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Abstract

The current computational era heralds a multitude of chghs for linguists,
mathematicians and computer scientists alike. The iryatstin of linguistic fea-
ture consistencies, their implications in historical limgics and the detection
of possible geographical and phylogenetical influencegatufre behaviors will
steadily unveil the importance of each language charatieand its associated
historical role in language evolution. The wish to develegimmethods has made
the integration of various disciplines necessary. Consetly the role of com-
puter science (and more specifically bioinformatics) hsestriin the study of lin-
guistic processes. By combining the strengths of bioin&dres algorithms, math-
ematical procedures, statistical knowledge and datalibsetoping methodolo-
gies, various strategies have been developed and applibé whylogenetic re-
construction of language evolution, but up till now only anadl scales. The
analysis of a worldwide typological database has many piedeapplications for
the study of language universals, feature consistenamsphphylogenetic im-
plications of linguistic differences. In this research gmight recent progress of
strategies related to typological data, on the basis of éite offered by the World
Atlas of Language Structures (WALS, [41]).

This thesis attempts to find suitable analyses for dealirth Wnguistic ty-
pological data. These methods are focused on discoveriogdgdata for phy-
logenetic reconstruction algorithms, detecting (intelependencies between the
characteristics of languages, and on performing multifdéssical methods for
selecting the data that correlates best with either gegealloor geographical re-
lationships.

While the aim of qualitative analysis is a complete, dethdescription of the
data, and no attempt is made to assign frequencies to thesingfeatures which
are identified in the data, in quantitative research onesiflas features, counts



them, and even constructs statistical models in an atteorgxylain what is ob-
served. Findings can be generalized to a larger popularmahgirect comparisons
can be made between two data sets, so long as valid samplihgigmficance
techniques have been used. Thus, quantitative analysissathe discovering of
which phenomena are likely to be genuine reflections of theaer of a set of
languages or varieties, and which are merely chance ocmase However, the
picture of the data which emerges from quantitative angligsoften less precise
than those obtained from qualitative analysis. In quatitgaanalysis, an item
either belongs to clas¥ or it does not. In some cases, quantitative analysis is
therefore an idealization of the data. Also, quantitativalgsis tends to sideline
rare occurrences. To ensure that certain statistical (esth as the chi-square
test) provide reliable results, it is essential that mimmftequencies are obtained
- meaning that categories may have to be collapsed togétieeefore resulting in
a loss of data richness.

This research will concentrate on quantitative analysisddecting appropri-
ate measurements in order to detect relevant phylogemétionation. | tried to
discover consistent features with the world-wide distiifiu of languages pre-
sented in the WALS, as well as phylogenetic informative of¢sing such char-
acteristics in future phylogenetic analyses would hopefrhance the results.

This thesis is structured as follows. Chapter 1 introdubediasic computa-
tional/bioinformatics and linguistic background. The W&data set is presented
in Chapter 2 together with the coding problems found. Chdtgves detailed in-
formation about various methodologies for improving th&talnce measurements,
while the content of Chapter 4 describes my approach on tilegegood “phy-
logenetic” features. In Chapter 5 new phylogenetic reconibn methods are
specified as well as a new approach to detect the fithess ohaelaio a phyloge-
netic tree. In Chapter 6 | specify the QALD software of thesieedescribing its
utility and functionality. This software can be used to gmalvarious languages,
features, and the according results of the methods presentais thesis. The
conclusions of this research are summarized in Chapter 7.

All research ultimately has a qualitative grounding
(Donald Campbell)
There’s no such thing as qualitative data. Everything tsegifl or O
(Fred Kerlinger)
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Chapter 1

Introduction

1.1 Linguistic background

1.1.1 Typology
1.1.1.1 Definition of linguistic typology

Linguistic typology (in this work | will henceforth simplyefer to ‘typology’),
represents the attempt to classify languages into types définition of typol-
ogy implies that the research has to discover shared patssEmoss languages.
Based on such shared patterns, a language is consideretbagibg to a spe-
cific type, while a typology of languages is a classificatibfanguages into those
types. These definitions already suggest a close conndatiarcross linguistic
comparison. As presented in [17], typology can be classifiexitwo main kinds,
according to their object of study:

e holistic typology: classification of whole languages intpés and subtypes
on the basis of shared structural characteristics (not toonéused with
genealogical or areal classification);

e partial typology: classification of specific structural tig@s across lan-
guages (e.g. word order or case marking).

Holistic typology implies that there are various ways tossléy languages. The
kind of classification depends on the intended purpose artlehnguistic ele-
ments that are analyzed:
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e genealogical: classification into families descended feocommon ances-
tor, e.g. Sino-Tibetan languages, Austronesian languyages

e areal: classification by geographical region, e.g. thedaggs of Southeast
Asia;

¢ typological: classification by shared structural featyeeg. tone languages,
SVO languages, ergative languages.

These classifications are, in principle, independent o edlser: Chinese is an
SVO language, Tibetan an SOV language, while languagestielgto the Indo-
European family may be VSO (Welsh), SVO (ltalian) or SOV (A&man). But in
practice, the classifications are not entirely indepen@enthistorical reasons):
most languages of the Austronesian family are VSO or SVO {dskared inher-
itance), while most languages of mainland Southeast Asidcral (due to areal
diffusion). Nevertheless, | am interested in genealodmadjuage classification
using typological data and, but | acknowledge the imporasfche geographical
influences.

1.1.1.2 The history of genealogical classification and lingstic typology

Of the two subjects, linguistic typology and genealogi@lduage classifica-
tion, the latter has the much older tradition. Its beginntag be traced back
to early 13th-century attempts concerned with establggganealogical relation-
ships among languages [13]. The sHoidtriba de Europaeorum linguaevritten
in 1599 by Joseph Justus Scaliger [68], is one of the mosd eitamples of an
early attempt of genealogical classification of languadésaliger established -
apart from Greek which was frequently seen as the sourceidayggof Latin -
the Romance, Germanic, and Slavic language families, obakis of shared vo-
cabulary items among the languages belonging to the pkatiguoup, e.g. the
word for ‘god’ (deus god andbog respectively). Nevertheless, there was no
hint in his work that these three families in turn were redatdowever, the Czech
Sigismund Gemenius (1497-1554) had shown in a comparattierary, several
generations before Scaliger, that Greek, Latin, GermamicSiavic were geneti-
cally related, cf. [34].

Like much older scientific work in the study of languagesglirstic typology
- though essentially developed during the 19th century eappto have forerun-
ners, as first attempts can be traced far back to the 16thrgerfor instance
Coseriu [16], makes references to a 40-page essay on “carmdpduiand “orig-
inal” languages from 1761 by the political economist Adamit8r{il723-1790)
as a source for Friedrich Schlegel’s typological clasdifices. Schlegel’s brother
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August Whilhelm (1767-1845) referred to Smith in his owroeffat language ty-
pology in 1818. August Wilhelm, in his 1818 monograph, giftdsand exclusive
credit to his brother’s exposé, at the same time introdyaifurther subgrouping
on the bases of an “analytical/synthetic” distinction. @th[47, 61] have pointed
to Gabriel Girard’s (1677-1748) distinction between “laages analogues” (i.e.,
those which have a fixed word order, like French) and “langsaganspositives”
(i.e., those which have a flexible word order, like Latin) las immediate source
of Smith’s “compounded/uncompounded” dichotomy, withpubving that Gi-
rard had any influence on either of the Schlegel brothers. édew even if the
Schlegel brothers were not the inventors of language tygyplout synthesizers
of proposals by their predecessors or contemporariesniires safe to say that
the beginning of a “scientific” attempt at language clasaifan on the basis of
morphological structure has its origin in their work.

1.1.1.3 Typology classification. Implicational universad

Historically, the first manifestation of typology in moddmguistics is typology

classification, i.e. the process of describing the variauguistic types found

across languages. The linguistic types (or strategiesharénguistic structures
that are found across languages based on an external defioitia category.

Mainly, patterns are defined and then found in various laggsiabeing the start-
ing pointin typological classification. Starting with Gréserg [38], a more reduc-
tionistic approach has been developed in which only partsgiistic structure

are classified. Some samples of these types, like word grdsitjons of the Gen-
itive, etc. can be found in [64].

The next obvious question is whether the resulting typ@sgclassifications)
of different characteristics (domains) correlate withreather or not. Whether
these correlations are directly dependent on genealogicgdographical patterns
IS an open question that this research tries to answer. Taleofiguch research
is to uncover regularities or even universals of linguistiticture. An often used
analysis is the so-callachplicational universal
An implicational universal states a dependency betweenldgizally indepen-
dent parameters, e.g. one may state that if a language hage X fythen it will
also have typ&”. The implicational universal then become a major tool for ex
pressing typological generalisations. However, as Cysteseribes in [20], there
is @ major problem with this generalisation, mainly thateqgfrency in a sample
that appears to be remarkably high or low does not necegsaean anything.
This is due to the fact that the saliency of a frequency in altygical sample de-
pends on the deviation from the statistical expectationpnahe absolute number
of occurrences.
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1.1.1.4 Areal-linguistic implications for typology

Areal patterns have strong implications for work in typot@ad universals, though
usually unrecognized in the earlier linguistic literatufeself-explanatory exam-
ple is the case of word - order typology. It has been argueticérdain word-
order types come into existence in languages only througéal anfluence and
borrowing [15]. Both [38] and [42] dealt with the 24 possilbasic word-order
types, of which only 15 were thought to be actually represgty existing lan-
guages. However, it turns out that for some of these 15 tyged,for certain
others for which representative languages were subsdyubkstovered, all the
exemplifying languages owe crucial aspects of their basiedvorder to areal
borrowing; this applies to Greenberg’s types 7, 18, 19 and Bfpe 7 (Verb-
first/Postpositional - Noun/Genitive - Noun/Adjective - INJ is represented only
by Zoque (a Mixe-Zoquean language of southern Mexico); Zdepurrowed VOS
word order from neighbouring Mayan languages, creatingdd-type 7 com-
bination. Type 18 (SOV/Prepositional/Noun - Genitive/@djve - Noun), not
previously recognized to have exemplifying languagesemesented by Tigre
(Ethiopian Semitic), which is like non-Ethiopian Semitanbuages, except for
SQV, which is acquired from Cushitic. Type 19 and 20 have hksen proven to
be areal influenced, e.g. by samples of Amharic borrowingnffushitic, and
Northern Tajik borrowing from Turkic, respectively.

HEW WORLD L
Eskimo-Aleut o
Ha-Dend i 3 .
Algonquian - - .
Macro-Siouan e OLD WORLD

Il Penutian
Aztec-Tancan Il Caucasian Uralic Japanese

Il Hokan Bl Afro-Asiatic Altaic Eorean

I Oro-Manquean Il Hilo-Saharan I Palaeo-Siberian Il Ezzque

Il Macro-Chibehan Higer-KordoFanian Sino-Tibetan Il Eurushaski
Andean-Equatorial Khoizan Tai-Kadai Unknown, unclassified,

Il Ge-Pano-Caribh Il Dravidian Austro-Asiatic oF unithabited

Figure 1.1: The geography of the main language familiesenatrld.

