of historical relationships is thephylogeny or evolutionary
tree which one tries to estimate [62]. A tree consists ofnodesconnected by
branches(or edges) (Figure 1.5)Terminal nodes(also called leaves, OTUs [Op-
erational Taxonomic Units] or terminal taxa) represent theobjects of interest for
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which one has data, and they can be either extant or extinct.Internal nodes repre-
sent hypothetical ancestors, and the one that comprises thewhole tree is theroot
of the tree.

Distance Matrices. Measures of OTU’s dissimilarities may be used to esti-
mate the number of evolutionary changes that occurred between two OTUs since
they last shared a common ancestor. These measures quantifythe evolutionary
distance between the two OTUs. Trees themselves can also be represented by
distances, and this link has motivated a range of tree-building methods that seek
to convert pairwise distances between objects into evolutionary trees. Aperfect
distance measure must satisfy some basic requirements: it must beultrametric
(Equation 1.4). Nevertheless, real complex data never produces such a distance
measure, no matter which method is used to obtain it.

Let D(a, b) be the distance between two OTUsa andb. The following prop-
erties (Equations 1.1 - 1.5):

D(a, b) ≥ 0 (1.1)

D(a, b) = D(b, a) (1.2)

D(a, c) ≤ D(a, b) +D(b, c) (1.3)

D(a, c) ≤ max(D(a, b), D(b, c)) (1.4)

a = b⇒ D(a, b) = 0 (1.5)

are necessary for a tree-like matrix, e.g. a distance matrixthat can be represented
by a tree, with the length of the edges corresponding to the distances between
OTUs. A non tree-likedistance matrix is depicted in Table 1.1, as the condition

Figure 1.5: Tree elements.
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1.4 is not fulfilled.
Alignments. Alignments are used in order to: (1) organise data to reflectse-

quence homology, (2) estimate evolutionary distance, (3) infer phylogenetic trees
from homologous sites, (4) highlight conserved sites/regions, (5) highlight vari-
able sites/regions, (6) uncover changes in gene structure,(7) discover for evidence
of selection, etc.

Networks. As stated above, real data can not produce metric and additive dis-
tance matrices. Most of the phylogenetic reconstruction algorithms use any kind
of distance matrix and try to build the phylogenetic tree, but this clearly implies
that some tie-decisions have to be taken, or some information must be disregarded.
Clearly, if one has the distance measures between four OTUs as in shown Table
1.1, a simple tree-like diagram can not correctly representthis distance measure,
as the ultrametric condition is not fulfilled (Figure 1.6). Split networks are used to

Figure 1.6: Incompatible tree for data in Table 1.1.

represent incompatible and ambiguous signals in a data set.In such a network par-
allel edges, rather than single branches, are used to represent the splits computed
from the data. To be able to accommodate incompatible splits, it is often neces-
sary that a split network contains nodes that do not represent ancestral species.
Thus, split networks provide only an implicit representation of evolutionary his-
tory. Therefore, it will be easy to use the network representations to represent the
distance matrix shown in Table 1.1 as it is depicted in Figure1.7.

Networks are not only moreflexible in accepting problematic data sets but,
by their constructions and representations, they offer valuable information about

DistMatr A B C D
A 0 4 5 7
B 4 0 7 5
C 5 7 0 4
D 7 5 4 0

Table 1.1: A non-tree like distance matrix
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Figure 1.7: Compatible network for data in Table 1.1.

the relationships between the objects analyzed. Figure 1.7can be interpreted as
follows: there is a greater support (evidence) for the split(A, B) vs (C, D) than for
the split (A, C) vs (B, D), as the length (weight) of the edge that separates (A, B)
and (C, D) is bigger than the one that separates (A, C) and (B, D).

1.2.2 Computer science and linguistics

Phylogenetic analyses of linguistic data have become a usual research in detect-
ing languages genealogy. Even if the data analyzed consistsin word lists, or sets
of language features, recent methods provided new outcomesin linguistic phy-
logeny. The [37] paper dates the initial divergence of the Indo-European language
family back to 8700 years ago, with Hittite as the first language to split off. This
they take to support the theory that Indo-European originated in Anatolia and that
Indo-European languages arrived in Europe with the spread of agriculture. They
take this to argue against the alternative “Kurgan hypothesis”, according to which
the “Kurgan Culture” of the steppes was Indo-European speaking, though they
say that it is consistent with the view that the Kurgan peoplerepresented a branch
of Indo-European.

While this paper rigorously analyzed the Indo-European family, proposing an
intelligent method for building distance measurements from word lists, Dunn et
al [30] suggested another type of analysis, based on binary grammatical features,
that were a posteriori weighted after applying a maximum-likelihood approach to
the data.

To address the problem of detecting deep signal, Dunn et al. borrowed two
tools from their colleagues in biology. First, they constructed a database of 125
structural features for 16 Austronesian and 15 Papuan languages. This enabled
them to avoid the charge that they merely selected a few features that happened
to fit their hypotheses. The number of possible family trees of descents for an
even quite small numbers of languages is vast. Dunn et al.’s second methodolog-
ical borrowing from biology was the use of a computer programto find the set of
optimal trees for the Austronesian and Papuan data sets. To test whether the struc-
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Figure 1.8: The results from [30]. a) Reconstructed phylogeny of the languages
of the Meso-Melanesian, Papuan Tip, and North New Guinea groups based on
the linguistic comparative method [56, 66]. b) Unrooted parsimony tree show-
ing relationships among the Meso-Melanesian and Papuan Tipgroups based on
grammatical traits only (that is, discarding abundant lexical evidence) (the fig-
ure shows reweighted and raw bootstrap values). c)Maximum parsimony tree of
Island Melanesian Papuan languages with reweighted and rawbootstrap values.
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tural features contain a historical signal, Dunn et al. compared the Austronesian
structure tree with the traditional classification of theselanguages. The resulting
Austronesian structure tree matched the traditional classification quite well, which
suggests that the structural features contained some historical link or signal for at
least the 4000-year time depth that the Austronesian of languages studied by Dunn
et al. are thought to have.

The task of making accurate inferences about our past is a demanding one that
requires the integration and triangulation of inferences from genetic, linguistic,
and archaeological data [49]. The approach of Dunn et al. is an important step
forward in this interdisciplinary endeavor and sets new standards for the system-
atic collection and analysis of structural features.

Both papers, equally successful and controversial, produced an important step
in phylogenetic analyses of languages. Nevertheless, in both cases only a small
sample of languages were used, belonging, more or less, to the same family of
languages, and there was no inconvenience in, for example, determining the sam-
ple range when you are dealing with variate data sets (from the genealogical point
of view). In general, in order to have a reliable method, one must use various
datasets, that incorporate both genealogical and geographical variance, a well ac-
cepted rigorously method and a scientifically recognized algorithm for displaying
the results. This is exactly what my research tries to achieve.

1.2.3 Software, availability and conclusions

Standard bioinformatics tools are various and their availability is usually free. One
can use web versions or stand-alone versions. As the problems that are attempted
to be solved are so different, there are specific software programs for each/multiple
issue(s).

There are programs for dealing with: multiple alignment (BLAST), phylo-
genetic reconstruction (Phylip, SplitsTree), database and database interrogations
(JJCB, etc), converting types of input data for phylogenetic analyses (i.e. convert-
ing alignments to distance matrices, converting distance matrices to quartet rep-
resentations, converting alignments to splits systems, etc). My research focused
on adjusting the right method of converting the alignments to distance matrices,
considering that I am dealing with linguistic data, or discovering the appropriate
method to obtain a ‘good’ linguistic distance matrix, whilefor phylogenetic rep-
resentation of the objects, I used the NNet algorithm implemented in SplitsTree4
[43], because I needed as much information as possible out ofthe WALS database.
Nevertheless, I tried to compare the phylogenetic algorithms (cf. Section 5.1.1,
and Section 5.1.2) with the neighbour-joining method [67],and the analyses of
the results can be performed in the QALD software (cf. Chapter 6).
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WALS dataset

2.1 Introduction

WALS (World Atlas of Language Structures, [41]) representsthe first attempt of
a research program to map a large number of linguistic features (141 different
features, grouped mainly in categories of phonology, morphology, nominal cat-
egories, nominal syntax, verbal categories, word order, simple clauses, complex
sentences, lexicon) found in a large number of languages (2560). The work of
Nichols [58] is the only comparable published work in terms of aims and scope,
and that deals with 174 languages and 10 multivalued linguistic features, all mor-
phological. WALS significantly increases the degree to which linguists are ex-
posed to typological mapping.

WALS is the largest database of structural properties of languages gathered
from descriptive materials (such as reference grammars) bya team of more than
40 authors (many of them leading authorities on the subject). Some of these lan-
guages (265 in number) appear on only one map, while some, such as English,
appear on most of the maps.

Each map (sample depicted in Figure 2.1) shows between 112 (map number
123) and 1370 (map number 83) languages, each language beingrepresented by
a dot, and different colored dots showing different values for the features. Al-
together 2650 languages are shown on the maps and more than 58000 dots give
information on features in particular languages. The WorldAtlas of Language
Structures thus gives information on the structural diversity of the world’s lan-
guages available to a large audience, including interestednon-linguists as well as

17
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Figure 2.1: WALS sample map. Map number 17Rhythm Types. Coding colours:
red = trohaic, blue = iambic, lilac = dual, grey = undetermined, black = no rhyth-
mic stress.

linguists who would not normally read grammars of exotic languages or special-
ized works by comparative linguists.

The original data was converted in a MySQL [1] database for easier data ma-
nipulation. The new MySQL database offers the possibility of ‘in-hand’ data ex-
tractions, visualisations and modifications. For this, SQL(Structured Query Lan-
guage) statements, more or less embedded were used, and a software program was
implemented in order to have a fast, safe and reliable interaction with WALS data.
The main part of the database used in the analyses was the‘x lang feat′ table,
that contained the actual data points defined for languages and features (around
58200 records). Other tables needed in various analysis were genus, language,
andfamily, in order to have an overview of the language distribution over the
world and/or over the language distribution within families/genus classifications.
The main problem, often mentioned in this work, is the poor data coverage:
2560 languages× 141 features = 360960 data points (theoretical) but, I have only
58200, that means that the actually available data is= 58200/360960 = 18%
(Figure 2.2).
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Figure 2.2: WALS distribution of data points.

2.2 Coding structure of the WALS dataset

2.2.1 Can WALS map to a linguistic ontology?

Two broad questions being addressed by this part of the project 1 are:

• What conceptual and design problems need to be solved in order to build an
ontology internal to WALS which may allow for a high degree ofinteroper-
ability among the WALS features?

• How can the WALS categories be related to a general ontology?

In this section, I discuss some of the general challenges raised by WALS as I have
tried to determine how specific WALS concepts should be linked to concepts in
the GOLD ontology (General Ontology for Linguistic Description, [31]). These
can be placed into three broad classes:

• non-encoded internal structure of features;

• non-canonical concepts;

• lateral relationships holding among concepts across different WALS fea-
tures.

1A full description of this analysis can be found in [23].
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2.2.1.1 Non-encoded internal structure

The data available in WALS is an enormously valuable source of information for
linguistic research. However, in its current form it cannotbe used for certain com-
putational and statistical approaches to language typology. The problem is that
the database does not encode logical dependencies between concepts referred to
by terms found in the databases. Such implicit dependenciescan be found both
within the values for a single typological feature in WALS and among values
found in different features.

To illustrate this problem, it is first useful to consider a case where the values
for a given typological feature have no logical dependencies. For the typological
feature voicing in plosives and fricatives (map number 4), Figure 2.3 reflects the
feature values distributions.

These four possibilities clearly represent the intersection of two independent
dimensions: voicing in plosives and voicing in fricatives.There is no a priori
reason why these two characteristics should show any dependency on each other
– that is, there is nothing about the definitions of plosive, fricative, and voicing,
which would imply that there should be any correlation between plosive voicing
and fricative voicing in the worlds languages. The fact thatthere is an apparent
correlation between the two parameters in the data (FishersExact p = .000037
when counting genera) is an empirical observation of potential interest. However,
Dryers test [29] shows only marginal significance in three out of six geographic
macro-areas (Africa, Australia/New Guinea, and South America), indicating that
the overall significance is not a world-wide effect, but onlyregionally important.
These sorts of correlations are potentially interesting ,but they are only linguisti-
cally meaningful if one knows that the relevant parameters are logically indepen-
dent of each other.

Unlike the data represented in Figure 2.3, the values for thedata represented
in Figure 2.4 show a high degree of logical interdependence.For example, a lan-
guage missing both /p/ and /g/ is also a language missing /p/,but the database
does not encode this. Similarly, a language missing no sounds in /p t k b d g/
cannot be a language missing /p/, missing /g/, or having bothmissing. From the
perspective of a human user, these logical dependencies areobvious. However,
a computational algorithm designed to discover correlations among values in the
various features will find spurious patterns without an explicit machine-readable
encoding of such dependencies.

The logical dependencies holding among the values for the feature voicing and
gaps in plosive systems are depicted in the tree in Figure 2.5. Figure 2.5 of course,
includes possible typological feature values not found in the data represented in
Figure 2.4, and it also includes a number of higher-level categories. The sort of
information represented in Figure 2.5 can be easily expressed using an ontology.
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Figure 2.3: Map number 4.Voicing in Plosives and Fricatives. No voicing con-
trast in plosives and fricatives (white), voicing contrastin plosives alone (red),
voicing contrast in fricatives alone (blue), voicing contrast in both plosives and
fricatives (lilac)

Figure 2.4: Man Number 5.Voicing and Gaps in Plosive Systems. Other = yellow,
none missing in /p t k b d g/ = white, missing /p/ = red, missing /g/ = blue, missing
both = lilac.
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Figure 2.5: Logical Structure ofVoicing and Gaps in Plosive Systems.

An important part of the WALS ontology project is to enumerate the logical de-
pendencies holding among the concepts found in WALS and build appropriate
ontological resources for encoding them. Of the problems the WALS ontology
project has encountered with respect to linking WALS concepts to a general on-
tology, implicit logical dependencies have required the greatest deal of human
labor. However, from an ontological perspective, they are relatively easy to deal
with.

2.2.1.2 Non-canonical concepts

As a resource designed for use in language typology instead of use in individual
language description, WALS makes use of many concepts whichare quite dis-
tinct from the concepts found in a typical grammar or annotated text. Three such
classes concepts seem worthy of mention here:

• absence concepts;

• numerical concepts;

• fuzzy concepts.

I label these concepts as non-canonical. They contrast withcanonical concepts
by not being straightforwardly expressible using instanceof relationships with re-
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spect to concepts in an ontology. I discuss each of these non-canonical concepts
in turn.

Absence conceptsare found throughout WALS. They refer to a concept ex-
plicitly defined as not being an instance of another kind of concept. In ontological
terms, the concept of no case marking means that, in some language, there is no
grammatical structure which can be claimed as instantiating case marking. Cru-
cially, an absence category is quite different from inferring the absence of some
grammatical phenomenon in a language simply because it is unattested or be-
cause there is no discussion of it in a grammatical description. The former is an
explicit statement about the properties of a languages grammar and can, therefore,
be taken directly as linguistic data, while the latter cannot.

Some sense of the variety of possible absence concepts can beachieved through
a simple enumeration of some of the ones that are found in WALS. They include:
no action nominals, no adpositions, no antipassive, no bilabials, no case, no dis-
tributive numerals, no fricatives, no gender distinctions, no glottalized consonants,
no grammatical evidentials, no independent subject pronouns, no irregular nega-
tives, no laterals, no nasals, no obligatorily possessed nouns, no perfect, no person
marking, no plural, no possessive affixes, no productive reduplication, no question
particle, no suppletion in tense or aspect, no tense-aspectinflection, no tones, no
uvulars, and no velar nasal.

Looking through the definitional statements as given by the authors, some
more absence concepts can be found. They include: non-agreeing, non-benefactive,
non-bound, non-declarative, non-derived, non-finite, non-head, non-human, non-
iconic, non-inflecting, non-inflectional, non-number, non-obligatory,
non-paradigmatic, non-periphrastic, non-possessible, non-pronominal, non-realized,
non-reduction, non-referential, non-reflexive, non-relativizable, non-sex-based,
non-sibilant, non-singular, non-subject, non-syntactic, and non-verbal.

Clearly, absence concepts are important for typological description. The ex-
istence of absence concepts within WALS leads to a simple recommendation
with respect to the relationship between a general ontologylike GOLD and a
community-specific ontology like the WALS ontology. In addition to allowing
concepts in the community ontology to be related to the general ontology via pos-
itive relationships like language showsinstances of, it is also necessary to allow
them to be related via negative relationships like this language does not show
instances of. While this would not seem to put a particular burden on the develop-
ment of a general or a community-specific ontology, it would seem to put a burden
on software designers building ontologically-intelligent search tools to ensure that
their tools can deal with absence categories in a way which isuseful to linguists.

It seems worthwhile to point out here that the general problem of encoding
absence concepts may be more complex than is reflected in the WALS data. In
WALS all absence concepts are assertions about a property ofa languages gram-
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mar. However, there is at least one other important kind of absence:no informa-
tion on. Here, again, I need to contrast inference and explicit statements. If the
only descriptive linguist who has worked on a particular language states that, quite
simply, there is no data which would allow a language to be classified one way or
another typologically, that is information of quite different value from discovering
that a particular resource happens to have no information ona given topic. The
former would not seem to call for looking for other resourcesto see if they contain
the relevant information, while the latter would.

While I have encountered numerous absence concepts within WALS, the WALS
ontology project has not attempted to exhaustively enumerate all possible kinds
of absence concepts which might be useful as linguistic annotation. This seems
like a worthwhile area for future research.

Another frequently occurring non-canonical concept foundin WALS is the
usage of features with countable values. For example, the feature number of gen-
ders distinguishes languages with no gender from language with two, three, four,
or five or more genders.

Suchnumerical conceptsare found rather frequently among the WALS fea-
tures. Illustrating this approach are, for example, features covering the number of
distance contrasts in demonstratives (map number 41) , the number of cases (map
number 49), the number of classes of possessive classification (map number 59),
and the number of degrees of remoteness as distinguished in the past tense (map
number 66). Such overt examples nicely illustrate the importance of counting in
typological parameters. However, there are also more covert examples of counts
being used in the definitional details of typological parameters.