Both typology and areal linguistics are important tools fastorical recon-
struction in linguistics. Typology helps us to understardexted changes and
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constraints on possible changes, and thus is very impoftareconstruction.
Areal linguistics helps to recover aspects of linguististdry that are due to dif-
fusion and convergence (Figure 1.1). However, the two ake &l one respect:
both can hinder linguistic reconstruction. In the compaeanethod, correspond-
ing forms shared among related languages are the basisgtulaiing ancestral
forms in the proto-language. Nevertheless, undetectedd bogrowings can ex-
hibit similarities, seemingly corresponding forms, thatngtimes are assumed to
be the results of common inheritance, and are erroneousbnstructed as fea-
tures of the parent-language [33].

1.1.2 Previous work
1.1.2.1 Typological and lexical databases

Over the last decades, typological databases startedri@gamportant role, but
they are mostly subject oriented. WALS, on the other waysdus® concentrate
on a specific geographical location or on specific linguiléills. Two important
problems are usually still found in the typological datasf®] :

e Typological databases typically rely on a static and prigdd category list
which tends to conflict with the data as more languages aesezhtFurther,
this restricts the database to research that is completelgtisned by the
category list.

e Typological databases are typically integrated into alsifite containing a
wide variety of information making it difficult (if not impasble) to re-use
any part of this information in other databases or to seasclypological
correlations across databases.

The need for resolving these disadvantages suggests thatese@arch activity is
needed from computer science experts and database dsientis

Over the last few decades, a large amount of new lexical ressinas arisen:
machine-readable dictionaries, lexical databasesfduth lexicons, morphologi-
cal databases, semantic networks, dictionary database$/est of these lexical
systems have been modelled after lexicographic sourceexigal database is a
lexical resource system meant primarily for computati@gloitation. This can
be used in a search engine providing human users with lexit@imation, but
also in NLP (Natural Language Processing) applicationsyprder - aided lan-
guage - learning systems, computer - aided linguistic rekeatc. There is still
an open problem of how to compare word lists and make thenoijpégable.
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1.1.2.2 The trend in current typology

An important part of my research was conducted in the spirityong to detect
possible correlations with either geographical or gergiedd patterns, as well as
to detect which of the data points are appropriate for eaoth & correlation.

Since the late 1980s, and most prominently through the wioDkyer [28, 29]
and Nichols [58], it has become clear that hardly any typiclgyariable is evenly
distributed in the world. Most distributions are subjectntan-accidental geo-
graphical skewing. For example, testing the hypothesis\teeb-final or free
word order correlates with dependent-marking in transisivbjects4) or objects
(P) against a genealogically balanced sample from AUTOTYPajed WALS
[8, 41] presented a careful and thorough analysis. Theresigraficant associ-
ation (Fisher Exact p =.014, N = 179), if one examines therewnlata together.
But if a closer look is taken at the distribution of the avaiéadata, continent-by-
continent, it turns out that only in Eurasia is the assoarasignificant. Every-
where else the distribution can be predicted from margmegjudencies of the two
variables. A large number of such examples can easily bedfcamd they under-
line Dryer's warning [28] that, unless geographical fastare controlled for, a
statistical association does not support a hypothesisigérsal preference. This
is not surprisingly, as it is known that large areas like Bigdave an intricate
history of type spread [45, 58], and in general, the histdtgrmguage contact and
population movements substantially affects typologidstrdbutions.

Clearly many current typological distributions can onlyuelerstood as the
result of actual (pre-)history, both locally and globallindings from anthropo-
logical and historical disciplines might provide valualriBormation about histor-
ical signals. Nevertheless, the most plausible availalpa@ations of statistically
significant macro-areas, such as those around the Pacifltpse covering Eura-
sia [10, 11, 58, 59, 60] suggest that they are the surviviaces of distributions
that were formed at early periods of large scale populatiorement and lan-
guage spreads.

But, as argued by Maslova [57], the distributions deterntime threshold
above which one accepts universals that are due to the naftlaeguage rather
than to the nature of human population history: an associatf variables must
not only be statistically significant in a representativengke and independent
of known geographical and genealogical affiliation [28,,a8]t it must also be
shown to be independent of earlier (or even initial) stageshach there could
have been significant skewing at work. In other words, assiocis can be taken
to reflect strictly linguistic universals only if they can bleown to be sufficiently
instable historically so that one can assume a stationatgtfalition for the current
situation. This again requires a fundamentally diachremderstanding of what
causes typological distributions, viz. different typefsprobabilities [8].
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Large datasets almost invariably reveal exceptions toeusals, and this, to-
gether with a substantial increase of newly described laggs and assisted by
prominent conceptual argumentation [18, 27], have praktyieliminated notions
of absolute universals and impossibilities. Modern stsidietypological distrib-
utions involve statistical methods, from associationstést Cysouw in press, for
recent review [21]) to multivariate scaling methods [19]. Regarding the stud-
ies on areal data, typology has seen the introduction of natli@matical methods
(e.g. the Isopleth Method: [73]), and current attempts tegrate Geographical
Information Systems bring bright hope for progress in tlsdin.

One common property of all these methods is that they work widepen-
dently and narrowly defined variables, instead of the grgssd (active language,
agglutinative language) of classical holistic typologycategorical notions of a
so called Sprachbund. The general assumption is that & trerlarge-scale con-
nections between linguistic structures, or between listgustructures and geog-
raphy, they consist in probabilistic (and therefore exioeptidden) correlations
between independently measured variables; they are net&gto follow from
absolutely defined or ideal types. In a similar vein, modgpology has moved
away from analyzing entire languages and instead takesgidhail structural pat-
terns (constructions, rules, constraints etc.) as obgdtudy. Linguistic diver-
sity is captured by large sets of fine-grained variablespgarand type notions.

The analysis of such variables poses statistical probléraed by other his-
torical population sciences — most prominently, one hassgto only less than
1% of all languages that have ever been spoken by our spacidsso the cur-
rent population with all its historically-grown distribahal biases will always be
overrepresented in our samples. Moreover, in typologaaiing, one typically
attempts exhaustive and well-balanced coverage of knoweajegical diversity,
so that signals of universal preference or areal popul&istory are not disturbed
by relatively recent inheritance effects. In response ¢ésdéproblems, typologists
are now adopting Monte-Carlo-like methods, and first stepelalso been under-
taken toward randomization-based reliability tests onrog¢46]. Unlike classi-
cal distribution-based methods, these methods do not sugtpdistical inference
to an underlying population of all human languages. Allistatal inference is
limited to the current sample at hand. Modern typology isstigiine that de-
velops variables for capturing cross-linguistic simiias and differences (quali-
tative typology), explores universal and local skewingthmdistribution of these
variables (quantitative typology) and proposes theohas éxplain the skewings
(theoretical typology). The ultimate goal is to understeuct is where andwhy,
and this makes it clear that major contributions that tyggloffers are not con-
fined to Cognitive Science as narrowly understood. The gufdlse 21st century
typology are embedded in a much broader anthropologicabpeetive: to help
understand how the variants of one key social institutiendistributed in the
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world, and what general principles and what incidental &varne the historical
causes for these distributions.

1.1.2.3 Phylogenetic attempts using linguistic data

The word-list analyses became an increased researchtygotasiying from com-
parison of word-lists to dictionaries, texts, or books. WTysouw performed
analyses of biblical fragments (the choice of the mater#hd obvious from the
variety and consistency point of view), other are just usiregSwadesh word list
[72], even if it was extremely controversially. Nevertredemany attempts are
starting with this list that it is filled for a various numberlanguages, and then
different comparative methods are used.

A comparative analysis of manuscripts copies was perfoiedg the work-
shop in Louvain-de-Neuve, where a dataset consisting imgsdf the differ-
ences between different copies were given to the partitspand they were chal-
lenged to try to reconstruct the history of the manuscripte Whole experiment
was using not a real historical evolution, bugimulatedone, meaning that schol-
ars with different background and different native langsgere asked to copy
a two pagemanuscript The mistakesanderrors are believed to be the same as
the real history a few centuries ago. Nevertheless, thelitapbconclusion of the
meeting was that the manuscript histories can be very gimita the biological
evolution (e.g., correspondence with the lateral genesfeas process, evolution
‘mistakes’, evolution improvements). As [4] showed, a dienpse of ‘modern’
phylogenetic methods (Figure 1.2) provided a very closeltés the real history
of the manuscript (Figure 1.3), even if according to the galngpinion the main
problem was that one of the first copier was not a native speatkihe manu-
script’s language, and this might induce disturbance isehanalysis. The real
history of the copiers was the following: the initial managtwas given to 3
copiers @, a andf), from which a was not a native speaker. My results failed
to placea as a common ancestor ofandd, and also missed thg h andi his-
tory, placingi as the predecessor copier (the organizer’s explanatiorthahshe
g copier was a really ‘bad’ one, and this might explain my resul

In Nature, R. Gray and Q. Atkinson [37] published a rigoronalgsis of word
lists for the Indo-European family, concluding not only retphylogenetic rela-
tionships, but also in detecting the time depth of languagpiss (Figure 1.4).
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Figure 1.2: NNet result using Hamming distance.

1.0

Figure 1.3: The real history of manuscripts.



Chapter 1. Introduction 10
2,900 .10~ IrishA
- i \ - Irish B
eltic ; 100 Welsh N
Italic* } tal 10 % Welsh C
French/lberian | &€ | 100 r Breton List
Wesl Germanic . s Breton SE
North Gerrnanic} Germanic 100 BreturlRE i
Balti . manian Lis!
Siavis | Balto-Slavic -, Viach
Indic = adin
\ranian | Indo-lranian Provencal
Albanian 6,100 e Frenen
alloon
i al/ French Creole C
Tocharian French Creole D
: nish
Anatolian 1,700, PBg;tq uese ST
- 1 ian
0.01 changes 100 8 Catalan
Italian
100~ Sardinian N
Sardipant.
ardinian
/5500 100, Gapangl‘lrl i
o 195f &5 Dutch List

6,90
30

1004~ Swedish Uy
10075 Swedish
2] ' Swedish List
Riksmal
78100~ |celandic ST
Faroese

Danish
Lithuanian O
Lithuanian ST

Bulgarian
Serbocroatian
Lusatian L
Lusatian U

Russian

Romani
Singhalese

Khaskura
‘,10'0600 Kashmiri
Ossetic
5 = Wakhli-I
'ersian List
2,500, g Tadzik
m Dal .
[ 100 C Mghan
& Ihaman T
100 600, = Albanian G
Alhnmarr K
AlbanianC

¢ Armenian Mod

100
—

i~ Tocharian A
| B

Hittite 1.?00/

= Armenian List

Figure 1.4: Results from [37] with time-depth estimationonSensus tree and
divergence-time estimates. Majority-rule consensus lwased on the MCMC
(Markov Chain Monte Carlo) sample of 1,000 trees.