With respect to linking WALS concepts to the GOLD ontology, the existence
of numerical concepts would seem to necessitate concepts which can directly re-
fer to cardinal numbers. The usage of numbers for countable phenomena has to
be distinguished from numbers used to divide more or less continuous parameters
into discrete values. For example, in the feature depictingvowel/consonant ratios
(map number 3), the value low is defined as having a ratio of twoor less. The
fact that the cut-off point is a whole number is clearly just an arbitrary decision,
as the ratio results in a quasi-continuous parameter (see Cysouw, forthcoming, for
a discussion of such quasi-continuous parameters in typology). The division of
such continuous parameters into discrete, numerically-defined classes is related
to the notion of fuzzy concepts, to which I turn next.

The third class of non-canonical concepts in WALS are what I call fuzzycon-
cepts. These are concepts which cannot be straightforwardly related to other rele-
vant concepts via a logical relation. This is not to say they are unrelated to other
concepts, but rather some consistent policy needs to be developed for determin-
ing how to annotate such relationships which makes the fuzziness ontologically
tractable. Some examples of fuzzy concepts found in WALS are: small con-
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sonant inventory (map number 1), complex syllable structure (map number 12),
borderline case marking (map number 49), weakly suffixing (map number 26),
and highly differentiated genitives, adjectives, and relative clauses (map number
60).

The hallmark of a fuzzy concept is the use of a modifier likesmallor likewhich
is open to a subjective or relative interpretation. For example, a small consonant
inventory can only be considered small in reference to all the known consonant
inventories and even then, there is still a subjective element to determining the
boundary between, say, small and moderate. As another example, consider de-
scriptions using the modifierlike. Going through the definitional statements as
presented in WALS, I found the following terms used: adjective-like, agent-like,
case-like, patient-like, vowel-like, we-like. These can only be understood as re-
ferring to an unidentified deviation from the more prototypical meaning of the
head-term.

Fuzzy concepts, then, can be distinguished from simply idiosyncratic con-
cepts which combine categories in unexpected ways but which, in principle, are
logically definable without an explicit statement of interpretation. One such idio-
syncratic concept is the value pronouns avoided for politeness in the database for
the feature politeness distinctions in pronouns (map number 45). This concept in-
corporates the notions of pronoun, avoidance, and politeness into a single concept
in a way which would be unlikely to be specifically anticipated by developers of
a general ontology. Nevertheless, assuming that an ontology contains these basic
concepts, there is nothing fuzzy about them and it should therefore, be possible
to relate a concept combining them to a general ontology using standard logical
relations.

There would seem to be two broad strategies available for linking fuzzy con-
cepts to a general ontology. The first is to always associate the entire concept to a
reasonable non-fuzzy definition and treat relative and subjective terms like small
or borderline as useful abbreviated conventions with no real ontological status.
Thus, for example, asmallconsonant inventory could be defined as meaning less
than fourteen consonants (which is, in fact, the definition given in map number 1).
A second strategy would be to relate the fuzzy modifiers themselves to a general,
concrete definition. Then, perhaps,smallwould be defined as two or more stan-
dard deviations away from the average for a countable quantity.

In looking at the prose descriptions accompanying the WALS maps, what I
find is that in general, authors did in fact associate apparently fuzzy concepts with
a non-fuzzy definition explaining. For example, how they specifically interpreted
terms likesmall or borderlinewith respect to particular categories in particular
languages. Thus, common practice in the creation of WALS wasto take the first
of the two strategies outlined above. The WALS ontology project is following
this common practice and adopting it as its general strategyfor dealing with fuzzy



Chapter 2. WALS dataset 26

concepts.
To make the discussion more concrete, in Figure 2.6 is depicted the map repre-

senting the data collected for the feature syllable structure. This feature has three
values in WALS: simple, moderately complex, and complex. All these values re-
fer to fuzzy concepts. However, within a prose description accompanying the map
in the published version of WALS, map number 1 associates each fuzzy concept
with more concrete definitions. These definitions do not explicitly appear in map
number but are adapted from his prose descriptions of the relevant categories.

• Simple Syllable Structure: Describes a language which onlyallows syllable
structures conforming to a (C)V pattern

• Moderately Complex Syllable Structure: Describes a language which only
allows syllable structures conforming to (C)V(C) or CWV(C)patterns (where
W stands for a liquid or glide)

• Complex Syllable Structure: Describes a language which allows syllable
structures other than those described as permitted in simple syllable struc-
ture or moderately-complex syllable structure languages

The strategy of associating each fuzzy concept with a non-fuzzy definition, in-
stead of devising a general definition for each attested typeof fuzzy modifier, is
a fairly comfortable one for the WALS ontology project sinceeach of the typo-
logical feature databases was essentially conceived as itsown internally coherent
research project with terms defined for that project alone. Ileave open the ques-
tion as to whether or not some other project might find it worthwhile to deal with
fuzzy concepts by giving concrete definitions to the fuzzy modifiers themselves.
Whether this is considered necessary, it would seem to necessitate the inclusion of
notions like average or standard deviation within a generalontology for linguistic
description (perhaps linked to an upper ontology also containing such concepts).

2.2.1.3 Lateral relationships among concepts

By the termlateral relationship, I mean a relationship holding among two con-
cepts in different resources. Of course, lateral relationships abound among cate-
gories in linguistic resources since it is what makes the data they contain compara-
ble in the first place. Thus, for example, when one encountersthe term nominative
case in one resource and ergative case in another, one assumes a lateral relation-
ship holding between those concepts where they both have something in common
(being instances of case) and something not in common (beinginstances of differ-
ent kinds of case). In principle, lateral relationships canall be encoded by linking
linguistic concepts to their appropriate place in an ontology - in fact, this is one of
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Figure 2.6: Map number 12.Syllable structure. Simple = black, moderately
complex = green, complex = red.

the tasks ontologies were designed for.
However, in the WALS ontology project, I have often found it useful to make

note of lateral relationships among concepts. The reason for this is a simple one:
Sometimes it is possible to determine a lateral relationship holding between two
categories before it is possible to relate each of those categories to a higher-level
ontology. Thus, encoding lateral relationships allows us to indicate some of what
I know about a category at a given time even if I do not know enough about the
category to link it to an ontology.

Some of the classes of lateral links I have found useful in annotation are given
below:

• Similar term names, but different concept

• Theoretically (almost) same concept, but certain languages classified differ-
ently

• Same concept, but no appropriate ontology concept(s) found.

In principle, a controlled vocabulary for such links could be developed. However,
at this time, since there is no tool designed to exploit lateral links in developing an
ontology, they are always inspected by hand, and I have foundno need to develop
a machine-readable annotation system for them.

2.2.1.4 The recoded WALSX

The recoded WALSX (WALS eXtended) tries to solve the above presented prob-
lems, in order to have a stable, quantitative-appropriate data set. Even if the oper-
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ations needed imply an impressive volume of work, I decided that it is worth im-
plementing. I did a careful analysis in order to (i) identifythe problems described
in Section 2.2.1, (ii) decide on the appropriate solution, (iii) careful implement the
solution. These steps were performed for each feature, and aconversionfile was
created for each of them, while a software was implemented for creating the new
WALSX and for analysing these files together with the original WALS data.

A typical conversion file contains the following sections, used to define each
new feature and each new feature value, set the required transformation ‘rules’,
and give the necessary information about the new feature, feature values and de-
scriptions of the feature values.

FeatID Action type
9 split + copy

Table 2.1: Sample Action Type.

Theaction typesection presents the recoded feature id, together with the con-
version type. This can be one of :

• copy= the old feature is copied without modifications;

• split = the old feature is split in 2 or 3 distinct new features without any
dependencies;

• split + copy= usually, 2 new features are created one being a yes/no feature
and one just a copy of the initial feature(Figure 2.8); implicit dependencies
are noted;

• divide= the new recoded features are mostly dependent.

NewXFeatID NameXFeat DescriptionXFeat
15 The velar nasal Velar Nasal
16 Type of velar nasal Velar nasal, initial or not

Table 2.2: Features Description.

In the feature description section I am describing the new features, noting their
new ID, names and descriptions. The new feature values are described infeatures
valuessubdivision (Table 2.3).

The tabletransformationsdescribe the ‘rules’ to obtain the new feature values
based on the old ones (Table 2.4).
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NewXFeatID ValueXFeat Description
15 1 No Velar nasal
15 2 Velar nasal
16 1 No Velar nasal
16 2 Velar nasal, also initially
16 3 Velar nasal, but no initially

Table 2.3: Features Values table describes each unique combination of feature id
and feature value.

InitialFeatID InitialFeatVal NewXFeatID ValXFeat
9 1 15 2
9 1 16 2
9 2 15 2
9 2 16 3
9 3 15 1
9 3 16 1

Table 2.4: The transformations table sets the ‘rules’ of creating the new features
and new features values, i.e., a language with an initial feature value 1 for feature
9 will be set to have the feature value 2 for the new feature 15 and feature value 2
for the new feature 16 respectively.
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It is easily to see that there will be

NrNewXFeatures×NrInititalFeatureV alues

records, as for each old feature value I define a new set of records for each corre-
spondence to the new features.

TheChanceandDependenciestables provide useful information for the inter-
nal coding of the data, that the initial WALS was unable to describe. These fields
are not necessarily required and they are filled only in the appropriate case. In
thechancefields I define the character distance matrix for this feature, and in the
dependenciessections I note the inter-dependencies between these feature values
and other (if any) features values corresponding to the sameor another features.

FeatXID1 FeatXVal1 FeatXID2 FeatXVal2
15 1 16 1
15 1 16 1
16 2 15 2
16 3 15 2

Table 2.5: Dependencies table. A feature value 1 for feature15 implies feature
value 1 for feature 16 (this relationship is bidirectional). The feature value 2 or
3 for feature 16 implies the feature value 2 for feature 15 (this relationship is
unidirectional).

As mentioned above, these analyses were also useful in orderto detect a ‘char-
acter distance matrix’ for some features. For example, consider feature 1, the
‘Consonant Inventories’, with 5 possible feature values:small(from 6 to 14 con-
sonants),moderately small(15-18), average(19-25), moderately large(26-33),
andlarge (34 or more consonants). It is natural to believe that a language who fell
in the first category (small), will evolve easier to an intermediate category (mod-
erate smallor evenaverage), than going directly to the categorylarge. Therefore,
a character distance matrix for this feature would look likethe one in Table 2.6.

Of course, in some cases I did not know the exact relationshipbetween fea-
ture or features values, and I must emphasis that these recoding is only based on
personal knowledge of people involved in this research. Nevertheless, the new
WALSX contains now 257 features and a lot of coded dependencies and transi-
tions that I believe that are more appropriate to statistical approaches.

A small software program (Appendix 8.6) was implemented in order to:

• read the transformation file,
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Feature1 Small Moderately Average Moderately Large
Small Large

Small 0 1 2 3 4
Moderately small 1 0 1 2 3

Average 2 1 0 1 2
Moderately large 3 2 1 0 1

Large 4 3 2 1 0

Table 2.6: Character distance matrix for feature 1.

• extract the old data from WALS,

• insert the new data into new tables by following the transformations ‘rules’,

• create adot file with the info in order to be able to use the “twopi” program
[36] to display the transformations.

In Figures 2.7 - 2.9, 3 examples of such kind of conversions are presented, de-
scribing thesplit transformation (Voicing in plosives and fricatives), thesplit +
copytransformation (Tone) and thedivide transformation (Fixed stress location)
respectively.

I also tried to test if the WALSX will provide a better phylogenetic picture. I
analyzed 33 languages, grouped by families, and I used the data from WALS and
WALSX respectively. The picture resulted from WALS (Figure2.10) is similar
with the one from WALSX (Figure 2.11). The analysis can be systematized as the
following:

• both data-sets cluster the the languages from Indo-European, Altaic, Uralic,
Trans New Guinea, and Nakh Daghestanian families;

• WALS data provides the entire grouping of Austronesian languages;

• WALSX manage to get closer the languages from Sino-Tibetan family, as
well as the ones from Nilo-Saharan family.

Nevertheless, in this comparison I did not make use of any information discovered
during the recoding, i.e. the distance between feature values, the dependencies,
etc, but just used the data (from WALS and WALSX respectively) and created
distance matrices for it.
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Figure 2.7: Example ofsplit conversion

Figure 2.8: Example ofsplit + copy conversion. Note the bidirectional depen-
dency between the new feature values 22.1 and 23.1 and the unidirectional depen-
dencies from 23.2 and 23.3 to 22.2.
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Figure 2.9: Example ofdivideconversion. Note the dependencies between new
feature values 24.2, 25.3 and 26.4 respectively.
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Figure 2.10: NNet using the original WALS data.

Figure 2.11: NNet using the recoded WALSX data.
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2.3 Multidimensional scaling

2.3.1 Introduction

Another obvious question that was arisen when the first phylogenetic picture was
obtained is, whether the relationships depicted are due to the phylogeny or just
geographical influence. It is well known that languages can influence each other,
if they are closely located, not only lexical, but also typological (Figure 2.12 shows
a nice geographical distribution for feature 87 = Order of Adjective and Noun).

Figure 2.12: Geographical influence on typological features.

Moreover, in case of the languages in Laos country, as shown in Figure 2.13,
there are 4 genera depicted (red, white, green, blue). The Kam-Tai genera contains
Lu, Lao and Saek languages2. Why and how Lu, so far away geographically,
belongs to the Kam-Tai genus and not to Palamung-Khmuic one?A revealing and
simple explanation can be found if the geographical elements are considered, e.g.
there is a river which probably was used by the population to travel faster. (Figure
2.14).

2.3.2 Results

Multidimensional scaling (MDS) is a set of related statistical techniques often
used in data visualisation for exploring similarities or dissimilarities in data. An
MDS algorithm starts with a matrix of item-to-item similarities, then assigns a
location of each item in a low-dimensional space, suitable for graphing or 3D

2Thanks to Hans-Jörg Bibiko for pointing out this.
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Figure 2.13: The languages in Laos, four genera (Palaung-Knmuic, Kam-Tai,
Katuic, Bahnaric). Lu, Lao and Saek languages (blue) are part of the same Kam-
Tai genera.

Figure 2.14: A possible explanation of Kam-Tai genera relationship for languages
located geographical far apart: geographical elements (river).
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visualisation. I used the multidimensional scaling (ALSCAL) from SPSS (Statis-
tical Package for the Social Sciences) software package [70].

For this analysis I choose the case of Oceania, a region very diverse from the
language grouping point of view as well as very interesting if a closer look of the
geography is taken. There are mainly three language families (Papua New Guinea,
Australian and Austronesian). While the languages from Papua New Guinea are
very closed located, the Australian family is spread over the entire continent, and
Austronesian is really diverse from the geographical pointof view (Figure 2.16).
A multidimensional scaling of the typological distances (Figure 2.15) shows a
remarkable similarity with the geographical location3, suggesting that many fea-
tures in WALS are influenced by the location of the languages in the world (Figure
2.16).

Figure 2.15: The geography of Oceania languages. Austronesian family = yellow,
Australian family= blue, Trans-New Guinea family= red.

3Thanks to Michael Cysouw for discovering this.
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Figure 2.16: Multidimensional scale of Oceania languages.

2.4 The typological-geographical relationship

2.4.1 Analysis

It comes natural after the above results, in order to detect the geographical and
typological influences, to compare the measurements based on these two crite-
ria. I constructed two sets of distance matrices corresponding to the typological
distances and geographical distances respectively. For the typological ones I con-
structed the distance measure described in Section 4.1, andfor the geographical
distances I used theHaversineformula [69] presented below:

4lat = lat2 − lat1 (2.1)

4long = long2 − long1 (2.2)

a = sin2(4lat/2) + cos(lat1) ∗ cos(lat2) ∗ sin2(4long/2) (2.3)

C = 2 ∗ atan2(
√
a,

√

(1− a)) (2.4)

dist = R ∗ C (2.5)

whereR = 6.371 km. Presuming a spherical Earth with radiusR , and that the
locations of the two points in spherical coordinates (longitude and latitude) are
long1, lat1 and long2, lat2, then the Haversine Formula willgive mathematically
and computationally exact results. The intermediate result c is the great circle
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distance in radians. The great circle distanced will be in the same units asR.
The analyses were conducted for different data sets, as following:

• Build typological distance matrix (DT ) and geographical distance matrix
(DG) respectively;

• Remove the biggest distances (distortion);

• Take the extremes of the rapportDT (i, j)/DG(i, j) for eachi andj in the
data set;

• Interpret very low values as linguistically (too) similar;

• Interpret very high values as linguistically (too) diverse.

2.4.2 Results

Figure 2.17: Multidimensional scale of Oceania languages.Red lines show ‘unex-
plained’ typological dissimilarities. Green lines show ‘unexplained’ typological
similarities.

The green lines in the Figure 2.17 show a too high similarity from the typo-
logical point of view compared with a larger geographical distance. That is, there
is no reason for this languages to be so similar, due to their geographical posi-
tion, but their similarity might be explain by a typologicalinfluence, which might
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imply genealogical relationship. Reversely, the red linesshow a close geograph-
ical position with a high dissimilarity between languages.Both cases are very
interesting in linguistic research.

2.5 Feature clustering

Another useful approach that I performed was to identify, ifany, the feature clus-
ters. In other words, I tried to detect if some features can begrouped together
based on their world wide distributions of features values,or based on their con-
sistency between families and/or geographical positions.

Using the CADM software [50, 51] I was able to measure the consistency of
the features with the overall distribution of features values in the entire dataset,
and also between each of the features (see also Section 4.2.1). The aim of this
analysis was to create distance matrices for each feature (based on a set ofn lan-
guages), and to detect by using the CADM software, which of these matrices are
more correlated with the others. I achieved this by comparing theirsimilarity to
the overall matrix (obtained by using a distance measure forthe same set of lan-
guages but for all the features).

The permutations tests were performed for all features using a number of9999
permutations and the results were used as input data for a multidimensional scal-
ing (in order to obtain a graphical picture of their similarity). The first picture
obtained from the multidimensional scaling for all 141 features did not showed
any defined clusters (Figure 2.18). I decided that the numberof features analyzed
should be reduced (the graphical resolution was not interpretable), therefore I ar-
rived to a set of 17 features for which I performed again the CADM analyses
and used MDS to display the results. The 17 features selectedare the follow-
ing: 51=Position of Case Affixes, 57=Position of PronominalPossessive Affixes,
69=Position of Tense-Aspect Affixes, 82=Order of Subject and Verb, 83=Order of
Object and Verb, 84=Order of Object, Oblique, and Verb, 85=Order of Adposition
and Noun Phrase, 86=Order of Genitive and Noun, 87=Order of Adjective and
Noun, 88=Order of Demonstrative and Noun, 89=Order of Numeral and Noun,
90=Order of Relative Clause and Noun, 91=Order of Degree Word and Adjective,
92=Position of Polar Question Particles, 93=Position of Interrogative Phrases in
Content Questions, 94=Order of Adverbial Subordinator andClause, 104=Order
of Person Markers on the Verb. The correlation values, as well as the permutation
indexes obtained from the CADM analyses allow us to draw lines between the
points that have a higher correlation (Figure 2.19).

As the Figure 2.19 shows, features 83, 85, and 86 are very wellconnected not
only between them, but also with the majority of the other features. The cluster 87
and 88 (Noun positions) is surprisingly grouped with 51 (case affixes). The fea-
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Figure 2.18: Multidimensional scale of 141 features. No clear clustering, and no
possible interpretation if more graphical elements are added.

Figure 2.19: Multidimensional scale of 17 features. Features 83, 85, and 86 form
a central cluster as well as the clusters formed by features 51, 87, and 88. All the
other features, except 57 and 104, are connected through these clusters.
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tures 89 and 91 are connected through this cluster to the 83, 85, 86 (the ‘central’)
one. The features 57 and 104 do not show any relationship to the others at this
level. Feature 84 (object/oblique/verb) is nicely connected with 83 (object/verb)
as well as is the feature 92 with the feature 93.

One can set various initial grouping of features of interest(my suggestion is
to be less than 204.) and perform the above analyses in order to detect possible
similarities/clusters between them. A simple software wasimplemented in order
to read the output from the MDS analysis (points coordinates) and draw the con-
nections lines (Appendix 8.5).

Nevertheless, one might use this approach in order to detectgeographically
related features. For this, the above analysis must be changed only in the fact that
the overall distance matrix that is used as a reference pointfor comparing the fea-
tures distance matrices, should be build as a real geographical distance between
languages (I recommend the Haversine formula for this). In this case the similar-
ities observed will provide information about the clustering of the features from
the geographical influence point of view, which is still a controversial discussion
in these days. These results might be a starting point for further analyses that tries
to find/explain feature correlation with the world wide distributions, as well as the
geographical influence on typological features.

4In order to proper interpret the results. Above 20 it is really difficult to distinguish the graph-
ical elements
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‘Improving’ missing data. Improving distance
measurements

3.1 Missing data

WALS has a low coverage of data points (a data point means a value of a feature
assigned to a language), only 20% filled, but this 20% means more than 50.000
data points.

Clearly, one can complain about the missing data, but the existing data points
should still provide enough information for various kind ofanalyses. Neverthe-
less, one of the possible approach when dealing with missingdata is to try to fill it
in. But, because of the enormous financial and research efforts to fill in even only
a few additional data points1, I decided to renounce on the strict method and to
try to recover, if possible, some information regarding themissing data. That is
also due to the fact that if one will apply a statistical method on only 20% data,
its results cannot be rigourously sustained. In general, there are two possibilities
when trying to fill in missing data:

• detect (and use) the most probable value,

• fill in the missing values with all possible combinations andcheck which
variant is the best one.

1Some preliminary estimates indicate that the data in WALS costs various hundreds Euros per
data point (cf. Michael Cysouw, p.c.).

43
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The first approach is very easy to implement, as in the WALS data, I can look
at the most frequent feature value of the languages that belong to sets defined
on families/genera criterion. If, for example, 95 percent of the Indo-European
languages have the feature valueV1 for featureF , and the other 5 percent are not
defined, one might assume that these 5 percent have also the same feature value
(i.e.,V1). Of course, this approach is a little dangerous as the levelof trust depends
very much on the distribution of the features values in the family/genera set (e.g
what conclusion can be obtained if 40% of languages have feature valueV1, 40%
have feature valuesV2, and the rest are not coded? What will be their assumed
feature value?). The second method, which I would like to call “searching in the
space of missing values”, implies to fill out the missing datawith all possible
appearances of the feature values. Again, there is a difficult problem in those
cases where feature values belong to a large interval, and/or the missing data are
often present. Two cases are possible:

• only a single cell per column is noted as missing,

• there exist more than one missing datum per column.

In the first case, each column that contains missing data is expanded to all possi-
ble variations of its values. As shown in Figure 3.1.a, if one has three columns
(features) with possible ranges of values of 2, 4, and 5 respectively, the expanded
alignment will contain now 11 columns instead of 3 (Figure 3.1.b).

Figure 3.1: Missing data. One per column.a) initial alignment,b) expanded
alignment.

For the second case, with more than one missing data point percolumn, each
feature will be expanded for all the possible combination offeature values be-
tween the missing data. As shown in Figure 3.2a, the first alignment, contains 2
columns. The first column contains 2 missing cells, and the range of feature val-
ues is [1, 2], while the second column (Figure 3.2b) has 1 missing value but the
range of feature values in [1, 4]. Therefore the initial alignment will be expanded



Chapter 3. ‘Improving’ missing data. Improving distance measurements 45

Figure 3.2: Missing data. More than one per column.a) initial alignment,b)
expanded alignment.

to a 8 columns wide alignment. The general formula to calculate the length of the
final alignment is presented in Equation 3.1.

nrResColumns =
∑

columns

nrIntervalRangenrGaps (3.1)

Again, this is hazardously from the point of view of complexity and the level
of incertitudes, especially in the case where one is dealingwith very large interval
ranges and incomplete data, but I concluded that it is might still be worthwhile to
analyze.
Performing the entropy algorithm described in Section 5.2 on these “full” align-
ments might provide useful information about features, even if they contain miss-
ing data. Nevertheless, the method just assumes the ‘best’ options with a certain
level of trust. For example, let assume that this tree is analyzed2:

((Finnish,Hungarian), (Romanian, (Italian, (Spanish, Portuguese))));
(3.2)

and a feature has the following feature values distributionfor this grouping:

((1, 1), (2, (2, (?, 2)))); (3.3)

(where question mark denotes missing data), with the possible features values
being in the range [1,2]. By replacing the question mark with1 and 2 respectively,
the entropy algorithm (Section 5.2) detects that having thevalue 2 instead of the
question mark results in a ‘good’ phylogenetic feature and one may notice that the
value of 2 is also matching the majority of the feature valuesanalyzed. Again, this
is just an assumption, but one that is strongly supported (itwould be interesting for

2The strings in Expressions 3.2 and 3.3 are calledNewick tree expressionsand are often used
in phylogenetics to represent tree structures.
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further research to investigate the ‘predicted’ values, e.g., does Spanish have the
feature value 2?). To run the entropy algorithm on a selection of, for example 20
languages for all the 141 features from WALS, will imply too much computational
effort (remember that I have 80% missing data and the interval range of feature
values can vary from 2 up to 9). Nevertheless, I adopted some variants of this
method on restricted set of data:

• Remove features that have missing data. Features that contain missing data
are removed from the analyses.

• Remove leaves that have missing data for all features. The sequences are
removed whenever they contain missing data in any position.

• Remove leaves that have missing data for each feature. The sequences are
removed whenever they contain missing data for one feature.

In the above last two cases, the algorithm must modify the initial tree, by remov-
ing the leaves in question and correctly adjust the parenthesis format of the tree.
Moreover, in the last situation, this adjustment has to be done for every feature
analyzed.

3.2 Distance measurements

Clearly, distance matrices are important data input for phylogenetic analyses. As
it is easy to calculate a geographical distance between two points on the globe,
using for example the Haversine formula [69], it is not as easy to establish the
correct distance measure for species, languages or other objects of interests. This
issue is more difficult, as it usually presents multiple problems: missing data,
wrong/default mistakes in data/measurement, rescaling, etc. A very important
issue in obtaining the correct (or most reliable) results inphylogenetic analysis
is to perform a good method for constructing the distance matrix. What is good,
and how to measure the ‘reliability’ of the methods? Different approaches were
analyzed and the most significant are described in the next section, with the hope
that this might be applied to a general dataset.

3.2.1 Methods

3.2.1.1 Hamming distance.Relative Hamming distance

Hamming distance [40] is probably one of the most common distance measure-
ments, but as presented next, it has a huge drawback when dealing with missing
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data. The distance is calculated by counting the elements that are different for any
two objects. In my case:

DF (L1, L2) =

{

1 if 0 6= F (L1) 6= F (L2) 6= 0,

0 else (i.e., if0 6= F (L1) = F (L2)).
(3.4)

D(L1, L2) =

141
∑

i=1

DF (L1, L2) (3.5)

How to deal with missing data, is a problematic issue. A self-explaining sam-
ple is presented next, where I assumed that I analyze three languages and five
features as in Table 3.1 (question marks represent unknown data). Now, there are

Feat1 Feat2 Feat3 Feat4 Feat5
German 1 2 1 3 ?
English 1 2 1 4 1

Romanian 3 ? 1 6 1

Table 3.1: Sample data table

at least three ways to build variants of the Hamming distancematrix:

• Treat ‘?’ as different- ‘?’ is different from everything else.
D(G,E) = 0+0+0+1+1=2
D(G,R) = 1+1+0+1+1=4
D(E,R) = 1+1+0+1+0=3

• Ignore ‘?’ - Ignore the entire column that contains ‘?’.
D(G,E) = 0+0+0+1+0=1
D(G,R) = 1+0+0+1+0=2
D(E,R) = 1+0+0+1+0=2

• Ignore ‘?’ but count the available data (Relative Hamming distance)- Same
as above but divided by the number of columns that have valuesdefined for
both objects (the actual number of cases where one has the possibility of
measurements).
D(G,E) = 1/4 = 0.25
D(G,R) = 2/3 = 0.66
D(E,R) = 2/4 =0.5
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There are a lot of differences in the results and this suggesta comparison with the
output of other methods in order to detect which method provides the most sig-
nificant results. In general, I will adopt the following distance measure (Equation
3.6).

dist(L1, L2) =
∑

F∈features

#dissim(F (L1), F (L2))

#dissim(F (L1), F (L2)) + #sim(F (L1), F (L2))

(3.6)
where#dissim and#sim represents the number of differences in coded data,
respectively the number of similar coded data.

3.2.1.2 Refining the similarities

What if, instead of ‘doing nothing’ when two objects are the ‘same’ for some
characteristics (the case of ‘adding’ 0 in Equation 3.4), one tries to refine this
similarity. For example in a group of 20 persons, only two of them are male. The
characteristic of sex (male/female) has a bigger influence if thevalueis male than
if the valueis female. In other words, in this case, the males are more similar from
the ‘sex’ point of view than females. Or, to put it in another way, a shared common
characteristic should not be counted as the same as a shared rare characteristic.
The method implies to count for each feature:

• FA = frequency of value A, e.g. the number of cases where the feature is
defined as having valueA

• FT = frequency of available data points for this feature, e.g. the number of
cases where the feature is defined.

or
FA = #{L | F (L) = A} (3.7)

and
FA = #{L | F (L) 6= 0} (3.8)

I calculate the similarity measure as:

NormS(A) = FA/FT (3.9)

while building the distance between two languages will become now:

dist(L1, L2) =
∑

F∈features

#dissim(F (L1), F (L2))

#dissim(F (L1), F (L2)) + (1−NormS(F (L1)))

(3.10)
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whereNormS is calculated whenF (L1) = F (L2), which implies
NormS(F (L1)) = NormS(F (L2)). For a better understanding, the following
example (Figure 3.3) is presented, where a feature value distribution is presented:
84% of languages have feature value1, 12% of languages have feature value2,
and 4% of languages have feature value3 respectively:

Figure 3.3: Sample of feature values distribution. The languages (the dots) are
grouped by feature value.

My idea implies that two languages (objects) that share the feature value 2 are
more similar than two languages (objects) that share the feature value 1. For
example, in the case of map 51 from WALS (Position of Case Affixes):

• value 1 (Case suffixes) = 431 cases out of 934 available.=⇒ NormS =
0.4603

• value 4 (Case tone) = 4 cases out of 934 available.=⇒ NormS = 0.0043

=⇒ so the results assume that two languages that share the value4 for the feature
51 are more similar than two languages that share the value 1.
Another formulae used is presented in Equation 3.11

NormS(A) = −log(FA/FT ) (3.11)

and then the formulae 3.10 will be transformed in :

dist(L1, L2) =
∑

F∈features

#dissim(F (L1), F (L2))

#dissim(F (L1), F (L2)) +NormS(F (L1))
(3.12)
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3.2.1.3 Refining the dissimilarities

Are all the differences the same3? For example analyzing two human groups,
is being different in height the same as is being different inthe number of eyes?
In my analysis I am grouping the languages by genus and count ,for every two
feature valuesval1 andval2 the number of genera where:

• a = neitherval1 norval2 are present

• b = val1 is present andval2 is not present

• c = val2 is present andval1 is not present

• d = bothval1 andval2 are present

Figure 3.4: Feature values distribution for languages grouped by genera. Different
colours represent different feature values.

Then, I used the following formulae to obtain a measure of dissimilarities:

NormD(val1, val2) =
b+ c

a+ b+ c+ d
(3.13)

or

NormD(val1, val2) =
1− ad−bc√

(a+b)(c+d)(a+c)(b+d)

2
(3.14)

Instead of adding a value of 1 to the distance between two languagesL1 andL2
that haveval1 andval2 respectively defined for a featureF , I will add the value

3Various formulas (for both similarities and dissimilarities) were tried due to Michael
Cysouw’s suggestions.
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of NormD(val1, val2). Of course,NormD(val1, val2) = NormD(val2, val1)
and the overall distance measure will now be as defined in Equation 3.15 :

dist(L1, L2) =
∑

F∈features

NormD(F (L1), F (L2))

NormD(F (L1), F (L2)) + #sim(F (L1))
(3.15)

In cases similar with ours, when the dataset might be dividedin sets of interests
(geographical, genealogical), it becomes clear that applying both refinements of
similarity and dissimilarity respectively, by using the Formulae 3.16 when build-
ing the distance matrix, improves, even if not in the amount expected, the results
obtained. The general formula will now be defined as in Equation 3.16.

dist(L1, L2) =
∑

F∈features

NormD(F (L1), F (L2))

NormD(F (L1), F (L2)) + 1−NormS(F (L1), F (L2))

(3.16)

3.2.2 Results

All distance measurements were compared, in the way of ‘how good they fit the
required data’, with a typological distance matrix. The typological distance ma-
trices were build, in a simplistic way, from theethnologueinformation [35], by
weighting each internal edge with a value of 1. For example, if the tree in Figure
3.5 is analyzed then the associated distance matrix in Table3.2 is constructed.

Figure 3.5: Weighting uniformly the edges of the tree with a value of 1.

The comparison (Figure 3.6) was processed for 5 language families, and it
showed a very good performance of the relative Hamming distance. This measure
should definitely be used when other improvements are not possible. Neverthe-
less, Formulae 3.12 allows with only a small amount of effort, to obtain improved
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Romanian Spanish Finish Hungarian
Romanian 0 2 4 4
Spanish 2 0 4 4
Finish 4 4 0 2

Hungarian 4 4 2 0

Table 3.2: The distance matrix associated

results. The second variant of NormS (Formulae 3.11), as well as the variants of
the NormD showed the same criterion of affinities to the ethnologue matrix (the
same variance of the results). Surprisingly, the combination of both best NormS
and NormD variants showed not only no improvement, but even worse, a depre-
ciations of the results.4

Figure 3.6: Comparison of various distance measurements with the phylogenetic
information.

3.2.3 Phylogenetic comparisons

For the phylogenetic comparison, I selected a set of 25 languages (the best coded
ones) grouped in 5 families, and I applied the different methods presented in this
chapter to build the distance matrices as an input to NNet algorithm. The results
showed a very good improvement using the relative Hamming distance (Figure
3.8), compared with the simple Hamming distance (Figure 3.7), which is also
suggested by the plot in Figure 3.6. The NormS (Figure 3.9) and NormD (Figure

4I am still puzzled why the combination of the best variants ofNormS and NormD did not
produce an improvement, but worse, it depreciates the results.
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Figure 3.7: NNet using Hamming distance.

Figure 3.8: NNet using relative Hamming distance.
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3.10) variants showed small improvements, as NormS brings the Sino-Tibetan lan-
guages together, as well as nice small clusters for Niger-Congo and Afro-Asiatic
languages.

Of course, the next obvious question was if by combining the NormS and
NormD, I will improve the clustering or, as the plot in Figure3.6 suggests, I will
get worse results. It actually came out a NNet picture almostidentical with the
one obtained by using Hamming relative measurement, and it seems the combina-
tion of both NormS and NormD somehow cancel each other. Why, and how this
can be improved might be an interesting topic for future investigations. Never-
theless, the NNet phylogenetic analyses proved to be consistent with my distance
measurements, even if I used a simplistic method to build theethnologuedistance
matrix (as in Section 3.2.2).
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Figure 3.9: NNet using NormS distance.

Figure 3.10: NNet using NormD distance.



Chapter 4

Good or bad data?

4.1 Selecting representative features

Obviously, the WALS dataset has much valuable phylogeneticinformation, as
well as ‘noise’ from the point of view of evolutionary analyses. The question is
how to detect which of the characteristics are phylogeneticrelevant. Are there
maybe features which are more stable than others all over theworld? Are some of
them only regionally relevant? Are there any linguistic features that are indicative
of the overall structure of a language? Can highly consistent features also be ge-
nealogical representative ones? I have approached these questions by performing
different methods.