Chapter 1. Introduction 11
1.2 Phylogenetic background

1.2.1 Computer science and biology

Previously bioinformatics was defined as an interdiscglyrfield involving biol-
ogy, computer science, mathematics and statistics to zaalplogical sequence
data, genome content, and arrangements to predict thadaoreontd structure of
macromolecules. With the advent of the genome era, biaimitics now plays
added roles in biological and medical research and accdantsn increasing
number of publications each year [55]. Can bioinformatasld also help the
historical linguists? Is there any similarity between bgital data and linguistic
data? Do | need new tools for analyzing linguistics data, lcase the already
recognized bioinformatics ones, or should | carefully nipthhem in order to be
field appropriate? This research tries to give an answeeethuestions with the
hope of being a starting point for future research.

Clearly, in the WALS case | do not have to worry about alignsagjuences
(data), as the WALS dataset can be easily seen as a rectatapla with lan-
guages on rows and features on columns (I should specifythieadligning se-
guences problems can be found in linguistic analyses, famgke when com-
paring word lists). But | am dealing with similar problemsiasbiology, like
missing data (gaps), like methods of building distance icedror like phyloge-
netic reconstruction issues. Even worse, | have no infaonain feature values
interdependencies, nor other properties that bioinfags&bols account for , e.g.
physical and chemical properties of amino acids [7]. Thaeeef am mainly inter-
ested in methods that analyze sequences and that can beckpphe WALS data
set. While in bioinformatics the databases evolved expiaén being today an
enormous interconnected amount of information, the sddieguistics databases
is still small. Nevertheless, using the already recogns@entific methods from
bioinformatics and statistics, | hope for a faster reseaeielopment, and | am
positive that this work will simplify future analyses.

1.2.1.1 Trees, distance matrices, alignments, networks

Common bioinformatics terminology will often be used irstheésearch, so, in the
following, short descriptions of the most important terms aresented.
Phylogenetic treesA treeis a mathematical structure which is used to model
the evolutionary history of a group of objects (sequencegrasms, languages).
This actual pattern of historical relationships is fhtgylogeny or evolutionary
tree which one tries to estimate [62]. A tree consistsnoides connected by
branches(or edge$ (Figure 1.5)Terminal nodes(also called leaves, OTUs [Op-
erational Taxonomic Units] or terminal taxa) representdbgects of interest for
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which one has data, and they can be either extant or extimetnal nodesrepre-
sent hypothetical ancestors, and the one that compriseghble tree is theoot
of the tree.

Distance Matrices Measures of OTU’s dissimilarities may be used to esti-
mate the number of evolutionary changes that occurred leetiweo OTUs since
they last shared a common ancestor. These measures quhstéyolutionary
distance between the two OTUs. Trees themselves can alsepbesented by
distances, and this link has motivated a range of tree-mgjlchethods that seek
to convert pairwise distances between objects into evwiaty trees. Aperfect
distance measure must satisfy some basic requirementsusit Imeultrametric
(Equation 1.4). Nevertheless, real complex data neverymexisuch a distance
measure, no matter which method is used to obtain it.

Let D(a,b) be the distance between two OTWandb. The following prop-
erties (Equations 1.1 - 1.5):

D(a,b) >0 (1.1)

D(a,b) = D(b,a) (1.2)
D(a,c) < D(a,b) + D(b,c) (1.3)
D(a,c) < max(D(a,b), D(b,c)) (1.4)
a=0b= D(a,b)=0 (1.5)

are necessary for a tree-like matrix, e.g. a distance miduaixcan be represented
by a tree, with the length of the edges corresponding to th@amices between
OTUs. Anon tree-likedistance matrix is depicted in Table 1.1, as the condition

Terminal node
(leaf)

A

Internal node
\ (hypothetical ancestor)
~._ Branch (edge)
. Root

Figure 1.5: Tree elements.
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1.4 is not fulfilled.

Alignments Alignments are used in order to: (1) organise data to reflect
guence homology, (2) estimate evolutionary distance nf&y iphylogenetic trees
from homologous sites, (4) highlight conserved sitestreg)i (5) highlight vari-
able sites/regions, (6) uncover changes in gene stru¢ireiscover for evidence
of selection, etc.

Networks As stated above, real data can not produce metric and aeldis-
tance matrices. Most of the phylogenetic reconstructigordhms use any kind
of distance matrix and try to build the phylogenetic tree, this clearly implies
that some tie-decisions have to be taken, or some informatigst be disregarded.
Clearly, if one has the distance measures between four O3 s shown Table
1.1, a simple tree-like diagram can not correctly repretf@ntdistance measure,
as the ultrametric condition is not fulfilled (Figure 1.6pl&networks are used to

Figure 1.6: Incompatible tree for data in Table 1.1.

represent incompatible and ambiguous signals in a datinssich a network par-
allel edges, rather than single branches, are used to egprie® splits computed
from the data. To be able to accommodate incompatible sjilitsoften neces-
sary that a split network contains nodes that do not reptes®estral species.
Thus, split networks provide only an implicit represergatof evolutionary his-
tory. Therefore, it will be easy to use the network represms to represent the
distance matrix shown in Table 1.1 as it is depicted in Figuve
Networks are not only moréexiblein accepting problematic data sets but,

by their constructions and representations, they offaralake information about

DistMatr | A | B | C | D
A 0/4|5]|7
B 4,075
C 517|014
D 7151410

Table 1.1: A non-tree like distance matrix
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Figure 1.7: Compatible network for data in Table 1.1.

the relationships between the objects analyzed. Figurednie interpreted as
follows: there is a greater support (evidence) for the $pliB) vs (C, D) than for
the split (A, C) vs (B, D), as the length (weight) of the edgattbeparates (A, B)
and (C, D) is bigger than the one that separates (A, C) and)B, D

1.2.2 Computer science and linguistics

Phylogenetic analyses of linguistic data have become d uss@arch in detect-
ing languages genealogy. Even if the data analyzed comsiatsrd lists, or sets
of language features, recent methods provided new outcomiggyuistic phy-
logeny. The [37] paper dates the initial divergence of tliotEuropean language
family back to 8700 years ago, with Hittite as the first langi&o split off. This
they take to support the theory that Indo-European origohat Anatolia and that
Indo-European languages arrived in Europe with the spréadraculture. They
take this to argue against the alternative “Kurgan hypashesccording to which
the “Kurgan Culture” of the steppes was Indo-European spgakhough they
say that it is consistent with the view that the Kurgan peoptgesented a branch
of Indo-European.

While this paper rigorously analyzed the Indo-Europeanifaiproposing an
intelligent method for building distance measurementefigord lists, Dunn et
al [30] suggested another type of analysis, based on birargmatical features,
that were a posteriori weighted after applying a maximukethood approach to
the data.

To address the problem of detecting deep signal, Dunn etatowed two
tools from their colleagues in biology. First, they constad a database of 125
structural features for 16 Austronesian and 15 Papuan &gegu This enabled
them to avoid the charge that they merely selected a fewresathat happened
to fit their hypotheses. The number of possible family trefedescents for an
even quite small numbers of languages is vast. Dunn et atsrngl methodolog-
ical borrowing from biology was the use of a computer progtarind the set of
optimal trees for the Austronesian and Papuan data setssffwhether the struc-
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Figure 1.8: The results from [30]. a) Reconstructed phyhygef the languages
of the Meso-Melanesian, Papuan Tip, and North New Guineapg®ased on
the linguistic comparative method [56, 66]. b) Unrootedspaony tree show-
ing relationships among the Meso-Melanesian and Papuagroiygps based on
grammatical traits only (that is, discarding abundantdakevidence) (the fig-
ure shows reweighted and raw bootstrap values). c)Maximarsipony tree of
Island Melanesian Papuan languages with reweighted antoatgtrap values.
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tural features contain a historical signal, Dunn et al. caragd the Austronesian
structure tree with the traditional classification of th&sgguages. The resulting
Austronesian structure tree matched the traditional ifleaton quite well, which
suggests that the structural features contained someibatink or signal for at
least the 4000-year time depth that the Austronesian otiages studied by Dunn
et al. are thought to have.

The task of making accurate inferences about our past is am#ing one that
requires the integration and triangulation of inferenaesnf genetic, linguistic,
and archaeological data [49]. The approach of Dunn et aln isngortant step
forward in this interdisciplinary endeavor and sets newmasads for the system-
atic collection and analysis of structural features.

Both papers, equally successful and controversial, predlac important step
in phylogenetic analyses of languages. Nevertheless,timdases only a small
sample of languages were used, belonging, more or lessetsatime family of
languages, and there was no inconvenience in, for examgtiesrdining the sam-
ple range when you are dealing with variate data sets (frengéimealogical point
of view). In general, in order to have a reliable method, onsstnuse various
datasets, that incorporate both genealogical and geageapariance, a well ac-
cepted rigorously method and a scientifically recognizgdrdhm for displaying
the results. This is exactly what my research tries to aehiev

1.2.3 Software, availability and conclusions

Standard bioinformatics tools are various and their alditg is usually free. One
can use web versions or stand-alone versions. As the prehitEanhare attempted
to be solved are so different, there are specific softwargrpros for each/multiple
issue(s).

There are programs for dealing with: multiple alignment /8T), phylo-
genetic reconstruction (Phylip, SplitsTree), databaskdaiabase interrogations
(JJCB, etc), converting types of input data for phylogenatialyses (i.e. convert-
ing alignments to distance matrices, converting distanagioes to quartet rep-
resentations, converting alignments to splits systene$, 8y research focused
on adjusting the right method of converting the alignmeatdistance matrices,
considering that | am dealing with linguistic data, or digeong the appropriate
method to obtain a ‘good’ linguistic distance matrix, white phylogenetic rep-
resentation of the objects, | used the NNet algorithm imgletad in SplitsTree4
[43], because | needed as much information as possible thk ALS database.
Nevertheless, | tried to compare the phylogenetic algoritiicf. Section 5.1.1,
and Section 5.1.2) with the neighbour-joining method [@#]d the analyses of
the results can be performed in the QALD software (cf. Chafe
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WALS dataset

2.1 Introduction

WALS (World Atlas of Language Structures, [41]) represehtsfirst attempt of
a research program to map a large number of linguistic feat(®41 different
features, grouped mainly in categories of phonology, moligedy, nominal cat-
egories, nominal syntax, verbal categories, word orderpka clauses, complex
sentences, lexicon) found in a large number of languaged0j25The work of
Nichols [58] is the only comparable published work in termigions and scope,
and that deals with 174 languages and 10 multivalued litigdesatures, all mor-
phological. WALS significantly increases the degree to WHinguists are ex-
posed to typological mapping.