Given any languageL and featureF , WALS assigns toL andF a valueF (L)
– an integer between 1 and at most 9 – in case that feature is defined for L. For
the most cases (80%) where no value is assigned I putF (L) := 0. Based on this
data, I will define a distance matrix describing the pairwisedistances between all
pairs of languages. Given a finite setN , then anN × N distance matrixD is
a two-dimensional arrays with rows and columns indexed by the elements inN ,
containing the distances or dissimilarities, taken pairwise between any two ele-
ments ofN . The entries ofD are denoted byD(L1, L2) whereL1, L2 ∈ N. A
distance matrix is a symmetricN ×N matrix, containing non-negative real num-
bers as entries and in general zeros along its diagonal:D(L,L) = 0.

The preparations of the data set resulted in a selection of 134 distance matrices
DF for each individual feature (I excluded features 3, 25, 95, 96, 97, 139, 140,
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and 1411), and one overall distance matrixD for all features together. The goal
is to identify those featuresF that somehow harmonize with the overall distance
matrix. The idea behind this goal is to find out which featuresare best predictors
for the overall similarities between languages.

To investigate the relation between an individual featureF and the overall
dataset, I compared eachDF matrix with the overallD matrix. Based on the fea-
tures from WALS and a selectionL of languages that have a good data coverage,
I define the followingL× L distance matrices.

First, I define for every single featureF and any two languagesL1 andL2, the
distance matrix for this one particular featureDF (L1, L2) as shown in Equation
4.1. In words, the distance is set at two (i.e. the languages are really differ-
ent) when the languages are different and both are defined forthis features in the
WALS. The distance is zero when the languages are the same andboth languages
are defined for this features. The distance is defined as one when either (or both)
of the two languages is not coded for this particular feature. I prefer this definition
to a simpler definition (i.e. considering the cases with unavailable data as either
all similar or all different) because I want to differentiate the cases for which there
is missing information in the WALS.

DF (L1, L2) =











2 if F (L1) 6= F (L2)andF (L1), F (L2) 6= 0,

1 if F (L1) = 0orF (L2) = 0,

0 else.

(4.1)

Second, I define an overall distance matrixD for all features together. In this
matrix, the distance between two languages is computed onlyon the basis of avail-
able information. To achieve this, I denote byF the set of all features and define
F (L) as the collection of all featuresF for which data is available for language
L in the WALS, as shown in Equation 4.2. Then, I define the normalized distance
between any two languagesL1 andL2 as shown in Equation 4.3. In words, for
the distance betweenL1 andL2 only those features are considered for which data
is available for both languages (i.e. all cases whereDF (L1, L2) = 1 are ignored).
Then, the distances for all these available features are summarized, and divided
by the number of available features. This procedure assuresthat the available data
in the WALS is completely used. For every distance between two languages a
different set of features is used, depending on the available information.

F(L) := {F ∈ F : F (L) 6= 0}, (4.2)

D(L1, L2) =

∑

F∈(F(L1)
�

F(L2))DF (L1, L2)

# (F(L1)
⋂

F(L2))
(4.3)

1This selection is explained in Section 4.3.



Chapter 4. Good or bad data? 58

4.2 Methods

4.2.1 Mantel’s test

Any N ×M matrixX (N the index set for the rows andM that for the columns)
can be viewed as providing records regarding a collectionM of experiments (mea-
surements) applied to candidates (objects) from a setN . DividingM into two non-
empty disjoint subsetsM1 andM2(#M1 > 0,#M2 > 0, and #M1 + #M2 =
#M), it is natural to ask for the correlation between the resultsobtained by per-
forming the experiments inM1 and those obtained performing by the experiments
in M2. To answer this question, the first step is to derive from theN ×M1 data
matrixX1 and theN ×M2 data matrixX2 corresponding dissimilarity (or dis-
tance) matrices, sayD1 andD2. The main idea is that if two rectangular matrices
contain concordant information, the distances derived from them should be signif-
icantly correlated. It is reasonable to ask, for example, whether genetic distance
is correlated with geographical distance.

One can not use a simple correlation coefficient because the cases are not in-
dependent (e.g. the distance between two objectsA andB is not independent
of the distance between objectA and another objectC becauseA is involved in
both). It was shown in [50] that, by calculating Kendalls W coefficient of concor-
dance among matrices, Friedmansχ2 statistics, and the associatedP -value, one
can obtain a measure of correlation, sayR0. Now, I permute the rows an arbi-
trary number k of times within one of the two matricesX1 andX2 and recalculate
the correlation coefficientsR1,→, Rk. If the original matrices had been corre-
lated, the disruption caused by the permutations should reduce the correlation
coefficient. The measure of significance is the number of times that the original
correlation coefficient (R0) was exceeded by the permuted values. For example,
if one did 1000 permutations and only 1 of the resulting coefficients exceeded
R0, this would give us a significance of 0.001. Conversely, if the matrices were
uncorrelated, there is no reason to assume that the permutations would decrease
the correlation coefficient. They may indeed as well increase it. Here, I use the
following variant of Mantels test:

Given the matrixX = (F (L))F ∈ F, L ∈ L, I construct for everyF ∈ F
the extended matrix(X | F ) in which the Fs column(F (L))L ∈ L occurs twice.
I split this into the original matrixX and the one-column matrix(F (L))L ∈ L.
Then, Mantels test is applied to the above defined overall distance matrixD and
the matrixDF . I used for my analyses the CADM (Congruence among distance
matrices) software [51], and special routines had to be implemented in order to
prepare the data for CADM (15 feature matrices per file plus the overall one for
each file), and also to extract the relevant information out of the output files.
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4.2.2 Coherence method

Next, I try to measure2 for each of the feature matricesDF corresponding to one
of the 141 features, its degree of coherence with the overallmatrixD. I propose
to do this by calculating the triangle coherence index for each feature matrixDF

relative toD. To do this, I first define the excess of any two elementsL1, L2 in
a setN , with respect to anN × N distance matrixD, relative to any element
L3 ∈ N (Equation 4.4).

excD(L1L2|L3) = D(L1, L3) +D(L2, L3)−D(L1, L2) (4.4)

The excess is, roughly spoken, the extra distance to be traveled betweenL1

andL2 when the route is taken viaL3, instead of taking the direct path fromL1

to L2. If L1, L2, L3 are the leaves of a weighed tree representing their distances,
and if l is the median ofL1, L2, L3 in that tree, the excessexcD(L1L2|L3) of L1

andL2 relative toL3 is twice the distance betweenl andL3 in that tree (cf. Figure
4.1).

Figure 4.1: Excess value interpretation.

Based on that concept, thetriangle coherence index(4coh index) is then defined
as shown in Formulae 4.5. For every triplet of languagesL1, L2, L3, the quotient
is taken of the excess relative to the overall matrixD and the excess relative to the
single feature matrixDF . The triangle coherence index for a featureF then is the
minimum of all these quotients. A larger triangle coherenceindex will indicate a
higher degree of coherence of a feature matrixDF with the overall matrixD:

4coh−index(F ) = sup(λ ∈ R≥0 : L1, L2, L3 ∈ L) (4.5)

2Thanks to Andreas Dress for suggesting and describing the coherence and rank methods.
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which implies
⇒ excD(L1L2|L3) ≥ λ excDF

(L1L2|L3) (4.6)

My measure of coherence was first based on

4coh−index(F ) = min

(

excD(L1L2|L3)

excDF
(L1L2|L3)

| L1, L2, L3 ∈ L
)

(4.7)

but because there are too many cases when this value goes down(due to the poor
data coverage), a more appropriate measure was implemented(Equation 4.8).

4coh−index(F ) = avg

(

1 + excD(L1L2|L3)

1 + excDF
(L1L2|L3)

| L1, L2, L3 ∈ L
)

(4.8)

4.2.3 Rank method

The rankrkL1
(L2) of a languageL2 with respect to a languageL1 associated with

the distance matrixD is defined by:

rkL1
(L2) = rkD

L1
(L2) := #{L3 ∈ L |D(L1, L3) ≤ D(L1, L2)}, (L1, L2 ∈ L).

(4.9)
In other words, for every elementL1, I am counting the elements that have a dis-
tance measure relative toL1 smaller or equal than the distance measure between
L1 andL2. Metaphorically speaking, I am looking for the elements that are at
least as good a friend ofL1 as isL2 [3, 25]. This map yields a new matrix, the
rank matrix:

RD(D(L1, L2)), ∀L1, L2 ∈ L (4.10)

which is not necessarily symmetric, but has in general the value 1 along its di-
agonal. For example, the distance matrix in Table 4.1 will betransformed in the

0 4 2
4 0 1
4 1 0

Table 4.1: Sample distance matrix

following rank matrix (Table 4.2).
Next, I consider for each featureF , the sets of elements (languages) that share the
same feature value:

L(L, F ) = {L′ ∈ L |F (L) = F (L′)} (4.11)
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1 3 2
3 1 2
3 2 1

Table 4.2: The rank matrix associated

Figure 4.2: This featurecorrectlymaps to the rank associations (for L1) because
it groups together the L1’s best friend (L3) and L2 is more farapart.
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That means, that for every feature withX possible values, and a set of lan-
guagesL, I may obtain a maximum number of clustersX, with various cardinality
for each grouping. Now, I am trying to map this clusters into the rank matrix by
measuring how well these clusters are identified by the rank matrix (Figure 4.2).

If the featureF fits well into the overall data structure encoded by the distance
matrix D, the relative ranksrkL(L′) of the languagesL′ in the subsetL(L, F )
should be significantly smaller for any givenL ∈ L than the ranksrkL(L”) of the
languagesL” in the complementL \L(L, F ) of L (L, F ). Consequently, I propose
the following measure of fitness using the ranking procedure:

ρ(F ) :=
1

#L

∑

L∈L

∑

L′∈L(L,F ) rkL(L′)
(

1+ #L(L,F )
2

) (4.12)

4.3 Conclusions

To test the three methods I decided to select the most dated languages from WALS,
and also choose one language per genus in order to have a good distribution of the
languages all over the world. Further, I also had to select a subset of the available
features. From the 141 features in WALS I excluded features concerning sign lan-
guages (139 and 140), the features that replicates data fromanother maps (3, 25,
95, 96, and 97), and the feature dealing with writing systems(141). Having the
ranked list of 150 languages (after this the number of data points per language de-
creased dramatically), I randomly divided this in three datasets (50 languages per
dataset) to obtain a uniform distribution of the number of data points per dataset
(please note that even so, many languages had a poor data coverage).

I run each of the three methods for each dataset and the rankedresults are pre-
sented below, grouped by the methods (for lack of space, onlythe first 10 ranked
feature numbers are presented).

Wichmann and Saunders performed a different analysis with the same pur-
pose [75]. Using their formula for calculating p-values (implemented in [74]) for
each genus/feature dataset in WALS, and by averaging the p-values found for each
feature they generated a ranked-list of features where the (averaged) p-value de-
termines the rank-order of the corresponding feature in terms of its usefulness for
genealogical analyses (Table 4.6), cf. Equation 4.13 - 4.15, wherek = number of
possible values for a given feature,n = the number of languages in the genus, and
r = the number of times that the most significantly feature occurs.

p(n, k, r) =
C(n, k, r)

kn
(4.13)
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Feature Mantel Feature
Number Coefficient Description

83 0.421 Order of Object and Verb
85 0.386 Order of Adposition and Noun Phrase
81 0.343 Order of Subject, Object and Verb
86 0.302 Order of Genitive and Noun
49 0.263 Number of Cases
88 0.239 Order of Demonstrative and Noun
98 0.238 Alignment of Case Marking of Full Noun Phrases
51 0.237 Position of Case Affixes
50 0.234 Asymmetrical Case-Marking
102 0.231 Verbal Person Marking

Table 4.3: Ranking of WALS features using the Mantel method

Feature Coherence Feature
Number Coefficient Description

11 0.505 Front Rounded Vowels
18 0.475 Absence of Common Consonants
73 0.447 The Optative
19 0.432 Presence of Uncommon Consonants
107 0.432 Passive Constructions
82 0.422 Order of Subject and Verb
6 0.421 Uvular Consonants
10 0.408 Vowel Nasalization
7 0.406 Glottalized Consonants
80 0.406 Verbal Number and Suppletion
13 0.402 Tone
44 0.400 Gender Distinctions in Independent Personal Pronouns

Table 4.4: Ranking of WALS features using the coherence method
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Feature Rank Feature
Number Coefficient Description

11 1.306 Front Rounded Vowels
18 1.372 Absence of Common Consonants
83 1.637 Order of Object and Verb
85 1.804 Order of Adposition and Noun Phrase
107 1.835 Passive Constructions
82 2.007 Order of Object and Verb
130 2.025 Finger and Hand
73 2.069 The Optative
115 2.102 Negative Indefinite Pronouns and Predicate Negation
86 2.128 Order of Genitive and Noun
19 2.160 Presence of Uncommon Consonants
7 2.206 Glottalized Consonants

Table 4.5: Ranking of WALS features using the rank method

C(n, k, r) = k

(

n

k

)

Q(n− r, k − 1, r + 1)−

n/r
∑

i−max(2,n−k(r−1)

(

(i− 1)

(

k

i

)(

n

ir

) i
∏

j=2

(

jr

r

)

Q(n− ir, k − i, r)
)

(4.14)

Q(n, k, r) = kn −
n

∑

i=r

C(n, k, i) (4.15)

The ideal situation in this analyses would be that, irrespective of the method
used, the same features would appear highly consistent withthe overall dataset.
The results however, in Table 4.7, showed no high correlations between the meth-
ods but at least they showed high correlation between the data sets for each method.

Because there is no complete consensus between the different methods3, I
can not draw any far-reaching conclusions about general consistency between in-
dividual features and the overall data structure of the WALS. However, for further
linguistic data collection it is important to get at least a rough impression about
what kind of features among the WALS data show a good consistency with the
overall data structure. The following interpretations arenot derived by strictly de-
fined statistical tests, but by a manual inspection of the topranked features from

3Based on conclusions from [22].
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Feature Number Feature Description
85 Order of Adposition and Noun Phrase
18 Absence of Common Consonants
90 Order of Relative Clause and Noun
88 Order of Demonstrative and Noun
11 Front Rounded Vowels
51 Position of Case Affixes
89 Order of Numeral and Noun
95 Relationship between the Order of Object and Verb

and the Order of Adposition and Noun Phrase
33 Coding of Nominal Plurality
87 Order of Adjective and Noun
86 Order of Genitive and Noun
81 Order of Subject, Object and Verb

Table 4.6: Ranking of WALS features using Wichmann and Saunders’s method

Coherence Rank
Mantel .22 .22

Coherence .65*

Table 4.7: Correlations between the three methods in Pearson’s r. Significance p
< 0.001 are indicated with a star
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Mantel Dataset1 Dataset2 Dataset2
Dataset1 1 .0.671108566 0.687585822
Dataset2 1 0.731586636
Dataset3 1

Table 4.8: Pearson correlations between the results for thedatasets using the Man-
tel method

Coherence Dataset1 Dataset2 Dataset2
Dataset1 1 0.901321099 .0.902387996
Dataset2 1 0.905746747
Dataset3 1

Table 4.9: Pearson correlations between the results for thedatasets using the co-
herence method

Rank Dataset1 Dataset2 Dataset2
Dataset1 1 0.765369979 0.762146186
Dataset2 1 0.705553075
Dataset3 1

Table 4.10: Pearson correlations between the results for the datasets using the rank
method
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the three methods4.
All three methods put various word order features high on their ranking

(82=subject-word order, 83=object-word order, 85 = ad-position order, 86 = genitive-
noun order, 88 = demonstrative-noun order). This agreementbetween methods
might be due to the fact that there are various features in theWALS about word
order, which are all more or less significantly correlated with each other.

Besides word order features the rank and coherence methods suggest to in-
clude the ones about the inventory of strictly defined kinds of consonants like
uvular consonants (feature 6), glottalised consonants (feature 7), the velar nasal
(feature 9), and also more generally, like the absence of common consonants (fea-
ture 5 and 18), the presence of common consonants (feature 19). Also, both meth-
ods agree in ranking high features like: the passive (107), inflectional optatives
(73), front rounded vowels (11), and tone (13).

In the methods that I have presented to measure consistency Ihave not used
any information about genealogical relationships. Still,I wanted to see whether
consistency might be a good predictor for genealogical relationships. To test this
hypothesis, I constructed a sample of eleven families from the WALS, taking three
languages out of each family. The choice of families and languages was com-
pletely driven by data availability. I wanted to know how well a particular selec-
tion of features would be able to distinguish pairs of related languages from pairs
of unrelated languages in this sample. To investigate this,I constructed an overall
distance matrix for the 33 languages sampled on the basis of all data in the WALS
(I simply put 0 as distance if the languages were part of the same family and
1 if they belonged to different families). The distance matrices were compiled
using the method as described in Equation 4.3 above and I constructed various
distance matrices based on a selection of the features. Eachselection of features
was determined by the ranking of features as given by the various measures of
consistency that I have discussed. For every method I subsequently considered
the most consistent 25, 50, 75 and 100 features, and constructed distance matrices
on that basis. As a control, I also considered the amount of available data as a
ranking, constructing distance matrices on the basis of thebest coded 25, 50, 75
and 100 features. In this way, I had sixteen different distance matrices for my test
sample of 33 languages. All distances in such a matrix were then divided into two
groups: one group with all distances between pairs of related languages and one
group with all distances between pairs of unrelated languages.

I wanted to know whether the distances between related languages are gener-
ally smaller than the distances between unrelated languages. To investigate this,
I used a t-test to determine the significance of the difference between the two
groups. It turned out that the two groups were significantly different for all sets

4Thanks to Michael Cysouw for analyzing and producing the conclusions.
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of features considered. Still, there are clear differencesbetween the various se-
lections. This can be seen by considering the t-test statistics themselves (not the
significances). These t-test statistics are summarized in Figure 4.3. Selecting
features by available data (the dotted line in Figure 4.3) gives some sort of base-
line to compare my various methods again. The dotted line starts low and rises
continuously, though the slope flattens the more features are considered. This in-
dicates that I am able to get a better differentiation between related and unrelated
language pairs the more features I consider, though there seems to be a level of
differentiation that cannot be improved upon. Looking now at the various selec-
tion of features, I see that the best 25 features as selected by the methods all show
a clearly stronger differentiation between related and unrelated pairs compared to
taking the best coded 25 features. Taking the best 25 features from the Mantel
method even gives roughly the same differentiation as givenby considering all
features together. Various of the other selections even improve on this. This in-
dicates that by selecting a set of consistent features it is possible to improve the
recognition of genealogical relationships compared to simply taking all available
data.

Figure 4.3: T-test statistic for the differentiation between related and unrelated
pairs of languages for language distances as established byselected sets of features
on the basis of the ranking of consistency.

A more appropriate approach in order to detect ‘good’ phylogenetic features
would be to build the same 134 feature matrices (one per each feature). Instead
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of building the overall data matrix D from WALS, one can builda good phyloge-
netic matrix (variants of building this matrix might include weighing each edge
between languages and internal nodes as 1, count the family,subfamily and gen-
era classification, etc.). Applying in the same way the methods presented above
should result in a feature classification of how good the features map into the
phylogenetic clustering. Again, if one would be interestedin feature consistency
from the geographical point of view, the overall distance matrix can be built start-
ing with the geographical coordinates (as described in Section 2.4) (also available
in WALS) and calculate the geographical distance between languages.

Of course, I redid the entire analyses for the WALSX recoded data. As ex-
pected, the same ‘theme’ came out as good fitting to the overall data, with some
exceptions from the new binary features (Yes/No) that ‘climb’ up compared with
the original ones.

I have performed additional phylogenetic analyses, in order to observe the in-
fluence of selecting different sets of features, based on each method’s ranking. I
selected the set of 33 languages with the most data points grouped by families,
e.g. there should be at least 2 languages per family and at most 4 languages per
family. I produced the distance matrices associated with a selection of best 25,
50, 75, and 100 features using the relative Hamming measurement (cf. Section
3.2.1.1). The matrices were then used in NNet algorithm and the most interesting
outputs are presented below.

First, I analyzed the results obtained by using the best 25 ranked features from
each method. All methods successfully recognized the clustering of languages
from Nakh-Daghestanian and Trans New Guinea families. The rank method (Fig-
ure 4.4) is failing to group the Indo-European family as a cluster but amazingly,
it recognizes the Australian and Austronesian families. The middle position in
the comparison with the other two methods might be explainedalso by the struc-
ture of the network, which is mostly unresolved. The coherence method, which is
ranked worst for the 25 feature selection by the plot in Figure 4.3, also produced
an unstructured network and has no improvements in the classifications. On the
other hand, the Mantel method is producing a well defined network and it is the
only one that clusters the Altaic languages together, as well as partially the Niger-
Congo languages, while the Indo-European family forms a strong cluster.

As the plot in Figure 4.3 suggested, the coherence selectionof the best 50 fea-
tures should provide a great improvement. Indeed, as depicted in Figure 4.7, the
Indo-European family has now a well defined cluster, the Austronesian languages
are grouped together, as well as the ones that belong to the Nilo-Saharan and Aus-
tralian families.
The selection of the best ranked 100 features for the same coherence method, pro-
duces a well structured network, with improvements regarding the Altaic, Uralic,
Sino-Tibetan and Trans New Guinea families (Figure 4.8). Nevertheless, by us-
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Figure 4.4: NNet using the best 25 features from the rank method.

Figure 4.5: NNet using the best 25 features from the mantel method.
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Figure 4.6: NNet using the best 25 features from the coherence method.

Figure 4.7: NNet using the best 50 features from the coherence method.
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Figure 4.8: NNet using the best 100 features from the coherence method.

Figure 4.9: NNet using all features.
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ing all features (the method is not important anymore as the dataset is the same),
the resulting picture fails to cluster the Australian, Nilo-Saharan, Sino-Tibetan
and partially Afro-Asiatic families, suggesting that the last ranked features added
might contain noise or that they are just not phylogenetic representative.

The phylogenetic results presented in Figures (4.4 - 4.9) show a good corre-
lation with the plot in Figure 4.3 and also indicate what I originally believed that
each method manages to pick up signals from features consistencies, but these
signals have different meanings.
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Phylogenetic Algorithms

5.1 Phylogenetic reconstruction algorithms

5.1.1 A rank-based hierarchical classification

5.1.1.1 Introduction

The purpose of this algorithm is the phylogenetic tree reconstruction from dis-
similarity matrices1. This is a well-known problem and many algorithms were
implemented so far [14, 67, 32], especially that and this is the usual situation, a
dissimilarity matrix obtained from data will in general notbe ultra-metric or ad-
ditive; so it it has to betortured to give a tree. In this case by torture I understand
methodologies of modifying the original distance matrix [48], methods of choos-
ing best alternatives in cases of tie decisions [71], or justcomplex algorithms in
order to obtain the desired results [12, 26]. A standard taskin cluster analysis
is to associate, to any distance matrixD, a Linnean hierarchyℵ = ℵ(D), i.e. a
collectionℵ of subsetsX1,X2, ... of the taxa setS, such that

A ∩B 6= 0⇒ #(A ∪B) ≤ max(#A,#B) (5.1)

for all A,B ∈ ℵ. The central idea of Linnean hierarchies, and the associations
with a partially ordered set, was used also by E. Haeckel to construct his rooted
phylogenetic trees from the given knowledge of the “naturalorder” of the plant

1All the algorithms presented in this chapter were constructed following suggestions from
Andreas Dress.
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and the animal kingdoms just seven years after C. Darwin publishedThe Origins
of Species(cf. [24, 39]). The idea of deriving hierarchies from dissimilarity data
was first introduced in the 1960’s by A.F. Parker Rhodes and R.M. Needham [65],
as well as J.D Apresjan [5, 6]. In a remarkable way, this procedure is not restricted
to the conditionsD(x, y) = D(y, x) ≥ 0 andD(x, x) = 0 for all x, y in a setX,
and it works for any such mapD from X × X in any given linearly ordered set.
They suggested to consider the collection

~D = ~D(X) := {A ⊆ X | a, b ∈ A, x ∈ X −A⇒ D(a, b) < D(a,X)} (5.2)

of the subsetsA of X for which, for any elementa in A, any other elementb in A
is “closer” toa than any elementx ∈ X outsideA and they observed that these
subsets always form a Linnean hierarchy.

I produced a method which associates an ultra-metric matrixto an arbitrary
real matrix, by an iterative procedure and I detected the hierarchies from the rank
matrix. If the original matrix has no structure, the expected ultra-metric matrix
is trivial, and gives rise to a star tree. This method, instead, uses ranks matri-
ces. Why ranks? I do not have much faith in the precise values of a dissimilarity
matrix, but I like to believe that the order of the these values is significant. The
rank methods used the dissimilarity values to build a new, clearer matrix (the rank
matrix), on which further analyses are performed. Rank methods have played an
important role in statistics [48]. In [3, 25] it is describedtheir utility in phyloge-
netic reconstruction. By its nature, the method that I shalldescribe does not give
branch lengths, but only tree topology.

5.1.1.2 Method

The mathematics and many extensions are presented in [25], while a more recent
paper describes the utility and applications as well as the program that was imple-
mented to deal various situation [3]. One defines a rank matrix R of sizem as an
m×mmatrix of integers such that: consider thei-th row ofR, for 1 ≤ i ≤ m. The
entryRij is required to be equal to the number of entriesRik such thatRik ≤ Rij .

With this definition of rank, every rank matrix (for which anydiagonal entry
is not larger than any entry on its row) determines a rooted tree, but the cur-
rent implementation provides only the clusters (hierarchies) found in a parenthe-
sis format. Given an arbitrary realm ×m matrixD, one produces a rank matrix
R = R(D) by : Rij is the number of entriesDik such thatDik ≤ Dij . Usually, the
hierarchies obtained by this algorithm are poor, in the way that they do not offer
a full description of the clusters. For example, for 4 objects A, B, C, and D, one
might obtain the following hierarchies, depending on the actual distance matrix:
{A}, {B}, {C}, {D}, {A, B, C, D}. These hierarchies can not imply an objects
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clustering, less a tree. To solve this, the following alternative is proposed. While
associating the rank matrixR(D) with a dissimilarityD gives rise to a map

R : RX×X → R2(X) : D 7→ R(D), (5.3)

any map
T : R(X)× R(X) 7→ R (5.4)

allow us to define a map

DT : R2X 7→ RX×X : R̄ 7→ DT (R̄) (5.5)

in the opposite direction. Obviously, one may reiterate these procedures, thus
deriving a whole family of dissimilaritiesDl : X × X → R(l = 0, 1, ..) from
any dissimilarityD ∈ RX×X , for all l ∈ N0. The experiments show that these
iterations always run into a cycle, i.e. there exists a unique smallest numberi ∈ N
such thatDi = Dj holds for somej ∈ N . In my implementation I used asDT

the distance formulae from Spearmann and Kendal to calculate the new distances
between the objects (rows) in the matrix.

DT (i, j) =
∑

k

(R(i, k)−R(j, k))2 (5.6)

DT (i, j) =
1

N(N − 1)

N
∑

a=1

N
∑

b=1

Ii,j(a, b) (5.7)

where

Ii,j(a, b) =































+1 if R(i, a) < R(i, b) AND R(j, a) < R(j, b)

+1 if R(i, a) > R(i, b) AND R(j, a) > R(j, b)

−1 if R(i, a) > R(i, b) AND R(j, a) < R(j, b)

−1 if R(i, a) < R(i, b) AND R(j, a) > R(j, b)

+0 else

(5.8)

Tests also showed that iterating until the cycle (convergence) is achieved pro-
duce much better results, because the hierarchies obtainedare well defined and
structured. Amazingly, the results showed that the cycles have even a step of 1, or
a step of 4

Di
T = Di+1

T orDi
T = Di+4

T , (5.9)

but I could not find a proper explanation for the4 step results. For example, in
Figure 5.1, the initial rank matrix constructed for four objects is used, together
with Spearmann’s formula in Equation 5.6 to construct a new distance matrix,
which is again reiterated. In the last step of the iteration,the distance matrix
produces the same rank matrix as the initial one, therefore the cycle must stop,
concluding in a step-cycle of four (note that the derived distance matrices will
always have 0 on the diagonal and they will always be symmetric).
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Figure 5.1: Iterations using Spearman’s formula. After 4 iterations, the process is
entering in a cycle.
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Nevertheless, it is actually worth analyzing each cycle’s output, as the evolu-
tion of size and correctness of the hierarchies might show interesting information.
In some cases, there might be the situation that even after iterating, the hierarchies
might not be fully descriptive.
That is why, I introduced a new improvement, a divide-and-conquer approach.
Mainly, after convergence is achieved, I am looking only at the largest two dis-
joint hierarchies, let sayH1 andH2, and disregard the other ones. That is also
because, and extensive tests proved it, one should have greater confidence in the
largest hierarchies, and be at least sceptical about the small ones. Then, for each
of H1 andH2, I can select the objects that form each hierarchy (rememberthat
they are disjoint), and restart the entire algorithm for each of them, by construct-
ing from the original distance matrix, the distances matrices associated toH1 and
H2 respectively (cf. Figure 5.2).

Figure 5.2: Divide and conquer search for hierarchies.

5.1.1.3 Applications

In this section I present an interesting example of a ‘problematic’ distance ma-
trix, and I compare the results from the rank algorithm with other phylogenetic
reconstruction algorithms based on distance matrices. Theinput distance matrix
is based on the picture in Figure 5.3, in which the distance between the two clus-
ters{A, B, C} and{a, b, c} is 2, which is equal with the distance betweenA and
C, or a andc.

Figure 5.3: Sample input data for algorithms comparisons .

Then, the associated distance matrix is the one showed in Table 5.1, as the length
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A B C a b c
A 0 1 2 4 5 6
B 1 0 1 3 4 5
C 2 1 0 2 3 4
a 4 3 2 0 1 2
b 5 4 3 1 0 1
c 6 5 4 2 1 0

Table 5.1: Distance matrix associated

of the path between the points
Using the Neighbour-Joining, UPGMA and DQuartets algorithms implemented
in SplitsTree package, I obtained the following pictures displayed in Figures 5.4 -
5.8.

Figure 5.4: The result from the NJ algorithm.

Figure 5.5: The result from the UPGMA algorithm.

Of course, this is not what I really wanted. Even if NJ (Figure5.4) showed the
reality, I am more interested in detecting the clusters{A, B, C} and{a, b, c} (of
course, one can still interpret the NJ result as two clusters). The DQuartets (Figure
5.6 - 5.8) is not showing the correct clusters even if variousvalues of the threshold
parameter are used. The UPGMA algorithm (Figure 5.5) interprets correctly the
problematic distance matrix, but somehow the picture seemsdistorted (this algo-
rithm proposes only tree topology, not the branch lengths).The rank algorithm is
somehow in the middle, as it correctly finds the{A, B, C} and{a, b, c} clusters
but as I mentioned, the algorithm does not make any assumptions on the length of
the branches, but only on the typology (Figure 5.9).
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Figure 5.6: The result from the DQuartets algorithm.Thresholds = 0.0.

Figure 5.7: The result from the DQuartets algorithm.Thresholds = 1.0.

Figure 5.8: The result from the DQuartets algorithm.Thresholds = 2.0.

Figure 5.9: The result from the rank algorithm.
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5.1.2 A Distance-Quartet Puzzling algorithm

Given a distance matrix, it seems reasonable to expect that the two species with the
smallest distance will have diverged most recently. In addition, the next smallest
distance in the matrix should indicate which two species diverged just before that,
and so forth. For example, if speciesa andb are the closest2, and speciesa andc
are the next closest, the conclusion would be that speciesa andb diverged most
recently, and that an ancestor of these two diverged from speciesc just before that.

This clustering approach can be used for phylogenetic tree reconstruction.
Once the two closest species have been identified, one can define the distances
between their virtual ancestor and all the remaining species. If speciesa and
speciesb are the closest and speciesx is their ancestor, then one can define the
distance between that ancestorx and any other speciesc using one of the follow-
ing formulae:

Dmin(x, c) = min(D(a, c), D(b, c)) (5.10)

Dmax(x, c) = max(D(a, c), D(b, c)) (5.11)

Davg(x, c) =
1

2
(D(a, c) +D(b, c)) (5.12)

The algorithm using (5.10) is called ‘nearest-neighbour clustering’ or ‘single
linkage method’, the one using (5.11) is referred to as ‘furthest-neighbours clus-
tering’ or ‘complete linkage method’, and (5.12) is often called ‘weighed pair
group method using arithmetic averages’, or WPGMS [44].

5.1.2.1 Distance-Quartet Puzzling

Given a phylogenetic X-treeT and four leavesa, b, c, d such that exactly one edge
in T separatesa, b from c, d, the length of the unique internal edge of the induced
{a, b, c, d}-Tree is given by

wT (ab|cd) :=
1

2
(DT (a, d) +DT (b, c)−DT (a, b)−DT (c, d)) (5.13)

=
1

2
(DT (a, c) +DT (b, d)−DT (a, b)−DT (c, d)) (5.14)

whereDT (x, y) denotes the sum of edge weights on the path that connectsx and
y, x, y ∈ X.

2This pair is often named acherry.
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Thus, given a not necessary tree-like distance D, this suggests to consider the
number

wD(ab|cd) =
1

2
(max(D(a, c) +D(b, d), D(a, d) +D(b, c))−D(a, b)−D(c, d))

(5.15)
as a weight of the quartet treeab|cd relative toD as depicted in Figure 5.10.

         w(ab|cd)

a c

db

c

d

a

b

         w(ab|cd)

a) b)

Figure 5.10: Weight calculations for a) tree-like data and b) non tree-like data.

5.1.2.2 Linkage algorithms for weighed quartets

I now consider

Wmax(ab) = max{w(ab|cd) | c, d ∈ X \ {a, b}, c 6= d}, (5.16)

that denotes the maximum weight of all quartets separating a, b from any two
other elements. Now, the procedure is continued as follows:first, one finds the
pair{a, b} contained in the quartet with maximal weight.

(a, b) = arg max
(x,y)∈X2

{Wmax(xy)} (5.17)

Then, assuming that the pair(a, b) forms a cherry in the phylogenetic X-tree
that one plans to construct, one collapses the leavesa andb into one element{a, b}
and update the weights according to one of the formulae:

w({a, b}c|de) ∈







min(w(ac|de), w(bc|de)),
max(w(ac|de), w(bc|de)),
avg(w(ac|de), w(bc|de))







. (5.18)

For whatever formula is used, one can now replace the two leaves by only one
of them and define its distances to the remaining leaves as indicated in equation
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5.18. The algorithm subsequently defines new clusters of leaves and distances,
until only four leaves are left. For these four leaves, one chooses the quartet tree
configuration with the highest weight among the three possibilities. Then, one
builds the tree based on the information saved every time a leaf was deleted. The
three variants produce, in the worst case, three different trees, but finding the same
cluster in at least two of them, will suggest that this cluster has some phylogenetic
relevance. Of course, this conclusion will be more convincing if it is found in all
three trees.

Another variant is to build the weighted system as

Wsum(ab) :=
∑

c,d∈X\{a,b}
c 6=d

w(ab|cd) ∀a, b ∈ X; a 6= b. (5.19)

and to find the pair (a,b) that has the largest weight. For the update procedure,
one can choose one of the three alternatives (5.18) and compareWsum(a′b′) after
performing the update, or just use

Wsum({a, b}, c) := max

(

Wsum(a, c)

Wsum(b, c)

)

. (5.20)

The other parts of the algorithm (collapsing of cherries andtree reconstruction)
remain unchanged. One can explore which variant of the algorithm should be
used. Thus, the analysis of the phylogenetic trees obtainedby applying different
variants on the same data set might be of interest in phylogenetic analysis (e.g.
checking the Molecular Clock Hypothesis [53]).