WALS is the largest database of structural properties ofjlages gathered
from descriptive materials (such as reference grammarsg)tegm of more than
40 authors (many of them leading authorities on the subj&ziine of these lan-
guages (265 in number) appear on only one map, while somhb,asi&nglish,
appear on most of the maps.

Each map (sample depicted in Figure 2.1) shows between 14g umber
123) and 1370 (map number 83) languages, each languagerepmgented by
a dot, and different colored dots showing different valumsthe features. Al-
together 2650 languages are shown on the maps and more tB@a 88ts give
information on features in particular languages. The Waéilids of Language
Structures thus gives information on the structural diersf the world’s lan-
guages available to a large audience, including interestadinguists as well as

17
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Figure 2.1: WALS sample map. Map numberRRAythm TypesCoding colours:
red = trohaic, blue = iambic, lilac = dual, grey = undeterndinglack = no rhyth-
mic stress.

linguists who would not normally read grammars of exotiglaages or special-
ized works by comparative linguists.

The original data was converted in a MySQL [1] database feieea@ata ma-
nipulation. The new MySQL database offers the possibilityrehand’ data ex-
tractions, visualisations and modifications. For this, JQtructured Query Lan-
guage) statements, more or less embedded were used, angdare@rogram was
implemented in order to have a fast, safe and reliable iati@mwith WALS data.
The main part of the database used in the analyses was fheg_feat’ table,
that contained the actual data points defined for languaggd$emtures (around
58200 records). Other tables needed in various analysis y¢ets, language,
and family, in order to have an overview of the language distributioardte
world and/or over the language distribution within farsligenus classifications.
The main problem, often mentioned in this work, is the podadaverage:

2560 languages 141 features = 360960 data points (theoretical) but, | hale o
58200, that means that the actually available data i§8200/360960 = 18%
(Figure 2.2).
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Figure 2.2: WALS distribution of data points.

2.2 Coding structure of the WALS dataset

2.2.1 Can WALS map to a linguistic ontology?
Two broad questions being addressed by this part of thegiroge:

e What conceptual and design problems need to be solved intarfaild an
ontology internal to WALS which may allow for a high degreardkroper-
ability among the WALS features?

e How can the WALS categories be related to a general ontology?

In this section, | discuss some of the general challengesddy WALS as | have
tried to determine how specific WALS concepts should be linkeeconcepts in
the GOLD ontology (General Ontology for Linguistic Des¢igm, [31]). These
can be placed into three broad classes:

e non-encoded internal structure of features;

e non-canonical concepts;

o lateral relationships holding among concepts acrossrdifteWALS fea-
tures.

1A full description of this analysis can be found in [23].
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2.2.1.1 Non-encoded internal structure

The data available in WALS is an enormously valuable souf@eformation for
linguistic research. However, in its current form it canbetused for certain com-
putational and statistical approaches to language tygoldge problem is that
the database does not encode logical dependencies betusespts referred to
by terms found in the databases. Such implicit dependegeaiede found both
within the values for a single typological feature in WALSdaamong values
found in different features.

To illustrate this problem, it is first useful to consider aeavhere the values
for a given typological feature have no logical dependesdi@r the typological
feature voicing in plosives and fricatives (map number 4QuFe 2.3 reflects the
feature values distributions.

These four possibilities clearly represent the intersectif two independent
dimensions: voicing in plosives and voicing in fricativeShere is no a priori
reason why these two characteristics should show any depeynan each other
— that is, there is nothing about the definitions of plosivieative, and voicing,
which would imply that there should be any correlation betwelosive voicing
and fricative voicing in the worlds languages. The fact thate is an apparent
correlation between the two parameters in the data (Fidbheast p = .000037
when counting genera) is an empirical observation of p@kinterest. However,
Dryers test [29] shows only marginal significance in threeadsix geographic
macro-areas (Africa, Australia/New Guinea, and South Acagrindicating that
the overall significance is not a world-wide effect, but ordgionally important.
These sorts of correlations are potentially interesting they are only linguisti-
cally meaningful if one knows that the relevant parametezdagically indepen-
dent of each other.

Unlike the data represented in Figure 2.3, the values fod#te represented
in Figure 2.4 show a high degree of logical interdependeRoeexample, a lan-
guage missing both /p/ and /g/ is also a language missindp/the database
does not encode this. Similarly, a language missing no sounép t k b d g/
cannot be a language missing /p/, missing /g/, or having buas$ising. From the
perspective of a human user, these logical dependencieshaieus. However,
a computational algorithm designed to discover corretat@among values in the
various features will find spurious patterns without an Expiachine-readable
encoding of such dependencies.

The logical dependencies holding among the values for titerfe voicing and
gaps in plosive systems are depicted in the tree in Figure=gbire 2.5 of course,
includes possible typological feature values not founchmmdata represented in
Figure 2.4, and it also includes a number of higher-levedgaties. The sort of
information represented in Figure 2.5 can be easily exprteasing an ontology.
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Figure 2.3: Map number 4Voicing in Plosives and FricativesNo voicing con-
trast in plosives and fricatives (white), voicing contrasiplosives alone (red),
voicing contrast in fricatives alone (blue), voicing cadr in both plosives and

fricatives (lilac)

Figure 2.4: Man Number 5/oicing and Gaps in Plosive Systen@her = yellow,
none missing in/p tk b d g/ = white, missing /p/ = red, missmg+ blue, missing

both = lilac.
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Phonological Gap

Basir-Tlu'ee:-Plusive-Gap :
Voiceless-Plnr.sive-Gap \-’uiced—]}losive-Gaps
MiSSING P/ e Missing /b/
Missing 1/ —— Missing /d/
Missing K/ —— Missing /g/

Figure 2.5: Logical Structure &foicing and Gaps in Plosive Systems

An important part of the WALS ontology project is to enumertte logical de-

pendencies holding among the concepts found in WALS andl appropriate

ontological resources for encoding them. Of the problenssWALS ontology

project has encountered with respect to linking WALS coteép a general on-
tology, implicit logical dependencies have required theagest deal of human
labor. However, from an ontological perspective, they atatively easy to deal
with.

2.2.1.2 Non-canonical concepts

As a resource designed for use in language typology insteaskeoin individual

language description, WALS makes use of many concepts wdrielguite dis-
tinct from the concepts found in a typical grammar or anrestaéxt. Three such
classes concepts seem worthy of mention here:

e absence concepts;
e numerical concepts;
e fuzzy concepts.

| label these concepts as non-canonical. They contrastcaitionical concepts
by not being straightforwardly expressible using instawfaelationships with re-
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spect to concepts in an ontology. | discuss each of theseaoonical concepts
in turn.

Absence conceptre found throughout WALS. They refer to a concept ex-
plicitly defined as not being an instance of another kind ofogpt. In ontological
terms, the concept of no case marking means that, in somadgegthere is no
grammatical structure which can be claimed as instangjatase marking. Cru-
cially, an absence category is quite different from infegrthe absence of some
grammatical phenomenon in a language simply because itatgasted or be-
cause there is no discussion of it in a grammatical desonptihe former is an
explicit statement about the properties of a languagesmarand can, therefore,
be taken directly as linguistic data, while the latter canno

Some sense of the variety of possible absence concepts aahibged through
a simple enumeration of some of the ones that are found in WAbh8y include:
no action nominals, no adpositions, no antipassive, ndiails, no case, no dis-
tributive numerals, no fricatives, no gender distinctionsglottalized consonants,
no grammatical evidentials, no independent subject pnesiono irregular nega-
tives, no laterals, no nasals, no obligatorily possessads)mo perfect, no person
marking, no plural, no possessive affixes, no productivapidation, no question
particle, no suppletion in tense or aspect, no tense-aggsattion, no tones, no
uvulars, and no velar nasal.

Looking through the definitional statements as given by thiéa@s, some
more absence concepts can be found. They include: nonsagreen-benefactive,
non-bound, non-declarative, non-derived, non-finite,-head, non-human, non-
iconic, non-inflecting, non-inflectional, non-number, rAaligatory,
non-paradigmatic, non-periphrastic, non-possessiblepronominal, non-realized,
non-reduction, non-referential, non-reflexive, non4reizable, non-sex-based,
non-sibilant, non-singular, non-subject, non-syntaeticd non-verbal.

Clearly, absence concepts are important for typologicatdtion. The ex-
istence of absence concepts within WALS leads to a simplenmmegendation
with respect to the relationship between a general ontoligyGOLD and a
community-specific ontology like the WALS ontology. In atidn to allowing
concepts in the community ontology to be related to the gdro@tology via pos-
itive relationships like language showsstances qfit is also necessary to allow
them to be related via negative relationships like this leggp does not show
instances of. While this would not seem to put a particuladén on the develop-
ment of a general or a community-specific ontology, it woidra to put a burden
on software designers building ontologically-intelligeaarch tools to ensure that
their tools can deal with absence categories in a way whiake$ul to linguists.

It seems worthwhile to point out here that the general probd¢ encoding
absence concepts may be more complex than is reflected inAh& \Wata. In
WALS all absence concepts are assertions about a propesatjaofjuages gram-
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mar. However, there is at least one other important kind eéabe:no informa-
tion on Here, again, | need to contrast inference and expliciestants. If the
only descriptive linguist who has worked on a particulaglaage states that, quite
simply, there is no data which would allow a language to bssifeed one way or
another typologically, that is information of quite difégt value from discovering
that a particular resource happens to have no informatioa ginen topic. The
former would not seem to call for looking for other resourtesee if they contain
the relevant information, while the latter would.

While | have encountered numerous absence concepts withliisythe WALS
ontology project has not attempted to exhaustively enuteeth possible kinds
of absence concepts which might be useful as linguistic t@tioo. This seems
like a worthwhile area for future research.

Another frequently occurring non-canonical concept foimdVALS is the
usage of features with countable values. For example, #tarienumber of gen-
ders distinguishes languages with no gender from languagewo, three, four,
or five or more genders.

Suchnumerical conceptare found rather frequently among the WALS fea-
tures. lllustrating this approach are, for example, fesdwovering the number of
distance contrasts in demonstratives (map number 41) umder of cases (map
number 49), the number of classes of possessive classifiqatiap number 59),
and the number of degrees of remoteness as distinguishbd past tense (map
number 66). Such overt examples nicely illustrate the irgyme of counting in
typological parameters. However, there are also more texamples of counts
being used in the definitional details of typological partane

With respect to linking WALS concepts to the GOLD ontolody existence
of numerical concepts would seem to necessitate concept \wan directly re-
fer to cardinal numbers. The usage of numbers for countdidagmena has to
be distinguished from numbers used to divide more or lesBraayus parameters
into discrete values. For example, in the feature depictovgel/consonant ratios
(map number 3), the value low is defined as having a ratio ofdmess. The
fact that the cut-off point is a whole number is clearly justaabitrary decision,
as the ratio results in a quasi-continuous parameter (seeu@y forthcoming, for
a discussion of such quasi-continuous parameters in tgghlorhe division of
such continuous parameters into discrete, numericalfijele classes is related
to the notion of fuzzy concepts, to which | turn next.