5.1.2.3 Algorithm

In the algorithm, one keeps track of the pairs later forming the cherries. Given a
setX = {a, b, c, d, e, f} of taxa and a distance matrixD onX, we compute the
phylogenetic X-tree as follows:

If (a, b) is the pair to be collapsed into{a, b}, one renames{a, b} to a, push
b onto the stackStackremoved of elements removed, and pusha onto the stack of
pairsStackpairs. Next, if the pair(d, e) is to be collapsed intod, the stacks con-
tain: Stackremoved = e, b andStackpairs = d, a. Whenever an element is pushed
ontoStackremoved, it is also deleted from the initial data set. At the last stepof
this part, one remains only with four elements: a, c, d, and f and starts with the
backtracking phase (Figure 5.11 ). If(ac|df) forms the quartet configuration with
the largest weightw(ac|df), one first pops the stacks (e ← pop(Stackremoved),
d ← pop(Stackpairs)) and replaces the leafd in the already constructed phyloge-
netic X-tree by the cherry{d, e}. Analogously, the leafa is replaced in the last
step by the cherry{a, b}.
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a f

d
a c

f e

d

d

ef

c

ba

Stack_removed: bStack_removed: e,b
Stack_pairs: d,a Stack_pairs: a

Stack_removed: _
Stack_pairs: _

c

Figure 5.11: Backtracking phase for the phylogenetic X-tree reconstruction (Al-
gorithm 1, lines 14-19) given a setX = {a, b, c, d, e, f} of taxa.

5.1.2.4 Time and space complexity

I now give a detailed analysis for the time and space complexity of this Distance
Quartet Puzzling algorithm.

Given a setX of taxa, there exist3
(

|X|
4

)

quartets. Therefore, there are3
(

|X|
4

)

weights to be computed (Algorithm 1, lines 1-5) that all haveto be touched in the
second loop (Algorithm 1, lines 6-8). The third loop (Algorithm 1, lines 9-16) is
executed|X| − 4 times. In thei − th iteration, the computation of the pair with
maximal weight takes

(

|X|−i+1
2

)

steps, the number of pairs of remaining taxa in
X. The operations in Algorithm 1 lines 11-14 take constant time. In Algorithm
1, line 15 the update procedure (Algorithm 2) for weights of quartets containing
a can be performed in

(

|X|−i−1
3

)

steps. The reconstruction of the phylogenetic X-
tree (Algorithm 1, lines 18-25) can simply be performed in linear time. Hence,
the overall time complexity is:

TDistQ = O





(|X|
4

)

+

|X|−4
∑

i=1

((|X| − i+ 1

2

)

+ c1 +

(|X| − i− 1

3

))

+ n





= O(n4)

The overall space complexity isO(n4) due to the storage of the weights of all
3
(

|X|
4

)

quartets.

5.1.2.5 Applications

I applied the DistQ algorithm on a distance matrix constructed as in Section
3.2.1.1 for 12 languages grouped in 6 families (2 languages per family). I processed
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input : Distance matrixD, set of taxaX
output: Phylogenetic X-tree

forall {x, y, v, z} ∈
(X

4

)

do1

w(xy|vz)← CalculateWeight (xy|vz)2

w(xv|yz)← CalculateWeight (xv|yz)3

w(xz|vy)← CalculateWeight (xz|vy)4

end5

forall {a, b} ∈
(X

2

)

do6

computeW(ab)7

end8

for i← 1 to #(X)− 4 do9

(a, b) ← arg maxx,y∈X{W(xy)}10

X ← X− {b}11

Stackremoved ← push (Stackremoved, b)12

Stackpairs ← push (Stackpairs, a)13

a ← CollapsePair (a, b)14

w ← UpdateWeights (a, b|X|y)15

end16

/* V = {a, b, c, d, u, v},E = {{a, u}, {b, u}, {c, v}, {d, v}, {u, v}} */17

(ab | cd) ← arg maxx,y,v,z∈X{w(xy | vz)}18

tree ← treeFromQuarted(ab|cd)19

for j ← #(X)− 4 to 1 do20

y ← pop (Stackremoved)21

z ← pop (Stackpairs)22

cherry ← formCherry (y, z)23

tree24

← replaceTreeNodeZwithCherry (tree, z, cherry)
end25

Algorithm 1 : Distance quartet puzzling algorithm.
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input : Taxaa, b, data setX and weighted systemw
output: Updated Weights

forall x ∈ X \ {a, b} do1

forall y, z ∈ X \ {a, b, x} do2

w(ax|yz)← UpdateFunction(w(bx|yz), w(ax|yz))3

where UpdateFunction∈ {min,max, avg}4

end5

end6

Algorithm 2 : Update Weights (a,b| X | w).

the matrix with the DistQ variants explained in Formulae 5.18 (using minimum),
and in Formulae 5.1.2.2, and the trees obtained are depictedin Figure 5.12, and
Figure 5.13 respectively. Compared with the results obtained by using the NJ
algorithm (Figure 5.14) on the same distance matrix, the outputs of the two algo-
rithms bear an obvious similarity to each other.

This algorithm as well as the NJ correctly clusters the languages from Indo-
European, Altaic, Australian and Nakh-Daghestanian families, while the same
problem for Austronesian and Afro-Asiatic families is encountered by both algo-
rithms. Interestingly, the DistQ algorithm has nicely clustered the Indo-European,
Altaic and Nakh-Daghestanian together, while NJ placed theIndo-European fam-
ily opposite to the other two. Note that DistQ will always provide binary trees
(because using the ‘cherries’ methodology) and it does not assume any informa-
tion about the length of the branches as the output that the algorithm produces is
just the simple tree Newick expression (without lengths).
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Figure 5.12: The result from the DistQ algorithm using theminimum weightvari-
ant.

Figure 5.13: The result from the DistQ algorithm using theglobal weightvariant.
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Figure 5.14: The result from the NJ algorithm.

5.2 The entropy algorithm

5.2.1 Description

Considering a system S consisting of a finite number of subsystems with finite
state spacesS1, .., Sn, and an assignment of an energy E(s) for each global state
s = (s1, , sn) ∈ S1 × ..× Sn of the systemS, the associated partition function

Φ(T ) = ΦE(T ) :=
∑

s∈S

exp(−E(s)/T ) (5.21)

and the average energy of the system

E(T ) :=

∑

s∈S E(S)exp(−E(s)/T )

Φ(T )
(5.22)

can be computed in a number of steps that grow linearly with n,with a constant
depending on the tree-width of the associated interaction system (cf. [6]).

Given:

• a finite alphabetU , a dissimilarity map

D = U × U −→ R≥0 : (α, β) 7→ D(α, β) (5.23)
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with
D(α, α) = 0, D(α, β) = D(β, α) (5.24)

• a finite setX ⊆ UN of aligned sequences and an X-treeT̄ = (V,E), i.e., a
finite tree with vertex set V and edge set E without vertices ofdegree 2 for
which X coincides with its leaf set

V1(T̄ ) := {v ∈ V : #{e ∈ E : v ∈ e} = 1} (5.25)

• and a mapψ : X− > U.

Then, one can consider the systemS whose state space is the set of all extensions
ϕ : V− > U of ψ, and associate, to any suchϕ, its internal energy

E(ϕ) :=
∑

{u,v}∈E

D(ϕ(u), ϕ(v)) (5.26)

Invoking concepts due to Boltzmann, one can then estimate the quality of the
treeT̄ relative toψ by its average energy

E(ψ, T̄ ) = E(ψ, T̄ )T =
∑

ϕ

E(ϕ)p(ϕ) =
∑

ϕ

E(ϕ)
exp(−E(ϕ)/T )

ΦE(T̄ )
(5.27)

or, as well, by the closely related entropy

entr(ψ, T̄ ) = entr(ψ, T̄ )T :=
∑

ϕ

−ln(pT̄
T (ϕ))pT̄

T (ϕ) = ln(Φ(T )) +E(ψ, T̄ )/T )

(5.28)
of the probability distribution

p = pT̄
T := (pT (ϕ))ϕ =

exp(−E(ϕ, T̄ )/T )

ΦE(T )
(5.29)

Remarkably, using a simple recursive dynamic programming scheme (based
on the fact that, after all, a tree has tree-width one), theseterms can be computed
algorithmically in linear time relative to#X, with a constant depending on#U2,
cf. [5]. So, considering a family ofN mapsψ1, , ψN , : X− > U (corresponding
to an X-labeled family of aligned sequences inUN ), one can associate to this -
and compute for every X-treēT and everyT ∈ R>0 - the sum

N
∑

i=1

E(ψi, T̄i)T (5.30)

It is this sum that I suggest to use as a measure of fit.
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Using the approach presented above, I can now compute the resulting quanti-
tiesE(T̄ )K andΦT̄

K . To this end, I define maps

πi : {1, 2, ..., i} × U → R>0 : (j, α) 7→ πi(j, α) (5.31)

and
σi : {1, 2, ..., i} × U → R>0 : (j, α) 7→ σi(j, α) (5.32)

for all i = n, n− 1, ..., 1 (anti-)recursively as follows:
For i := n I put πn := 1 andσn := 0 and assuming thatπi+1 andσi+1 have been
defined already for somei < n, I put

πi(j, α) := πi+1(j, α) (5.33)

and
σi(j, α) := σi+1(j, α) (5.34)

for all j ∈ 1, 2, ..., i− j(i) while, for j := j(i), I first define mapsπ∗
i andσ∗

i from
U × U intoR>0 andR, respectively by

π∗
i (α, β) := πi+1(j, α)× πi+1(j, β)× exp(−Dj,i+1(α, β)/T ) (5.35)

and
σ∗

i (α, β) := σi+1(j, α) + σi+1(i+ 1, β) +Dj,i+1(α, β) (5.36)

that I used to define the required quantitiesπi(j, α) andσi(j, α) distinguishing the
casesi ≥ k (i.e. i+ 1 ∈ Vi) andi < k. In casei ≥ k I put

πi(j, α) := π∗
i (α, ψ(i+ 1)) (5.37)

and
σi(j, α) := σ∗

i (α, σ(i+ 1)), (5.38)

in casei < k, I put
πi(j, α) :=

∑

β

π∗
i (α, β) (5.39)

and
σi(j, α) :=

∑

β

σ∗
i (α, β)π∗

i (α, β)/πi(j, α) (5.40)

The formulae presented previously allow us now to conclude that

ΦT̄
T (ψ) =

∑

α

π1(1, α) (5.41)
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and
E(ψ, T̄ )T =

∑

α

σ1(1, α)π1(1, α)/ΦT̄
T (ψ) (5.42)

must hold.
In other words, I can compute these two quantities by a sequence of altogether

2a(n−k−1)+(k−1)(2a2+a−1)+(k−1)(2a2+2a)+3a−1, a = #U (5.43)

summations and products over functions defined inU . Now I would like to sketch
some implementation details of the algorithm. Assume that the following num-
bering of the tree nodes holdsV = 1, 2, ..., n andV1 = k + 1, k + 2, ..., n and for
∨i ∈ {1, 2, ..., n− 1}, ∃ exactly one vertexj = j(i), j ≤ i, with {j, i+ 1} ∈ E.
The example tree in Figure 5.15 illustrates this numbering convention.

Figure 5.15: Tree encoding sample.

I associate with every nodei, a corresponding row in arrays
π : 1, 2, ..., n× a andσ : 1, 2, ..., n× a
At the initial step,π is filled with 1-s andσ with 0-s. Arraysπ serve for “accumu-
lation” of exp(−KE) andσ for “accumulation” ofE.
I have to compute

Φ(χ | T,K) =
∑

χ̂

exp(−KE(χ̂)) (5.44)

and
∑

χ̂

E(χ̂)exp(−KE(χ̂)) (5.45)

To this end, I “remove” nodes from the tree (and corresponding rows from arrays
π andσ) sequentially, beginning with noden. By removing of the nodei + 1, I
make the following update of the array (for instance,π):
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Figure 5.16: Update process overview. Each internal node/leaf is used to update
its parent. Same procedure is applied to the sigma matrix.
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After each step one goes one row “deeper” in the above matrixπ. Analogues
manipulations have to be done with the arrayσ too. It follows from the above
considerations that at the end of the whole procedure one is at the n-th row ofπ
andσ; these rows then are used to compute the averaged energy

ΦT
K(ψ) =

∑

α

π(1, α) (5.46)

E(ψ, T )K =
∑

α

σ(1, α)π(1, α)/ΦT
K(ψ) (5.47)

The algorithm is implemented in QALD software and can be easily used for
any given tree and sequences. Attention must be payed on the exact correspon-
dence between the number of leaves in the sequence file and thenumber of leaves
in theNewicktree expression3.

5.2.2 Applications

5.2.2.1 Analyzing Dunn’s paper

In this Science paper [30], Dunn et al. used 120 binary grammatical features
(Yes/No) in order to :

• check the phylogenetic information contained in these features for Oceanic
languages

• weigh and use accordingly the most relevant features in order to detect the
genealogical relationships for Papua New Guinea languages

It is somehow similar to my approach, as they first produce a maximum-likelihood
analysis of the known data and the traditional tree, and thenweigh the ‘best’
features obtained for another language family. The presented algorithm produced
the following most relevant features (Table 5.2), while their approach leads to
the results in Table 5.3 with the Pearson ’s correlation coefficient between ranked
features ofr = 0.880014.

3TheNewicktree expression is automatically converted to the internalnumbering convention
explained in Figure 5.15.
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FeatNr FeatDescr
97 VS Intransitive Clauses
59 S Prefix marking
61 A Prefix Marking
44 Decimal Numerals
14 Article-Noun Fix Order
66 Verb Variation ClauseType
67 Verb Variation Person
12 Definite Or Specific Articles
98 Verb Initial Transitive Clauses
52 Postpositions
85 Verb Classifiers
35 Possessive Classifiers
41 Marked Possessor
13 Indefinite Or Non-Specific Articles
29 Plural-Marked Noun

Table 5.2: My list of best features

FeatNr FeatDescr
97 VS Intransitive Clauses
59 S Prefix Marking
61 A Prefix Marking
66 Verb Variation Clause Type
67 Verb Variation Person
98 Verb Initial Transitive Clauses
50 Oblique Case Marking
83 Reflexive Morphology
74 Recipient Object
44 Decimal Numerals
35 Possessive Classifiers
52 Postpositions
29 Plural-Marked Noun
12 Definite Or Specific Articles
14 Article-Noun Fix Order

Table 5.3: Dunn’s list of best features
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5.2.2.2 Detecting the best tree for a sequence file

The algorithm can also be used on the opposite direction. Given a set of trees and
one alignment, the algorithm tries to match the sequences toeach tree, and there-
fore detects the ‘best’ one. An illustrative example of two different tree topologies
is presented in Figure 5.17. If the alignment from Table 5.4 is analyzed together

Figure 5.17: 2 different tree topologies.

with these two trees, it is clear that Tree Y is a better fittingto this data as both

A 1 2 2
B 1 2 2
C 1 1 2
D 2 3 1
E 2 3 1

Table 5.4: Sample data set.

column 1 and column 3 in the table support the split{A,B,C} vs {D,E}, while
column 2 induces the split{A,B} vs{C} and{A, B, C} vs{D,E}.

5.2.2.3 Detecting the distances between trees

A new and interesting idea4, even if not completely tested, was implemented to
discover the distances between trees, meaning how different/distant are two trees ,
with respect with their topologies. Having two trees T1 and T2, and their data sets

4Thanks to Sören Wichmann for collaborating on this idea.
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D1 and D2 (I assume here that the trees ‘perfectly’ fit to theirdata5), I propose a
new distance measure between trees as shown in Equation 5.48.

dist(T1, T2) = Entr(T1, D2) + Entr(T2, D1) (5.48)

Therefore, having the trees topologies in Figure 5.18 and their perfect data sets,

Figure 5.18: 3 different tree topologies.

D1 for T1, D2 for T2 and D3 for T3 respectively as shown in Table5.5 I will

D1 D2 D3
A 1 1 2
B 1 1 1
C 1 2 1

Table 5.5: Data set

obtain the following distances between trees as presented in Table 5.6.

dist(T1,T2) 1.00045
dist(T1,T3) 1.00045
dist(T2,T3) 2.00013

Table 5.6: Distances between trees

5I generate the ‘perfect’ data set by supplying the necessarycolumns to match each cluster in
the tree topology.
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5.2.2.4 Future improvements

The algorithm can be improved for future research. One drawback is the impos-
sibility of dealing with missing data. This might be solved in a simplistic way
by supplying the universal missing symbols (e.g., “?”, “-”)with all the possible
values found in the corresponding column of the alignment, or more complex, by
applying specific mathematical procedures [54]. Another improvement might be
achieved by performing statistics on the features energiesvalues, and/or on each
feature values distribution. The distance measurements between trees might be
improved if specific details about the trees and the alignment are provided. Char-
acter distance matrix can be incorporated in the algorithm,and this will provide a
general valuable procedure for various datasets.

Nevertheless, I believe that this algorithm, even as simpleas it is, might pro-
vide deep hidden information about a data set and the phylogenetic tree associ-
ated.
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QALD software

Most of the analyses and methods described in this thesis were implemented in
a software package called QALD (Quantitative Analyses of Linguistic Data) that
interacts with data from both the original WALS and the recoded WALSX. Us-
ing the MySql engine (Appendix 8.1) [1], appropriate conversions of the data
were made for an easier interaction between the Visual Studio environment1 and
the databases. The aim of the QALD package is to be a tool for both database
interrogation and phylogenetic analyses of the data contained in the WALS data-
base. Moreover, QALD offers various algorithms for data analysis, classification
of languages by family or geographical location, and methods for selecting the
most informative features. The QALD software is available as a stand-alone ver-
sion, and can be downloaded fromhttp://lingweb.eva.mpg.de/phylogenetictools/.

It was implemented in Visual C6.0 and it uses OpenGL functions for graphi-
cal display. It is a Single Document Interface (SDI) projecttype and classes were
created to deal with various issues:

• entropy algorithm (CEntropy),

• WALS analyses (CWalsDB),

• MySql interaction (CMySqlMap),

• graphical manipulation (CBody3D, CVertex3D).

1Visual Studio 6.0 offers a friendly user interface to programming in VisualC, Visual Basic,
Visual Java, as well as in-line help for predefined classes and various projects types.