The third class of non-canonical concepts in WALS are whaillfazzycon-
cepts. These are concepts which cannot be straightforyvaaidited to other rele-
vant concepts via a logical relation. This is not to say theyumrelated to other
concepts, but rather some consistent policy needs to beogeekfor determin-
ing how to annotate such relationships which makes the rfiezai ontologically
tractable. Some examples of fuzzy concepts found in WALS areall con-
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sonant inventory (map number 1), complex syllable striecf{orap number 12),
borderline case marking (map number 49), weakly suffixingdmumber 26),
and highly differentiated genitives, adjectives, andtredaclauses (map number
60).

The hallmark of a fuzzy concept is the use of a modifier éikeallor like which
is open to a subjective or relative interpretation. For epiaa small consonant
inventory can only be considered small in reference to alkhown consonant
inventories and even then, there is still a subjective efgrtee determining the
boundary between, say, small and moderate. As another éxaogmsider de-
scriptions using the modifidike. Going through the definitional statements as
presented in WALS, | found the following terms used: adjextlike, agent-like,
case-like, patient-like, vowel-like, we-like. These caryobe understood as re-
ferring to an unidentified deviation from the more prototgdimeaning of the
head-term.

Fuzzy concepts, then, can be distinguished from simplysidioratic con-
cepts which combine categories in unexpected ways but whigbrinciple, are
logically definable without an explicit statement of intexfation. One such idio-
syncratic concept is the value pronouns avoided for pagenn the database for
the feature politeness distinctions in pronouns (map nudbe This concept in-
corporates the notions of pronoun, avoidance, and poBteimto a single concept
in a way which would be unlikely to be specifically anticipatey developers of
a general ontology. Nevertheless, assuming that an ontalmgtains these basic
concepts, there is nothing fuzzy about them and it shoulcetbee, be possible
to relate a concept combining them to a general ontologygusiandard logical
relations.

There would seem to be two broad strategies available fhinignfuzzy con-
cepts to a general ontology. The first is to always assodiaterttire concept to a
reasonable non-fuzzy definition and treat relative andestive terms like small
or borderline as useful abbreviated conventions with nd eatological status.
Thus, for example, amallconsonant inventory could be defined as meaning less
than fourteen consonants (which is, in fact, the definitiseigin map number 1).
A second strategy would be to relate the fuzzy modifiers tledwes to a general,
concrete definition. Then, perhapsnallwould be defined as two or more stan-
dard deviations away from the average for a countable dgyanti

In looking at the prose descriptions accompanying the WALZpsn what |
find is that in general, authors did in fact associate appigrierzzy concepts with
a non-fuzzy definition explaining. For example, how theycsijoeally interpreted
terms likesmall or borderlinewith respect to particular categories in particular
languages. Thus, common practice in the creation of WALStwaake the first
of the two strategies outlined above. The WALS ontology gcbjs following
this common practice and adopting it as its general strdtagyealing with fuzzy
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concepts.

To make the discussion more concrete, in Figure 2.6 is degptbe map repre-
senting the data collected for the feature syllable strectlihis feature has three
values in WALS: simple, moderately complex, and complex.tiidse values re-
fer to fuzzy concepts. However, within a prose descripticcoanpanying the map
in the published version of WALS, map number 1 associatels eazy concept
with more concrete definitions. These definitions do notieikpy appear in map
number but are adapted from his prose descriptions of teeaet categories.

e Simple Syllable Structure: Describes a language which altbyvs syllable
structures conforming to a (C)V pattern

e Moderately Complex Syllable Structure: Describes a lagguahich only
allows syllable structures conforming to (C)V(C) or CWV (@3tterns (where
W stands for a liquid or glide)

e Complex Syllable Structure: Describes a language whiatwallsyllable
structures other than those described as permitted in sisyiable struc-
ture or moderately-complex syllable structure languages

The strategy of associating each fuzzy concept with a nanyfdefinition, in-
stead of devising a general definition for each attested ¢ypezzy modifier, is
a fairly comfortable one for the WALS ontology project sire&ch of the typo-
logical feature databases was essentially conceived awitsnternally coherent
research project with terms defined for that project alorleave open the ques-
tion as to whether or not some other project might find it wettie to deal with
fuzzy concepts by giving concrete definitions to the fuzzydifiers themselves.
Whether this is considered necessary, it would seem to sigesthe inclusion of
notions like average or standard deviation within a gerandlogy for linguistic
description (perhaps linked to an upper ontology also éoimig such concepts).

2.2.1.3 Lateral relationships among concepts

By the termlateral relationship | mean a relationship holding among two con-
cepts in different resources. Of course, lateral relahgpssabound among cate-
gories in linguistic resources since it is what makes tha ttegy contain compara-
ble in the first place. Thus, for example, when one encoutiterserm nominative
case in one resource and ergative case in another, one asauateral relation-
ship holding between those concepts where they both havethorg in common
(being instances of case) and something not in common (loestences of differ-
ent kinds of case). In principle, lateral relationships alibe encoded by linking
linguistic concepts to their appropriate place in an orggloin fact, this is one of



Chapter 2. WALS dataset 27

Figure 2.6: Map number 12Syllable structure Simple = black, moderately
complex = green, complex = red.

the tasks ontologies were designed for.

However, in the WALS ontology project, | have often foundseful to make
note of lateral relationships among concepts. The reasahifis a simple one:
Sometimes it is possible to determine a lateral relatignbbiding between two
categories before it is possible to relate each of thosgeass to a higher-level
ontology. Thus, encoding lateral relationships allowsaustlicate some of what
| know about a category at a given time even if | do not know gmoabout the
category to link it to an ontology.

Some of the classes of lateral links | have found useful irotatron are given
below:

e Similar term names, but different concept

e Theoretically (almost) same concept, but certain langsialgssified differ-
ently

e Same concept, but no appropriate ontology concept(s) found

In principle, a controlled vocabulary for such links coukeldeveloped. However,
at this time, since there is no tool designed to exploit &ténks in developing an
ontology, they are always inspected by hand, and | have faoneeed to develop
a machine-readable annotation system for them.

2.2.1.4 The recoded WALSX

The recoded WALSX (WALS eXtended) tries to solve the abowsented prob-
lems, in order to have a stable, quantitative-appropriata set. Even if the oper-
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ations needed imply an impressive volume of work, | decidhed it is worth im-
plementing. | did a careful analysis in order to (i) identife problems described
in Section 2.2.1, (ii) decide on the appropriate solution,qareful implement the
solution. These steps were performed for each feature, andwersiorfile was
created for each of them, while a software was implementedréating the new
WALSX and for analysing these files together with the origWWALS data.

A typical conversion file contains the following sectionsed to define each
new feature and each new feature value, set the requiresfdramation ‘rules’,
and give the necessary information about the new featuaérie values and de-
scriptions of the feature values.

FeatID | Action type
9 split + copy

Table 2.1: Sample Action Type.

Theaction typesection presents the recoded feature id, together withahe ¢
version type. This can be one of :

e copy=the old feature is copied without modifications;

e split = the old feature is split in 2 or 3 distinct new features withany
dependencies;

e split + copy= usually, 2 new features are created one being a yes/nadeatu
and one just a copy of the initial feature(Figure 2.8); irapllependencies
are noted;

¢ divide=the new recoded features are mostly dependent.

NewXFeatID NameXFeat DescriptionXFeat
15 The velar nasal Velar Nasal
16 Type of velar nasal Velar nasal, initial or nof

Table 2.2: Features Description.

In the feature description section | am describing the neatufes, noting their
new ID, names and descriptions. The new feature values aogided infeatures
valuessubdivision (Table 2.3).

The tabletransformationglescribe the ‘rules’ to obtain the new feature values
based on the old ones (Table 2.4).
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NewXFeatID | ValueXFeat Description
15 1 No Velar nasal
15 2 Velar nasal
16 1 No Velar nasal
16 2 Velar nasal, also initially
16 3 Velar nasal, but no initially

Table 2.3: Features Values table describes each uniqueication of feature id

and feature value.

InitialFeatlD | InitialFeatVal | NewXFeatID | ValXFeat
9 1 15 2
9 1 16 2
9 2 15 2
9 2 16 3
9 3 15 1
9 3 16 1

Table 2.4: The transformations table sets the ‘rules’ ohting the new features
and new features values, i.e., a language with an initiaifeavalue 1 for feature
9 will be set to have the feature value 2 for the new featurentbf@ature value 2
for the new feature 16 respectively.
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It is easily to see that there will be

NrNewX Features x Nrilnitital FeatureV alues

records, as for each old feature value | define a new set ofdedor each corre-
spondence to the new features.

TheChanceandDependencietables provide useful information for the inter-
nal coding of the data, that the initial WALS was unable toctiée. These fields
are not necessarily required and they are filled only in the@miate case. In
thechancefields | define the character distance matrix for this featane in the
dependenciesections | note the inter-dependencies between thesedeatlues
and other (if any) features values corresponding to the sararother features.

FeatXID1 | FeatXVall | FeatXID2 | FeatXVal2
15 1 16 1
15 1 16 1
16 2 15 2
16 3 15 2

Table 2.5: Dependencies table. A feature value 1 for feaGramplies feature
value 1 for feature 16 (this relationship is bidirectionalhe feature value 2 or
3 for feature 16 implies the feature value 2 for feature 1%s(tklationship is
unidirectional).

As mentioned above, these analyses were also useful intordetect a ‘char-
acter distance matrix’ for some features. For example, idendeature 1, the
‘Consonant Inventories’, with 5 possible feature valussall (from 6 to 14 con-
sonants) moderately smal(15-18), averag€19-25), moderately largg(26-33),
andlarge (34 or more consonants). Itis natural to believe that a laggwho fell
in the first categorygmall), will evolve easier to an intermediate categomyo(d-
erate smalbr evenaveragg, than going directly to the categolarge. Therefore,
a character distance matrix for this feature would look the one in Table 2.6.

Of course, in some cases | did not know the exact relationséiween fea-
ture or features values, and | must emphasis that theseingciscdonly based on
personal knowledge of people involved in this research. ektbeless, the new
WALSX contains now 257 features and a lot of coded dependsramnd transi-
tions that | believe that are more appropriate to statistipproaches.

A small software program (Appendix 8.6) was implementedraeoto:

e read the transformation file,
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Featurel Small | Moderately| Average| Moderately| Large
Small Large
Small 0 1 2 3 4
Moderately small 1 0 1 2 3
Average 2 1 0 1 2
Moderately large| 3 2 1 0 1
Large 4 3 2 1 0

Table 2.6: Character distance matrix for feature 1.

e extract the old data from WALS,
e insert the new data into new tables by following the transfations ‘rules’,

e create alotfile with the info in order to be able to use the “twopi” program
[36] to display the transformations.

In Figures 2.7 - 2.9, 3 examples of such kind of conversioespaesented, de-
scribing thesplit transformation Yoicing in plosives and fricativg@sthe split +
copytransformation Tong and thedivide transformation Fixed stress location
respectively.

| also tried to test if the WALSX will provide a better phylagetic picture. |
analyzed 33 languages, grouped by families, and | used thdrdan WALS and
WALSX respectively. The picture resulted from WALS (Figl2€.0) is similar
with the one from WALSX (Figure 2.11). The analysis can baaystized as the
following:

¢ both data-sets cluster the the languages from Indo-Eungpdiaic, Uralic,
Trans New Guinea, and Nakh Daghestanian families;

e WALS data provides the entire grouping of Austronesian Ugs;

¢ WALSX manage to get closer the languages from Sino-Tibedanily, as
well as the ones from Nilo-Saharan family.

Nevertheless, in this comparison | did not make use of amyinétion discovered
during the recoding, i.e. the distance between featureegaline dependencies,
etc, but just used the data (from WALS and WALSX respectivelyd created
distance matrices for it.
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Old 4.
Voicing in Plosives and Fricatives

Qld4.1 Old4.2 Old4.3 Qld4.4
No Voicing In Plosives In Fricatives In Both Plosives
Contrast Alone Alone and Fricatives

ew 3. Newnd.
i€ing Contrast in Plosive, kan Voicing Contrast ifNFlicatives

New 3.1 New 3.2 New 4.1 New 4.2
No Voicing Contrast | Voicing Contrast in No Voicing Contrast Voicing Contrast in
in Plosives Plosives in Fricatives Fricatives

Figure 2.7: Example déplit conversion

Old 13.
Tone
Old 131 Old13.2 0ld13.3
No Tone System Simple Tone Complex Tone
System System

New 22. New 23.
Tone \ Voicing Sgntrast in Fricative

New 22.1 New 22.2 New 23.1 .New 232 New 23.3
No Tone System Tone System No Tone Simple Tone | Complex Tone
System System System
3 “ T }
N Ve
N g
™~ - a P

Figure 2.8: Example o$plit + copy conversion. Note the bidirectional depen-
dency between the new feature values 22.1 and 23.1 and ttheaotional depen-
dencies from 23.2 and 23.3 to 22.2.
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Figure 2.9: Example oflivide conversion. Note the dependencies between new

feature values 24.2, 25.3 and 26.4 respectively.
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Figure 2.11: NNet using the recoded WALSX data.
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2.3 Multidimensional scaling

2.3.1 Introduction

Another obvious question that was arisen when the first ggyletic picture was
obtained is, whether the relationships depicted are dubeaghylogeny or just
geographical influence. It is well known that languages aflnence each other,
if they are closely located, not only lexical, but also tyggital (Figure 2.12 shows
a nice geographical distribution for feature 87 = Order oje&tive and Noun).

Figure 2.12: Geographical influence on typological feaure

Moreover, in case of the languages in Laos country, as showigure 2.13,
there are 4 genera depicted (red, white, green, blue). TheRa genera contains
Lu, Lao and Saek languagés Why and how Lu, so far away geographically,
belongs to the Kam-Tai genus and not to Palamung-Khmuic é&me®ealing and
simple explanation can be found if the geographical elesard considered, e.g.
there is a river which probably was used by the populatioreieed faster. (Figure
2.14).

2.3.2 Results

Multidimensional scaling (MDS) is a set of related statigtitechniques often
used in data visualisation for exploring similarities osgimilarities in data. An
MDS algorithm starts with a matrix of item-to-item similteis, then assigns a
location of each item in a low-dimensional space, suitablegraphing or 3D

2Thanks to Hans-Jorg Bibiko for pointing out this.
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7

Figure 2.13: The languages in Laos, four genera (Palaungtkg) Kam-Tali,
Katuic, Bahnaric). Lu, Lao and Saek languages (blue) aregbdéine same Kam-
Tai genera.

Y

Figure 2.14: A possible explanation of Kam-Tai genera ieteship for languages
located geographical far apart: geographical elememsrri
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visualisation. | used the multidimensional scaling (ALSgArom SPSS (Statis-
tical Package for the Social Sciences) software packade [70

For this analysis | choose the case of Oceania, a region vwesyseé from the
language grouping point of view as well as very interestfraydloser look of the
geography is taken. There are mainly three language faifi@pua New Guinea,
Australian and Austronesian). While the languages fromuRapew Guinea are
very closed located, the Australian family is spread overdhtire continent, and
Austronesian is really diverse from the geographical pointiew (Figure 2.16).
A multidimensional scaling of the typological distancegg(fFe 2.15) shows a
remarkable similarity with the geographical locafipauggesting that many fea-
tures in WALS are influenced by the location of the languageise world (Figure
2.16).

i e _-_'.__
y 1. &

- Mayhrat
y r” L ‘. Alamhlak___
on R e S T . - Kobony
Tukang Besi LRar ™ il
= gy . Amele B
e - | LW " gl |
Tiwi LA ..\.
’ .’ L A Lavukaleve
- & Mangarrayi
Gooniyandi @) @ Kayardild
Martuthinura o )
s @
rI
. Ngiyamhaa

y

Figure 2.15: The geography of Oceania languages. Austiamtsnily = yellow,
Australian family= blue, Trans-New Guinea family=red.

3Thanks to Michael Cysouw for discovering this.
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Figure 2.16: Multidimensional scale of Oceania languages.

2.4 The typological-geographical relationship

2.4.1 Analysis

It comes natural after the above results, in order to detexgeographical and
typological influences, to compare the measurements bas¢ldese two crite-

ria. | constructed two sets of distance matrices correspgrio the typological

distances and geographical distances respectively. Edyplological ones | con-
structed the distance measure described in Section 4.Xpatlte geographical
distances | used thgaversinegformula [69] presented below:

Alat = laty — laty (2.1)

Along = longy — long; (2.2)

a = sin®*(Alat/2) + cos(lat,) * cos(laty) * sin*(Along/2) (2.3)
C = 2xatan2(vVa, /(1 — a)) (2.4)

dist = RxC (2.5)

whereR = 6.371 km. Presuming a spherical Earth with radids and that the
locations of the two points in spherical coordinates (Itundg and latitude) are
longl, latl and long2, lat2, then the Haversine Formulagwle mathematically
and computationally exact results. The intermediate tesid the great circle
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distance in radians. The great circle distade®ll be in the same units aB.
The analyses were conducted for different data sets, asviolg):

e Build typological distance matrix/{;) and geographical distance matrix
(D¢) respectively;

Remove the biggest distances (distortion);

Take the extremes of the rappd-(i, j)/Da(7,j) for eachi andj in the
data set;

Interpret very low values as linguistically (too) similar;

Interpret very high values as linguistically (too) diverse

2.4.2 Results

@ Maybrat

Maori
Kobon

Tukang Besi
Amele

Indonesian
Fijian Tiwi ®
Malagasy Lavukaleve

Rapanui

Tagalog

Cllamulb

Alamblak

Mangarrayi

Gooniyandi ~ :
Kayardild

Maruthinura Ngiyambaa

Figure 2.17: Multidimensional scale of Oceania languagesl lines show ‘unex-
plained’ typological dissimilarities. Green lines showéaxplained’ typological
similarities.

The green lines in the Figure 2.17 show a too high similarnbyT the typo-
logical point of view compared with a larger geographicakance. That is, there
is no reason for this languages to be so similar, due to tremg@phical posi-
tion, but their similarity might be explain by a typologigafluence, which might
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imply genealogical relationship. Reversely, the red lisiesw a close geograph-
ical position with a high dissimilarity between languagdth cases are very
interesting in linguistic research.

2.5 Feature clustering

Another useful approach that | performed was to identifgny, the feature clus-
ters. In other words, | tried to detect if some features cagroeped together
based on their world wide distributions of features valeedased on their con-
sistency between families and/or geographical positions.

Using the CADM software [50, 51] | was able to measure the ist&scy of
the features with the overall distribution of features eslun the entire dataset,
and also between each of the features (see also Sectior). 4Thé& aim of this
analysis was to create distance matrices for each featasedon a set of lan-
guages), and to detect by using the CADM software, which ef¢hmatrices are
more correlated with the others. | achieved this by comggatteir similarity to
the overall matrix (obtained by using a distance measuréhisame set of lan-
guages but for all the features).

The permutations tests were performed for all featuregusimumber 0§999
permutations and the results were used as input data fortadimeénsional scal-
ing (in order to obtain a graphical picture of their simitgyi The first picture
obtained from the multidimensional scaling for all 141 teas did not showed
any defined clusters (Figure 2.18). | decided that the numibkeatures analyzed
should be reduced (the graphical resolution was not intéaipte), therefore | ar-
rived to a set of 17 features for which | performed again theD&Aanalyses
and used MDS to display the results. The 17 features selectethe follow-
ing: 51=Position of Case Affixes, 57=Position of PronomiPassessive Affixes,
69=Position of Tense-Aspect Affixes, 82=0rder of Subjectderb, 83=Order of
Object and Verb, 84=0rder of Object, Oblique, and Verb, 8&te®of Adposition
and Noun Phrase, 86=0rder of Genitive and Noun, 87=Orderdpdive and
Noun, 88=0rder of Demonstrative and Noun, 89=Order of Nainand Noun,
90=0Order of Relative Clause and Noun, 91=Order of Degreed\&@nd Adjective,
92=Position of Polar Question Particles, 93=Position ¢édrmgative Phrases in
Content Questions, 94=0rder of Adverbial Subordinator @ladise, 104=0rder
of Person Markers on the Verb. The correlation values, akasg¢he permutation
indexes obtained from the CADM analyses allow us to drawslibetween the
points that have a higher correlation (Figure 2.19).

As the Figure 2.19 shows, features 83, 85, and 86 are verycaetiected not
only between them, but also with the majority of the othetdess. The cluster 87
and 88 (Noun positions) is surprisingly grouped with 51 écaflixes). The fea-



Chapter 2. WALS dataset 41

Corfiguration in space Oimd = Oim2 [stress: 0.338)

-
i e AR

OimZ —1
o
L]
-
o

a5 2 54 * 3§ g e s

-- Dim 1 —>

Figure 2.18: Multidimensional scale of 141 features. Nacldustering, and no
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Figure 2.19: Multidimensional scale of 17 features. Fes &3, 85, and 86 form
a central cluster as well as the clusters formed by feature87%A and 88. All the
other features, except 57 and 104, are connected through thesters.
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tures 89 and 91 are connected through this cluster to theS3863(the ‘central’)
one. The features 57 and 104 do not show any relationshipetottiers at this
level. Feature 84 (object/oblique/verb) is nicely conaedawith 83 (object/verb)
as well as is the feature 92 with the feature 93.