98
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In this way, the source code became very well structured and easy to be integrated
if required, in other software implementations. Graphicalmanipulations are a new
set of features to modify a tree by using the mouse, while the entropy algorithm
(see Section 5.2) can be applied to the trees. Because it is using a Document-
View architecture, all the graphical elements are saved in the CDocumentclass,
while the actual drawing operation is implemented in theOnDraw function from
CViewclass, by performing the necessary checking on the documentelements,
thus allowing real-time updating of the graphical elements. This approach per-
mits easier implementation of functions likeUndo, Save, Print or Modify Tree.
Many of the graphical ideas implemented here were actually part of the author’s
university thesis [2].

6.1 Loading, displaying and modifying tree struc-
tures

As shown in Figure 6.1, the graphical user interface (GUI) ofthe software con-
sists in a display/modify window, a set of utility buttons displays in a left toolbar,
menus, as well as dialog boxes to set parameters, run the methods and display the
results. All the buttons have correspondences in menus and shortcuts are also pro-
vided. The drawing area is used to display the tree (loaded from file or obtained
from phylogenetic algorithms), as well as modifying them graphically (by mouse
action). Using then theSave treebutton, one can use the modified tree for further
investigation.

The graphical drawing is not a very esthetically one, but it is one of the few
implementations to display, modify (by mouse action) and save the trees using the
‘Newick’ tree expression described in
http://evolution.genetics.washington.edu/phylip/newick doc.html, or as exempli-
fied in 6.1.

((Finnish,Hungarian), (Romanian, (Italian, (Spanish, Portuguese))));
(6.1)

Nevertheless, converting such a simple parenthesis formatto a graphical represen-
tation of the tree implies some preprocessing steps (Algorithm 3).

This implementation deals with two major problems:

• construct the tree structure based on the tree expression (ReadTreeFile, An-
alyzeTreeExpression)

• assign the correct coordinates of the graphical elements, so it can be dis-
played and allow mouse input modifications (CalculateTreePosition). Many
tree representations will not fit in a user screen (as the sizehas to be large
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Figure 6.1: Main user interface of the QALD software.

input : The file name that contains the tree expressionCString
strFileName

output: Tree structureCTreeNodegTreeRoot

strTreeExpression = ReadTreeFile(strFileName)1

gTreeRoot =AnalyzeTreeExpression(strTreeExpression, 0)2

gTreeRoot = CalculateTreePosition()3

Algorithm 3 : Conversion from tree expression to graphical elements.
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enough in order to be able to distinguish the structure and tomodify it),
so scroll bars (both horizontal and vertical) were necessarily implemented.
This implies more calculations of coordinates (especiallyon theselectop-
eration) but unfortunately complete reliability tests were not performed.2

While in the functionReadTreeFileonly a string analysis is performed (based on
identifying the node separators, e.g. comma sign, left and right signs) to detect
the leaves and assign them unique ID-s. In contrast, theAnalyzeTreeExpression
routine is a more complex one. This is a recursive function todetect the actual
internal structure of the tree, e.g. the parent nodes and itschildren (an illustrative
example is presented in Figure 6.2). Before calling this function for the first

input : The tree expressionCStringstrTreeExpression, the level in
the treeCInt nLevel

output: Tree structureCTreeNodegTreeRoot

structureListPair = FindParanthesisPair(strTreeExpression)1

strUpdatedTreeExpresion← strTreeExpression2

forall pairs ∈ structureListPair do3

strUpdatedTreeExpresion = ReplaceInString4

(strUpdatedTreeExpresion, pairs, nextInternalNode)
gTreeRoot = InsertParentNode(pairs, nextInternalNode)5

nextInternalNode← nextInternalNode + 16

end7

nLevel← nLevel + 18

AnalyzeTreeExpression(strUpdatedTreeExpression, nLevel)9

Algorithm 4 : Building the tree structure.

time, the structuregTreeRootis initialized as a node of the typeroot with all the
leaves as its children (cf.Level 0in Figure 6.2)3. In the first step, cf Algorithm
4, line 1, a list of current replaceable pairs are detected (in my sample,F,H and
S,P are found). These pairs are replaced inLevel 1with the internal nodesN6
andN7 respectively (the next available numbering after including the leaves). By
replacing I mean the search in the tree structure to find both elements to be re-
placed, find their common parent (on this level, their parentwill be theroot), and
replace theroot pointers to these elements to a pointer to the new element to be
inserted, while the new element’s pointers to the children would be inherited from

2If scrollbars are used, the drawing must be updated with the correct coordinates in order to be
able to recognize the correct selection point (the point where the left mouse click was performed).

3ThenLevelvariable is saved in thetree structureand it will be used in the assigning of graph-
ical coordinates to the nodes.
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the above parent, theroot in this case). This is done until all the pairs on the
current level are replaced, then thenLevelcounter is increased (Algorithm 4, line
8), and a new call to theAnalyzeTreeExpressionfunction is made (Line 9) with
the updated tree expression. This procedure continue untilthere are no more pairs
found in the continuously updated tree expression, with theremark that before the
end, an unique ID is also assigned to theroot, as in Figure 6.2 theN10 ID.

Figure 6.2: Building trees from string expression.

The definition of theCTreeNodeclass is described in Appendix 8.3. It is de-
rived from classCObject for better serialization (save/load) operations. In the
drawing, red squares indicate the modifiable objects, e.g. the internal nodes that
one can select, move or delete in order to obtain the desired results. These actions
can be performed by selecting the appropriate buttons on theleft panel (Select and
MoveandSelect and Delete) and by choosing the internal nodes that must support
the operation. Please note that the usual behavior is top-down. A selection of an
internal node together with a specific operation will imply that the same operation
will be applied to the entire subtree that is dependent on thechosen node, e.g. to
all its children.

Now, the calculus of the graphical coordinates of the nodes is an in-hand pro-
cedure, the only problem being to deal with scroll bar actionif the entire tree does
not have enough space to be display in one screen, or only partof it is to be visu-
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alized.
Because there is no need to worry about where exactly to put the the leaves,

the algorithm is free to decide on the size of the picture4. Analyzing each node
(starting with the leaves and continuing with the internal nodes until the algo-
rithm arrives at the root), it is possible to determine, if the size of thedraw area
is known, what coordinates each of the nodes should have. Then, following the
relationships between nodes (parent-child), it is trivialto detect how to draw the
lines between them. In this case, the choice was similar to cladogram (straight
lines, not obliques), but this can be easily changed into more fancy variants.

Nevertheless, it is possible to save the picture back to the ‘Newick’ tree ex-
pression format (useful if a tree was changed) by pressing the Savebutton or by
choosing theSave Treefrom theEdit menu. The procedure is based on a tree pars-
ing methodology, which starts with the root node, and then replaces its ID with
the ID’s of the children in a parentheses format, i.e. surrounded by parentheses
and separated by commas. Then, recursively, the same methodis applied to all its
children until the leaf nodes are reached.

6.2 Algorithms

6.2.1 Entropy algorithm

The entropy algorithm (described in Section 5.2.1) can be accessed from the menu
Minimum Energy Algorithmor by pressing directlyALT+E. This will result in
displaying the parameter settings dialog box, where the user must specify the
name and the location of the tree file (by pressing thePlease upload the graph file
button), the sequence file (by pressing thePlease upload the sequence filebutton),
the value of the temperature constant and the name of the output file. By pressing
thePerformbutton, the algorithm is applied to the specified files. As soon as the
operation is finished, a small dialog box containing the mainresults is displayed.
As depicted in Figure 6.4, the summary shows the fitting values for each character
(i.e. each column in the alignment file) to the specified tree.These information
are also saved in a text format, with tab-separated fields, inthe file specified as the
output.

4I choser.bottom = gnNrLevels ∗ 155 and r.right = gnNrLeaves ∗ 100 where r is
a rectangle structure (withr.top = 0 and r.left = 0) that represent the drawing dimension.
The number of leaves (gnNrLeaves) and the number of levels (gnNrLevels) are global variables
determined apriori
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Figure 6.3: The dialog box for the entropy algorithm.

Figure 6.4: Results summary for the entropy algorithm.
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6.2.2 Phylogenetic algorithms

The phylogenetic reconstruction algorithms implemented can be accessed from
the menuPhylogenetic Algorithms. The dialog box as shown in Figure 6.5 will
then be displayed. The user must choose the distance matrix file (in standard for-

Figure 6.5: Phylogenetic algorithms dialog box.

mat [32]) by opening a browse file dialog box from theBrowsebutton, the phylo-
genetic algorithm to be performed on the distance matrix (rank classifier, distance
quartet puzzling or the standard neighbour-joining) and the method for the vi-
sualization of the tree produced by the algorithm selected.By pressing theOk
button, the appropriate algorithm is performed (with possible intermediate steps
for setting the necessary parameters, e.g. the rank classifier method, the distance
quartet-algorithm).

6.2.2.1 Rank classifier algorithm

The rank classifier algorithm needs a series of parameters that can be set in the
dialog box presented in Figure 6.6 (it can be accessed after the user selects this
algorithm from the options in Figure 6.5). A short description of the parameters
(as they are saved in the parameter file) is presented below:

• file format = the format of the input matrix. The matrices can be similar-
ity matrices or dissimilarity matrices, and can include, ornot, information
about the number and the names of the objects. When no names are speci-
fied, numbers are assigned to identify the objects in the output tree.
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Figure 6.6: Rank classifier algorithm dialog box.

3
Human 0 1 2
Gorilla 1 0 2
Whale 2 2 0

Table 6.1: Phylip matrix format including the number and thenames of the species

• nr cycles = the maximum number of cycles to be performed if the conver-
gence it is not achieved initially.

• distance = the formula used to build a new matrix based on a previous
distance (rank) matrix, for every cycle. Two methods are implemented:
using the Spearman distance formula or using the Kendall distance formula
respectively.

• divide = the divide and conquer parameter to specify whether this should
be performed or not. A Yes/No option is provided.

• output type = the type of output that one might need. It can be either of
the variants: (i) only a Newick tree expression that can be used in tree-view
programs or, (ii) a detailed (if the check box is selected) cycle-by-cycle
output, if one wants to investigate the various rank classifications of the
objects.
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6.2.2.2 Distance quartet-puzzling algorithm

The parameters for the distance quartet-puzzling algorithm (DistQ) are fewer, and
can be set in the dialog box displayed in Figure 6.7. As the distance matrix file
was already specified in a previous step, this dialog box is only used to specify
which variant of the algorithm should be performed: the minimum, the maximum,
the average or using the sum, as described in 5.1.2.

Figure 6.7: Distance-quartet algorithm dialog box.

6.2.3 Results

The results are usually files that contain the tree expression format of the inputed
data. Their name, if no other decisions are made, is composedfrom the initial
distance matrix file name, to which the extension.out is added. To visualize these
expressions, the user might choose between the QALD software and the TreeView
program from phylip package [32].

Of course, one can use the tree expression from the file as an input data to
any phylogenetic drawing program, as the parenthesis format contained in this
file is widely accepted by such programs. Unfortunately, thesaving and printing
functions of the QALD software are not implemented because they required too
much effort, and I have concentrated on the algorithmic part.

6.3 Dealing with missing data

As explained in Section 3.1, there are many ways to deal with missing data.
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Figure 6.8: Dealing with missing data.

The entropy algorithm as implemented in the QALD package offers the pos-
sibility of various ways to deal with missing data (cf. Figure 6.8):

• Fill the missing data. It is worth to use this is the range of feature values is
as small as possible (preferably 0/1).

• Remove features that have missing data. Features that contain missing data
are removed from the analyses.

• Remove leaves that have missing data for all features. The sequences are
removed whenever they contain missing data in all positions.

• Remove leaves that have missing data for each feature. The sequences are
removed whenever they contain missing data for a feature.

• Add one feature at the time. Perform the entropy algorithm byanalyzing
each feature at the time. This approach is useful when the features are rank
ordered by their known fitting to the data5.

6.4 Languages analyses

This part of the QALD package offers a quick and informative view of the data
in WALS. The user might select a group of languages, genera orfamilies to be

5If one has a list of best ranked features, by applying the algorithm and observing the resolution
of the results, one can detect a level of confidence above which the features added aredamaging
the result.
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visualized, and the displayed pictures are obtained from the ethnologue file [35]
as shown in Figure 6.9.

Figure 6.9: Sample information fromethnologue.

There is also the possibility of performing the algorithms and distance meth-
ods presented in this thesis (as depicted in Figure 6.10), and the results can be
easily compared with the NJ or ethnologue ones. A choice of distance matrix
building procedure is offered (as explained in Section 3.2)by allowing theHam-
ming relative, NormD, NormSandNormS+NormDvariants. Also, the user may
choose which features of WALS to be used: the ‘best’ phylogenetic ones, all, a
predefined group as found in WALS or any set of individually selected features.
The visualization of the results are the same as in Section 6.2.3.

Please note that the selections of languages and features are cumulative, mean-
ing that by selecting the Turkic language and the Indo-European family, the method-
ologies will analyze all the languages grouped in the Indo-European family plus
the Turkic language. Please also note that by selecting a family or a genus, the
software is evaluating all the languages in that family or genus respectively, and
in many cases each of these groupings contain poor coded languages. By check-
ing theUse Wals Extendedcheck box, the feature list is updated with the 266
extended features obtained as explained in Chapter 2, whileun-checking it will
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use the original 141 features for further analysis.

Figure 6.10: The phylogenetic analyses of WALS data.
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Conclusions

The extensive use of computational tools for analyzing various data sets in linguis-
tic community indicates recognition of their potential in this field. Well-designed
experiments with a clearly defined objective and with data stored in sufficient de-
tail in different formats should provide a valuable resource for discovering many
different aspects of language characteristics, universality and history. In this re-
search I showed that by combining these data sets with various mathematical mod-
els and computational algorithms, one can obtain improved results that could not
be reached by traditional research methods. These improvements can be further
developed and applied/tested to other data sets, in order tobetter understand the
methodologies and to be able to better interpret the results.

Meanwhile, the results of the present study imply that more research must be
pursued in this area. This thesis has offered the results of explorations of a ty-
pological data set using computationally-driven phylogenetic software developed
largely for the use of biologists.

As mentioned, the utility of typological databases for historical linguistic re-
search cannot be fully assessed until more extensive databases have been con-
structed. Nor can we hope to bring our results to bear on actual empirical prob-
lems before relevant databases have been enlarged. The WALSdatabase provides
a good beginning, as long as the problems of overlap and wastebasket categories
are taken into account. Simply filling out the missing data inthe WALS matrix
for the set of languages that one would like to compare would already constitute
a useful step forward.

The typological (dis-)similarities in WALS provide usefulinformation in his-
torical analysis of languages. For example, selecting a setof 39 languages from
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the Indo-European family and using the NormS variant for building the distance
matrix produced the network depicted in Figure 7.1. The result is showing a clear
split between the Indic languages and the European languages, as well as a correct
grouping of most of the genera.

I showed various methodologies for analyzing typological data. First, I have
presented a method for quantifying the influence of different typological features
for establishing linguistic genealogies. I showed that by performing a careful
analysis and by recoding the initial data, important discoveries of various prob-
lems/advantages can be detected. I presented methodologies of improving dis-
tance measurements, and the results obtained by using thesevariants showed a
good improvement. Each of the approaches improved the basicresults, therefore
it must be further considered in order to completely understand the results ob-
tained, and maybe to be able to build a new, complete and appropriate distance
measurement method. The entropy algorithm (Section 5.2) proved to be an useful
tool when dealing with various data sets and phylogenetic trees. Its applications
are multiple, and therefore further investigations/improvements must be consid-
ered. The QALD software implemented in this research will help scientists to
have a clearer picture on both the universal accepted phylogenetic relationships
between languages, and on various methodologies and algorithms that one can
perform for a specific data set.

A final phylogenetic analysis was performed by trying to integrate the dis-
tances between feature values for the recoded WALSX. Consequently, I chose a
data set of 13 genera, with two best coded languages selectedfor each genera in
order to have a good variability and world-wide distribution. A comparison of the
results can be consulted in Figure 7.2 (using original data and relative Hamming
distance) and Figure 7.3 (using WALSX and the character distance measures, cf.
Section 2.2.1.4).

Further research should be focused on the degree of confidence in order that
one can accept hypotheses concerning genealogical relationships generated by a
given algorithm on the basis of typological data. A good dealof theoretical work
will need to go into exploring adequate ways of comparing trees in order to cor-
rectly assessed the validity of a phylogenetic tree obtained using typological data.
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Figure 7.1: NNet using the Indo-European data set.
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Figure 7.2: NNet using the original WALS data.
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Figure 7.3: NNet using the recoded WALSX data.
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Appendix

8.1 MySql script for building WALS

Building the database
# Created by...: Mihai Albualbu@eva.mpg.de
# Description..: Create WalsX database together with all the tables
# Orig Date....: 27/01/05
# Modified Date: 27/06/06
# delete database if exists
DROP DATABASE IF EXISTS WalsTemp;
# create a new database
CREATE DATABASE WalsTemp;
# specify that we are using it
USE WalsX;
# create tables
CREATE TABLE language (languageID INT UNIQUE, standardname CHAR(100),
wals code char(100), longitudetext char(100), latitudetext char(100), longi-
tude num INT, latitude num INT, genus ID INT, macro area ID INT, loca-
tion CHAR(100), amountof refs INT, comment CHAR(255), amountof data-
points INT, all countries CHAR(255), allothernames CHAR(255), allroutled-
genames CHAR(255), allruhlennames CHAR(255), allregions CHAR(255),
othernameslabel CHAR(255));
Copying the dataAll the data were initially saved inTABfiles, as exported from
the original database. Then the next script helped copying the data into the new
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MySql database.
# Created by...: Mihai Albu albu@eva.mpg.de
# Description..: insert values in tables from tab delimitedfiles
# Orig Date....: 27/01/05
# Modified Date: 27/06/06
USE WalsTemp;
LOAD DATA INFILE ’ Tabs add ref.tab′INTOTABLEadd ref ;
SHOW WARNINGS;

The above two last lines were repeated for all the tables in the database.