One can set various initial grouping of features of inte(est suggestion is
to be less than 26)) and perform the above analyses in order to detect possible
similarities/clusters between them. A simple software wgdemented in order
to read the output from the MDS analysis (points coordinaes draw the con-
nections lines (Appendix 8.5).

Nevertheless, one might use this approach in order to dgesgraphically
related features. For this, the above analysis must be eldamgy in the fact that
the overall distance matrix that is used as a reference fwiocbmparing the fea-
tures distance matrices, should be build as a real geogaphstance between
languages (I recommend the Haversine formula for this)hihd¢ase the similar-
ities observed will provide information about the clustegrof the features from
the geographical influence point of view, which is still a tomersial discussion
in these days. These results might be a starting point fthéuanalyses that tries
to find/explain feature correlation with the world wide distitions, as well as the
geographical influence on typological features.

“*In order to proper interpret the results. Above 20 it is sedlifficult to distinguish the graph-
ical elements
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‘Improving’ missing data. Improving distance
measurements

3.1 Missing data

WALS has a low coverage of data points (a data point meansa wdla feature
assigned to a language), only 20% filled, but this 20% meang than 50.000
data points.

Clearly, one can complain about the missing data, but thetiegidata points
should still provide enough information for various kindasfalyses. Neverthe-
less, one of the possible approach when dealing with miskateis to try to fill it
in. But, because of the enormous financial and researchtt@fill in even only
a few additional data points | decided to renounce on the strict method and to
try to recover, if possible, some information regarding tissing data. That is
also due to the fact that if one will apply a statistical metlom only 20% data,
its results cannot be rigourously sustained. In generatgethre two possibilities
when trying to fill in missing data:

e detect (and use) the most probable value,

e fill in the missing values with all possible combinations aeeck which
variant is the best one.

1Some preliminary estimates indicate that the data in WALSswarious hundreds Euros per
data point (cf. Michael Cysouw, p.c.).

43
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The first approach is very easy to implement, as in the WAL&,datan look
at the most frequent feature value of the languages thahgeim sets defined
on families/genera criterion. If, for example, 95 percehthe Indo-European
languages have the feature valdefor featuref’, and the other 5 percent are not
defined, one might assume that these 5 percent have alsontieefsature value
(i.e.,V1). Of course, this approach is a little dangerous as the tdtalst depends
very much on the distribution of the features values in tmeiliggenera set (e.g
what conclusion can be obtained if 40% of languages havareaaluel;, 40%
have feature valueg,, and the rest are not coded? What will be their assumed
feature value?). The second method, which | would like tb“salarching in the
space of missing values”, implies to fill out the missing daith all possible
appearances of the feature values. Again, there is a difficablem in those
cases where feature values belong to a large interval, atid/onissing data are
often present. Two cases are possible:

e only a single cell per column is noted as missing,
e there exist more than one missing datum per column.

In the first case, each column that contains missing datgpiareled to all possi-
ble variations of its values. As shown in Figure 3,1if one has three columns
(features) with possible ranges of values of 2, 4, and 5 sy, the expanded
alignment will contain now 11 columns instead of 3 (Figurel3).

a)

-
= B - (%]
o N -~ =

Figure 3.1: Missing data. One per columa) initial alignment,b) expanded
alignment.

For the second case, with more than one missing data pointghemn, each
feature will be expanded for all the possible combinatiorieaiture values be-
tween the missing data. As shown in Figure &,2he first alignment, contains 2
columns. The first column contains 2 missing cells, and thgeaf feature val-
ues is [1, 2], while the second column (Figure B)zhas 1 missing value but the
range of feature values in [1, 4]. Therefore the initial ahgent will be expanded
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a)

Figure 3.2: Missing data. More than one per coluna).initial alignment,b)
expanded alignment.

to a 8 columns wide alignment. The general formula to catettlze length of the
final alignment is presented in Equation 3.1.

nrResColumns = Z nrInterval Range™ s (3.1)

columns

Again, this is hazardously from the point of view of comptgxand the level
of incertitudes, especially in the case where one is dealitigvery large interval
ranges and incomplete data, but | concluded that it is mighbe worthwhile to
analyze.

Performing the entropy algorithm described in Section m2hese “full” align-
ments might provide useful information about featuresnet/ghey contain miss-
ing data. Nevertheless, the method just assumes the ‘q@sihg with a certain
level of trust. For example, let assume that this tree isyaeaP:

((Finnish, Hungarian), (Romanian, (Italian, (Spanish, Portuguese))));
(3.2)
and a feature has the following feature values distribuimorthis grouping:

((1,1),(2,(2,(7,2)))); (3.3)

(where question mark denotes missing data), with the plestlatures values
being in the range [1,2]. By replacing the question mark Wi#nd 2 respectively,
the entropy algorithm (Section 5.2) detects that havingvtiee 2 instead of the
guestion mark results in a ‘good’ phylogenetic feature amelmay notice that the
value of 2 is also matching the majority of the feature valmmayzed. Again, this
is just an assumption, but one that is strongly supporteeoild be interesting for

2The strings in Expressions 3.2 and 3.3 are caledick tree expressiorad are often used
in phylogenetics to represent tree structures.
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further research to investigate the ‘predicted’ valuegs., €oes Spanish have the
feature value 2?). To run the entropy algorithm on a seleafpfor example 20
languages for all the 141 features from WALS, will imply toaah computational
effort (remember that | have 80% missing data and the inteavege of feature
values can vary from 2 up to 9). Nevertheless, | adopted samnants of this
method on restricted set of data:

e Remove features that have missing data. Features thaircom&sing data
are removed from the analyses.

e Remove leaves that have missing data for all features. Tdngesees are
removed whenever they contain missing data in any position.

¢ Remove leaves that have missing data for each feature. Tjuesees are
removed whenever they contain missing data for one feature.

In the above last two cases, the algorithm must modify thelrree, by remov-
ing the leaves in question and correctly adjust the parsigliermat of the tree.
Moreover, in the last situation, this adjustment has to beedor every feature
analyzed.

3.2 Distance measurements

Clearly, distance matrices are important data input folqipnetic analyses. As
it is easy to calculate a geographical distance between oadgon the globe,
using for example the Haversine formula [69], it is not asyeasestablish the
correct distance measure for species, languages or otjeat®bf interests. This
issue is more difficult, as it usually presents multiple peats: missing data,
wrong/default mistakes in data/measurement, rescaliteg, & very important

issue in obtaining the correct (or most reliable) resultphyglogenetic analysis
is to perform a good method for constructing the distanceimatVhat is good,

and how to measure the ‘reliability’ of the methods? Diffarapproaches were
analyzed and the most significant are described in the netibeewith the hope

that this might be applied to a general dataset.

3.2.1 Methods
3.2.1.1 Hamming distanceRelative Hamming distance

Hamming distance [40] is probably one of the most commoradist measure-
ments, but as presented next, it has a huge drawback wheanglegth missing
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data. The distance is calculated by counting the elemeatsth different for any
two objects. In my case:

1 f0# (L) £ F(Ly) #0,
De(la, L) = {o else (i.e., if) # F(Ly) = F(L,)). (34)
141
D(Ly,Ly) =Y Dp(Ly, Ly) (3.5)

How to deal with missing data, is a problematic issue. A sg[flaining sam-
ple is presented next, where | assumed that | analyze thngmdges and five
features as in Table 3.1 (question marks represent unknate). dNow, there are

Featl| Feat2| Feat3| Feat4| Feat5
German 1 2 1 3 ?
English 1 2 1 4 1
Romanian| 3 ? 1 6 1

Table 3.1: Sample data table

at least three ways to build variants of the Hamming distanagix:

e Treat‘?’ as different ‘?’ is different from everything else.
D(G,E) = 0+0+0+1+1=2
D(G,R) = 1+1+0+1+1=4
D(E,R) = 1+1+0+1+0=3

e Ignore ‘?’ - Ignore the entire column that contains ‘?’.
D(G,E) = 0+0+0+1+0=1
D(G,R) = 1+0+0+1+0=2
D(E,R) = 1+0+0+1+0=2

e Ignore *?’ but count the available data (Relative Hammingtdhce)} Same
as above but divided by the number of columns that have vale#sed for
both objects (the actual number of cases where one has th&éiios of
measurements).

D(G,E)=1/4=0.25
D(G,R) =2/3=0.66
D(E,R) =2/4=0.5
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There are a lot of differences in the results and this suggesimparison with the
output of other methods in order to detect which method plewvithe most sig-
nificant results. In general, | will adopt the following disice measure (Equation
3.6).

#Hdissim(F(L1), F(L2))

Fef%ures #dissim(F(L1), F(L2)) + #sim(F(L1), F(L2))
(3.6)

where#dissim and#sim represents the number of differences in coded data,
respectively the number of similar coded data.

dist(L1, L2) =

3.2.1.2 Refining the similarities

What if, instead of ‘doing nothing’ when two objects are tlsarme’ for some
characteristics (the case of ‘adding’ 0 in Equation 3.4 tnes to refine this
similarity. For example in a group of 20 persons, only twohar are male. The
characteristic of sex (male/female) has a bigger influehite valueis male than
if the valueis female. In other words, in this case, the males are moresifrom
the ‘sex’ point of view than females. Or, to put it in anothexywa shared common
characteristic should not be counted as the same as a slaaeecharacteristic.
The method implies to count for each feature:

e F, = frequency of value A, e.g. the number of cases where thereat
defined as having valué

e Fr =frequency of available data points for this feature, ehg.tumber of
cases where the feature is defined.

or
Fa=#{L| F(L) = A} (3.7)

and
Fa=#{L| F(L) # 0} (3.8)
| calculate the similarity measure as:

NormS(A) = Fu/Fr (3.9)
while building the distance between two languages will lIbeemow:

Z #Hdissim(F(L1), F(L2))
Fe features #dZSS’Lm(F(Ll), F(L2>) + (1 - NormS(F(Ll)))
(3.10)

dist(L1, L2) =
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whereNormS is calculated whe'(L1) = F'(L2), which implies
NormS(F(L1)) = NormS(F(L2)). For a better understanding, the following
example (Figure 3.3) is presented, where a feature valtrgdison is presented:
84% of languages have feature valyel2% of languages have feature valye
and 4% of languages have feature vatuespectively:

Feature Value 1

@ Feature !alue 3

Feature Value 2

Figure 3.3: Sample of feature values distribution. The leggs (the dots) are
grouped by feature value.