8.2 Features from WALSX that allow character dis-
tance implementation

Table 8.1: Features from WALSX that allowcharacter dis-
tanceimplementation

Feature FeatValue Description
1. Consonant inventories 1 Small consonant inventories

2 Moderately small consonant in-
ventories

3 Average consonant inventories
4 Moderately large consonant in-

ventories
5 Large consonant inventories

2. Vowel quality inventories 1 Small vowel inventories
2 Average vowel inventories
3 Large vowel inventories

17. Type of velar nasal 1 No velar nasal
2 Velar nasal initially
3 Velar nasal, but no initially

21. Syllable structure 1 Simple syllable structure
2 Moderately complex syllable

structure
3 Complex syllable structure

23. Types of tone 1 No tone system
2 Simple tone system

Continued on next page
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Table 8.1 – continued from previous page
Feature FeatValue Description

3 Complex tone system
48. Inflectional synthesis of
the verb

1 0-1 category per word

2 2-3 categories per word
3 4-5 categories per word
4 6-7 categories per word
5 8-9 categories per word
6 10-11 categories per word
7 12-13 categories per word

56. Prefixing and suffixing in
inflectional morphology

1 Strongly suffixing

2 Weakly suffixing
3 Intermediate
4 Weakly prefixing
5 Strongly prefixing

58. Reduplication 1 No productive reduplication
2 Full reduplication only
3 Productive full and partial redu-

plication
64. Number of genders 1 None

2 Two
3 Three
4 Four
5 Five or more

71. Plural types in human
nouns

1 No plural

2 Plural optional
3 Plural obligatory

73. Plural types in inanimates
nouns

1 No plural

2 Plural optional
3 Plural obligatory

90. Distance contrast in
demonstratives

1 No distance constrast

2 Two way contrast
3 Three way contrast
4 Four way contrast

Continued on next page
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Table 8.1 – continued from previous page
Feature FeatValue Description

5 Five or more way contrast
110. Number of cases 1 No or borderline case

2 2 case categories
3 3 case categories
4 4 case categories
5 5 case categories
6 6-7 case categories
7 8-9 case categories
8 10 or more case categories

117. Comitatives and intru-
mentals

1 Identity

2 Mixed
3 Differentiation

125. Presence of numeral
classifier

1 Absent

2 Optional
3 Obligatory

132. Type of possesive classi-
fication

1 No possessive classification

2 Two classes
3 Three to five classes
4 More than five classes

133. Genitives, Adjectives
and Relatives Clauses

1 Weakly differentiated

2 Moderately differentiated
3 Higly differentiated

169. Order of subject and verb1 Subject precedes verb
2 Both orders with either dominant
3 Subject follows verb

170. Order of object and verb 1 Object precedes verb
2 Both orders with either dominant
3 Object follows verb

174. Order of genitive and
noun

1 Genitive–Noun

2 Both orders with either dominant
3 Noun–Genitive

Continued on next page
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Table 8.1 – continued from previous page
Feature FeatValue Description

176. Order of demonstratives
and noun

1 Demonstratives before noun

2 No dominant order
3 Demonstratives after noun

181. Order of degree word
and adjective

1 Degree word precedes adjective

2 No dominant order
3 Degree word follows adjective

184. Position of interrogative
phrases in content question

1 Interrogative phrases obligatory
initial

2 Mixed
3 Interrogative phrases not obliga-

tory initial
202. Verbal marking 1 None

2 One argument
3 Two arguments

226. Predicative adjectives
description

1 Predicative adjectives have ver-
bal encoding

2 Predicative adjectives have
mixed encoding

3 Predicative adjectives have non
verbal encoding

237. Purpose clause 1 Balanced purpose clause
2 Balanced/deranked purpose

clause
3 Deranked purpose clause

238. When clause 1 Balanced when clause
2 Balanced/deranked when clause
3 Deranked when clause

239. Reason clause 1 Balanced reason clause
2 Balanced/deranked reason clause
3 Deranked reason clause

240. Utterance complement
clause

1 Balanced utterance complement
clause

2 Balanced/deranked utterance
complement clause

Continued on next page
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Table 8.1 – continued from previous page
Feature FeatValue Description

3 Deranked utterance complement
clause

244. Number of non-derived
basic colour categories

1 3 categories

2 Between 3 and 4 categories
3 4 categories
4 Between 4 and 5 categories
5 5 categories
6 Between 5 and 6 categories
7 6 categories

245. Number of basic colour
categories

1 3 , between 3 and 4, or 4 cate-
gories

2 Between 4 and 5, 5, or between 5
and 6 categories

3 6 or between 6 and 7 categories
4 7 or between 7 and 8 categories
5 8 or between 8 and 9 categories
6 9 or between 9 and 10 categories
7 More than 10 categories

8.3 Definition of classCTreeNode

class CTreeNode : public CObject
{
public:

CTreeNode(); \ * the class constructor * \
virtual ˜CTreeNode();\ * the class destructor * \
CString strParentID;\ * the unique stringID of the parent * \
int nNrChildren;\ * the number of children * \
CString strLabel;\ * the actual node name * \
CString strType;\ * the type of the structure=node, leaf, root * \
int * strArrayChildren;\ * array of pointers to

the children nodes * \
CString strParent;\ * the name of the parent node * \
int nLevel;\ * the level in the hierarchy tree * \
int nID;\ * unique ID number * \
CString strStatus;\ * selected, unselected, deleted * \
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int xPos;\ * X coordinate of the graphical display * \
int yPos;\ * Y coordinate of the graphical display * \

}

8.4 Implemetation of classCTreeEnergy

CTreeEnergy::CTreeEnergy()
{
gnSequenceSize = 0;
gnAlphSize = 0;
gnGraphSize = 0;
gnNrLines = 0;
nSequenceSize = 0;
nAlphabetSize = 0;
dTemperature = 0.0;
}
int CTreeEnergy::LoadGraph(char * strGraphFileName)
{
char buffer[1024] ={0};
int nNodeValue =0;
int nCursor =0;
FILE * hndFile = NULL;
hndFile = fopen(strGraphFileName, "r");
if (hndFile != NULL)
{

while(fgets(buffer, sizeof(buffer), hndFile)!=NULL)
nCursor ++;

fclose(hndFile);
}
nCursor ++;
pGraph = (int * ) calloc(nCursor, sizeof(int));
nCursor = 0;
hndFile = fopen(strGraphFileName, "r");
if (hndFile != NULL)
{

while(fgets(buffer, sizeof(buffer), hndFile)!=NULL)
{

nNodeValue = atoi(buffer);
pGraph[nCursor] = nNodeValue;
nCursor ++;
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}
fclose(hndFile);

}
nCursor ++;
gnGraphSize = nCursor;
return 1;
}
int CTreeEnergy::LoadLeaves(char * strLeavesFileName)
{
FILE * hndFile = NULL;
char buffer[18000] = {0};
int nrLine = 0;
int i = 0;
int j = 0;
long len = 0;
char chInt[2] = {0};
hndFile = fopen(strLeavesFileName, "r");
if (hndFile != NULL)
{

fgets(buffer, sizeof(buffer), hndFile);
gnAlphSize = atoi(buffer);
while(fgets(buffer, sizeof(buffer), hndFile)!=NULL)
{

nrLine ++;
len = strlen(buffer);

}
}
fclose(hndFile);
hndFile = fopen(strLeavesFileName, "r");
ppSequences = (int ** ) calloc(gnGraphSize + 1, sizeof(int * ));

for( i=0; i<gnGraphSize + 1; i++)
ppSequences[i] = (int * )calloc(len, sizeof(int));

gnNrLines = nrLine ;
gnSequenceSize = len-1;
if (hndFile != NULL)
{

fgets(buffer, sizeof(buffer), hndFile);
gnAlphSize = atoi(buffer);
nrLine = gnGraphSize - gnNrLines+1;
while(fgets(buffer, sizeof(buffer), hndFile)!=NULL)
{
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for (i = 0; i< len-1; i++)
{

strncpy(chInt, &buffer[i], 1);
ppSequences[nrLine][i] = atoi(chInt);

}
nrLine ++;

}
}
fclose(hndFile);
return gnSequenceSize;
}
int CTreeEnergy::FirstLeaf()
{
int nRetLeaf = 0;
nRetLeaf = gnGraphSize - gnNrLines +1;
return nRetLeaf;
}
void CTreeEnergy::GraphEnergy()
{
double ** MatrixPi;
double ** MatrixSigma;
int i = 0;
int j = 0
int nIndexSeqSize = 0;
int nIndexGraphSize =0;
int nFirstLeaf = 0;
int nCrtNode = 0;
double * nRowPi;
double * nRowSigma;
double dPi = 0.0;
double dSigma = 0.0;
int nIndexAlpha = 0;
int nIndexBeta = 0;
double dTemp = 0.0;
double Z0 = 0.0;
double E0 = 0.0;
int dSeq = 0;
double dist = 0.0;
double expp = 0.0;

MatrixPi =
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(double ** ) calloc(gnGraphSize+1, sizeof(double * ));
for( i=0; i<gnGraphSize+1; i++)

MatrixPi[i] =
(double * )calloc(gnAlphSize, sizeof(double));

MatrixSigma =
(double ** ) calloc(gnGraphSize+1, sizeof(double * ));

for( i=0; i<gnGraphSize+1; i++)
MatrixSigma[i] =

(double * )calloc(gnAlphSize, sizeof(double));

dEnergy = (double * ) calloc(gnSequenceSize+1, sizeof(double));

nFirstLeaf = FirstLeaf();
for (nIndexSeqSize=0; nIndexSeqSize < gnSequenceSize;

nIndexSeqSize++)
{

for ( i = 0; i< gnGraphSize; i++)
{

for (j = 0; j < gnAlphSize; j ++)
{

MatrixPi[i][j] = 1.0;
MatrixSigma[i][j] = 0.0;

}
}
for(nIndexGraphSize = gnGraphSize; nIndexGraphSize > 1;

nIndexGraphSize --)
{

nCrtNode = pGraph[nIndexGraphSize - 2];
nRowPi = (double * ) calloc(gnAlphSize+1, sizeof(double));
nRowSigma = (double * ) calloc(gnAlphSize+1, sizeof(double));

for( i = 1; i <= gnAlphSize; i ++)
{

nRowPi[i] = MatrixPi[nCrtNode-1][i-1];
nRowSigma[i] = MatrixSigma[nCrtNode-1][i-1];

}
dPi = 0.0;
dSigma = 0.0;
for (nIndexAlpha = 1; nIndexAlpha <= gnAlphSize; nIndexAlp ha ++)
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{
if (nIndexGraphSize >= nFirstLeaf)

{
dSeq = ppSequences[nIndexGraphSize][nIndexSeqSize];
if(dSeq == 0)

dSeq = 1;
dist = Distance(nIndexAlpha, dSeq);
expp = exp(-dist/dTemperature);
MatrixPi[nCrtNode-1][nIndexAlpha-1] =

nRowPi[nIndexAlpha] *
MatrixPi[nIndexGraphSize-1][dSeq-1] *
expp;

MatrixSigma[nCrtNode-1][nIndexAlpha-1] =
nRowSigma[nIndexAlpha] +
MatrixSigma[nIndexGraphSize-1][dSeq-1] +
Distance(nIndexAlpha, dSeq);

}
else
{

for (nIndexBeta = 1; nIndexBeta <= gnAlphSize; nIndexBeta + +)
{

dTemp = nRowPi[nIndexAlpha] *
MatrixPi[nIndexGraphSize-1][nIndexBeta-1] *
exp(-Distance(nIndexAlpha, nIndexBeta)/
dTemperature);

dPi += dTemp;
dSigma +=(nRowSigma[nIndexAlpha] +

MatrixSigma[nIndexGraphSize-1][nIndexBeta-1] +
Distance(nIndexAlpha, nIndexBeta)) * dTemp;

}
MatrixPi[nCrtNode-1][nIndexAlpha-1] = dPi;
MatrixSigma[nCrtNode-1][nIndexAlpha-1] = dSigma/dPi;

}
}
free(nRowPi);
free(nRowSigma);

}
Z0 = 0.0;
E0 = 0.0;
for ( i = 1; i <= gnAlphSize; i ++)
{
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Z0 += MatrixPi[0][i-1];
E0 += MatrixSigma[0][i-1] * MatrixPi[0][i-1];

}
E0 = E0/Z0;
dEnergy[nIndexSeqSize+1] = E0;
printf("Energy for feature:\%d is \%.20f $ n$",

nIndexSeqSize, E0);
dEnergy[0] += E0;

}
for (i=0;i<gnGraphSize+1;i++)

free(MatrixPi[i]);
free(MatrixPi);
for (i=0;i<gnGraphSize+1;i++)

free(MatrixSigma[i]);
free(MatrixSigma);
}
double CTreeEnergy::Distance(int a, int b)
{
if (a == b)

return 0.0;
else

return 1.0;
}
void CTreeEnergy::CleanMemory()
{
int i = 0;
for (i=0;i<gnGraphSize + 1;i++)

free(ppSequences[i]);
free(ppSequences);
free(dEnergy);
free(pGraph);
}

8.5 Drawing function for MDS output

Private Sub Form_Load()
Dim j, i As Integer
Dim xDim As Double
Dim yDim As Double
Dim xCenter As Double
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Dim yCenter As Double
Dim xLeft As Double
Dim yLeft As Double
Dim xRight As Double
Dim yRight As Double
Dim strLine As String
Dim x(100) As Double
Dim y(100) As Double
Dim dScale As Double
Dim k As Integer
Dim varsplits() As String
Dim varArrayStruct(127) As ArrayStruct
’Need this so that a box is drawn when frm loads.
Me.AutoRedraw = True
Me.BackColor = RGB(255, 255, 255)
Me.ForeColor = RGB(0, 0, 0)
Me.DrawStyle = 0 ’DrawStyle is solid line
Me.Cls
Me.DrawWidth = 1
xLeft = 300
yLeft = 300
xRight = 15000
yRight = 10500
Me.Line (xLeft, yLeft)-(xRight, yRight), , B ’Draw a box
xCenter = (xRight - xLeft) / 2
yCenter = (yRight - yLeft) / 2
Me.Line (xCenter, yLeft + 100)-(xCenter, yRight - 100)
Me.Line (xLeft + 100, yCenter)-(xRight - 100, yCenter)
Me.Circle (xCenter, yCenter), 100
dScale = 2000
i = 0
Open App.Path & "$\ Outs\ coord_50_distall.TXT$" For Input As #1
Do While EOF(1) = False

Line Input #1, strLine
varsplits = Split(strLine, vbTab)
Me.Circle (xCenter + dScale * varsplits(1),

yCenter - dScale * varsplits(2)), 30, vbRed
Me.CurrentX = xCenter + dScale * varsplits(1)
Me.CurrentY = yCenter - dScale * varsplits(2)
Me.Print varsplits(0)
varArrayStruct(i).id = CInt(varsplits(0))
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varArrayStruct(i).x = xCenter + dScale * varsplits(1)
varArrayStruct(i).y = yCenter - dScale * varsplits(2)
i = i + 1

Loop
Close #1
Open App.Path & "$\ Outs\ congr_ 50_ distall.txt$" For Input As #1
j = 0
Do While EOF(1) = False

Line Input #1, strLine
varsplits = Split(strLine, vbTab)
For i = 1 To UBound(varsplits) - 1

If CDbl(varsplits(i)) <= 0.0001 Then
Me.DrawStyle = 0
Me.DrawWidth = 1
Me.ForeColor = vbRed

End If
If CDbl(varsplits(i)) <= 0.0001 Then

Me.Line (varArrayStruct(j).x, varArrayStruct(j).y)-
(varArrayStruct(i - 1).x, varArrayStruct(i - 1).y)

k = k + 1
End If

Next i
j = j + 1

Loop
Close #1

End Sub

8.6 Conversion from WALS to WALSX

Dim strfile As String
Dim strLine As String
ReDim gnewFeaturesID(0)
strfile = filename
FileOpen(1, strfile, OpenMode.Input)
System.Windows.Forms.Application.DoEvents()
gError = 0
strLine = LineInput(1)
txtComment.Text = ""
Do While InStr(strLine, "#features description") = 0
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strLine = LineInput(1)
If InStr(strLine, "#") = 0 And strLine <> "" Then

txtComment.Text = txtComment.Text & vbCrLf & strLine
End If

Loop
strLine = LineInput(1)
’txtComment.Text = txtComment.Text & vbCrLf & strLine
strLine = LineInput(1)
txtComment.Text = txtComment.Text & vbCrLf
’now we have features description
Do While InStr(strLine, "#values description") = 0

If strLine $<>$ "" Then
SaveFeaturesDescriptions((strLine))
If gError = 1 Then

Exit Sub
End If
txtComment.Text = txtComment.Text & vbCrLf & strLine

End If
strLine = LineInput(1)

Loop
strLine = LineInput(1)
’txtComment.Text = txtComment.Text & vbCrLf & strLine
strLine = LineInput(1)
txtComment.Text = txtComment.Text & vbCrLf
Do While InStr(strLine, "#features values") = 0

If strLine $<>$ "" Then
SaveValuesDescriptions((strLine))
txtComment.Text = txtComment.Text & vbCrLf & strLine

End If
strLine = LineInput(1)

Loop
strLine = LineInput(1)
’txtComment.Text = txtComment.Text & vbCrLf & strLine
strLine = LineInput(1)
txtComment.Text = txtComment.Text & vbCrLf
Do While InStr(strLine, "#chance") = 0

If strLine $<>$ "" Then
SaveFeaturesValues((strLine))
txtComment.Text = txtComment.Text & vbCrLf & strLine

End If
strLine = LineInput(1)
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Loop
strLine = LineInput(1)
’txtComment.Text = txtComment.Text & vbCrLf & strLine
strLine = LineInput(1)
txtComment.Text = txtComment.Text & vbCrLf
Do While InStr(strLine, "#dependencies") = 0

If strLine $<>$ "" Then
SaveChanceInfo((strLine))

txtComment.Text = txtComment.Text & vbCrLf & strLine
End If

vstrLine = LineInput(1)
Loop
strLine = LineInput(1)
’txtComment.Text = txtComment.Text & vbCrLf & strLine
strLine = LineInput(1)
txtComment.Text = txtComment.Text & vbCrLf
Do While InStr(strLine, "#end") = 0

If strLine $<>$ "" Then
SaveDependenciesInfo((strLine))

txtComment.Text = txtComment.Text & vbCrLf & strLine
End If
strLine = LineInput(1)

Loop

FileClose(1)
Exit Sub
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