My idea implies that two languages (objects) that share ¢la¢ufe value 2 are
more similar than two languages (objects) that share theirfeaalue 1. For
example, in the case of map 51 from WALS (Position of Case Affjx

e value 1 (Case suffixes) = 431 cases out of 934 availablte: NormS =
0.4603

¢ value 4 (Case tone) = 4 cases out of 934 available.NormS = 0.0043

— so0 the results assume that two languages that share theMauthe feature
51 are more similar than two languages that share the value 1.
Another formulae used is presented in Equation 3.11

NormS(A) = —log(Fa/Fr) (3.11)

and then the formulae 3.10 will be transformed in :

, B #dissim(F(L1), F(L2))
dist(L1,12) = Fdissim(F(L1), F(L2)) + NormS(F(L1))

Fefeatures

(3.12)
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3.2.1.3 Refining the dissimilarities

Are all the differences the sani®@ For example analyzing two human groups,
is being different in height the same as is being differerihennumber of eyes?
In my analysis | am grouping the languages by genus and cdongyery two
feature valuesall andval2 the number of genera where:

e a = neithewall norwval2 are present
e b =wvall is present andal2 is not present
e C =wal2 is present andall is not present

e d =bothvall andwval2 are present

Genus 2

Genus 1

Genus 3

Figure 3.4: Feature values distribution for languagesjgediby genera. Different
colours represent different feature values.

Then, | used the following formulae to obtain a measure cfidigarities:

b+ec

NO’I"mD(/UGll, /UGZ2) = m (313)
or
1— ad—bc
NormD (vall,val2) = \/(a+b)(;+d)(a+c)(b+d) (3.14)

Instead of adding a value of 1 to the distance between twalkgesl.1 and L2
that havevall andwval?2 respectively defined for a featufg, | will add the value

Svarious formulas (for both similarities and dissimilagit) were tried due to Michael
Cysouw’s suggestions.
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of NormD(vall,val2). Of course NormD (vall,val2) = NormD(val2,vall)

and the overall distance measure will now be as defined inti&qua. 15 :
NormD(F(L1), F(L2))

NormD(F(L1), F(L2)) + #sim(F(L1))

dist(L1,12) = (3.15)

Fefeatures

In cases similar with ours, when the dataset might be dividestts of interests
(geographical, genealogical), it becomes clear that apgplyoth refinements of
similarity and dissimilarity respectively, by using therFalae 3.16 when build-
ing the distance matrix, improves, even if not in the amoupeeted, the results
obtained. The general formula will now be defined as in Equedi16.

‘ B NormD(F(L1), F(L2))

dist(L1, L2) = Fefz;u NormD(F(L1), F(L2)) + 1 — NormS(F(L1), F(L2))
(3.16)

3.2.2 Results

All distance measurements were compared, in the way of ‘hewddhey fit the

required data’, with a typological distance matrix. Thedlggical distance ma-
trices were build, in a simplistic way, from tlethnologuanformation [35], by

weighting each internal edge with a value of 1. For examphliag tree in Figure
3.5 is analyzed then the associated distance matrix in BaBlis constructed.

1 Romanian

Spanish

Finnish

Hungarian
Figure 3.5: Weighting uniformly the edges of the tree withaéue of 1.

The comparison (Figure 3.6) was processed for 5 languagdidamand it
showed a very good performance of the relative HammingmltgtaT his measure
should definitely be used when other improvements are ndilples Neverthe-
less, Formulae 3.12 allows with only a small amount of effrbbtain improved
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Romanian| Spanish| Finish | Hungarian
Romanian 0 2 4 4
Spanish 2 0 4 4
Finish 4 4 0 2
Hungarian 4 4 2 0

Table 3.2: The distance matrix associated

results. The second variant of NormS (Formulae 3.11), akasehe variants of
the NormD showed the same criterion of affinities to the elibgpoe matrix (the
same variance of the results). Surprisingly, the combamadf both best NormS
and NormD variants showed not only no improvement, but eversey a depre-
ciations of the resultst

Methods correlations with ethnologue data

0.75 P ——
0.7 .

0.65 L, = a w v Afossiatic
0.6 I G —s—|nooEuropean

0.55 ’f-—f = SimoTiketan
0.5 o Austroresian

D;i ] —»—Miger-Congo

0.35

* w® -

Figure 3.6: Comparison of various distance measuremetitstidé phylogenetic
information.

3.2.3 Phylogenetic comparisons

For the phylogenetic comparison, | selected a set of 25 kagesi(the best coded
ones) grouped in 5 families, and | applied the different mdghpresented in this
chapter to build the distance matrices as an input to NNetrigtom. The results
showed a very good improvement using the relative Hammistadce (Figure
3.8), compared with the simple Hamming distance (Figurg, 3vhich is also
suggested by the plot in Figure 3.6. The NormS (Figure 3.8)NormD (Figure

4] am still puzzled why the combination of the best variantNofmS and NormD did not
produce an improvement, but worse, it depreciates thetsesul
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3.10) variants showed small improvements, as NormS brivgSino-Tibetan lan-
guages together, as well as nice small clusters for NigeigGand Afro-Asiatic
languages.

Of course, the next obvious question was if by combining tloenhs and
NormD, | will improve the clustering or, as the plot in Figueés suggests, | will
get worse results. It actually came out a NNet picture alndesttical with the
one obtained by using Hamming relative measurement, aeeihs the combina-
tion of both NormS and NormD somehow cancel each other. Wiy,h@w this
can be improved might be an interesting topic for future stig@ations. Never-
theless, the NNet phylogenetic analyses proved to be d¢ensisith my distance
measurements, even if | used a simplistic method to buil@étheologualistance
matrix (as in Section 3.2.2).
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Chapter 4

Good or bad data?

4.1 Selecting representative features

Obviously, the WALS dataset has much valuable phylogenetarmation, as
well as ‘noise’ from the point of view of evolutionary anaggss The question is
how to detect which of the characteristics are phylogerretevant. Are there
maybe features which are more stable than others all ovevahd? Are some of
them only regionally relevant? Are there any linguistidigas that are indicative
of the overall structure of a language? Can highly consisésiures also be ge-
nealogical representative ones? | have approached thesgans by performing
different methods.

Given any languagé and feature’, WALS assigns td. and F’ a valueF'(L)
— an integer between 1 and at most 9 — in case that feature meddbr L. For
the most cases (80%) where no value is assigned Fpi) := 0. Based on this
data, | will define a distance matrix describing the pairvdstances between all
pairs of languages. Given a finite s&t then anN x N distance matrixD is
a two-dimensional arrays with rows and columns indexed byelements inV,
containing the distances or dissimilarities, taken paenabetween any two ele-
ments of N. The entries ofD are denoted by)(L1, L2) whereL1, L2 € N. A
distance matrix is a symmetri€¢ x N matrix, containing non-negative real num-
bers as entries and in general zeros along its diagandl; L) = 0.

The preparations of the data set resulted in a selectiondbfiis®ance matrices
Dy for each individual feature (I excluded features 3, 25, 95, %7, 139, 140,

56
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and 141%), and one overall distance matriX for all features together. The goal
is to identify those featureB' that somehow harmonize with the overall distance
matrix. The idea behind this goal is to find out which featuaesbest predictors
for the overall similarities between languages.

To investigate the relation between an individual featérand the overall
dataset, | compared eadh- matrix with the overallD matrix. Based on the fea-
tures from WALS and a selectiah of languages that have a good data coverage,
| define the followingL x L distance matrices.

First, | define for every single featuré and any two languagdsl and2, the
distance matrix for this one particular featube:-(L1, L2) as shown in Equation
4.1. In words, the distance is set at two (i.e. the languageseally differ-
ent) when the languages are different and both are defingdifofeatures in the
WALS. The distance is zero when the languages are the santsémthnguages
are defined for this features. The distance is defined as oar ®ither (or both)
of the two languages is not coded for this particular featupeefer this definition
to a simpler definition (i.e. considering the cases with ailable data as either
all similar or all different) because | want to differengdhe cases for which there
is missing information in the WALS.

2 if F(L1) # F(L2)andF(L1), F(L2) # 0,
Dp(L1,L2)=<{ 1 if F(L1) = 0orF(L2) =0, (4.1)
0 else

Second, | define an overall distance matfiXor all features together. In this
matrix, the distance between two languages is computedborilye basis of avail-
able information. To achieve this, | denote Bythe set of all features and define
F(L) as the collection of all features for which data is available for language
L inthe WALS, as shown in Equation 4.2. Then, | define the nozadldistance
between any two languagéd and L2 as shown in Equation 4.3. In words, for
the distance betweehl and 2 only those features are considered for which data
is available for both languages (i.e. all cases wher¢L1, L2) = 1 are ignored).
Then, the distances for all these available features arensuwized, and divided
by the number of available features. This procedure assaéthe available data
in the WALS is completely used. For every distance betweemlamguages a
different set of features is used, depending on the availalibrmation.

F(L):={F € F: F(L) # 0}, (4.2)
_ D Fe(F(L) O F(Lay) PF (L1, La)

1This selection is explained in Section 4.3.
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4.2 Methods

4.2.1 Mantel's test

Any N x M matrix X (N the index set for the rows and that for the columns)
can be viewed as providing records regarding a collectioof experiments (mea-
surements) applied to candidates (objects) from &/'s®ividing M into two non-
empty disjoint subsetd/; and My (#M; > 0,#M, > 0, and #M, + #M, =
#M), itis natural to ask for the correlation between the resulitsined by per-
forming the experiments in/; and those obtained performing by the experiments
in M,. To answer this question, the first step is to derive fromXhe M, data
matrix X; and theN x M, data matrixX, corresponding dissimilarity (or dis-
tance) matrices, sal; andD,. The main idea is that if two rectangular matrices
contain concordant information, the distances deriveahfiftem should be signif-
icantly correlated. It is reasonable to ask, for examplegtiver genetic distance
is correlated with geographical distance.

One can not use a simple correlation coefficient becauseagesare not in-
dependent (e.g. the distance between two objdcend B is not independent
of the distance between objedtand another objeat’ becauseA is involved in
both). It was shown in [50] that, by calculating Kendalls Weffwient of concor-
dance among matrices, Friedmaytsstatistics, and the associatédvalue, one
can obtain a measure of correlation, day Now, | permute the rows an arbi-
trary number k of times within one of the two matricEs and X, and recalculate
the correlation coefficient®;, —, R;. If the original matrices had been corre-
lated, the disruption caused by the permutations shouldcesthe correlation
coefficient. The measure of significance is the number ofdithat the original
correlation coefficientg,) was exceeded by the permuted values. For example,
if one did 1000 permutations and only 1 of the resulting cokffits exceeded
Ry, this would give us a significance of 0.001. Conversely, & thatrices were
uncorrelated, there is no reason to assume that the peromstatould decrease
the correlation coefficient. They may indeed as well incegasHere, | use the
following variant of Mantels test:

Given the matrixX = (F(L))F € F,L € L, | construct for everyF’ € F
the extended matrigX | F') in which the Fs columiiF' (L)) L € L occurs twice.
| split this into the original matrixX' and the one-column matrig¢’(L))L € L.
Then, Mantels test is applied to the above defined overatugie matrixD and
the matrixDy . | used for my analyses the CADM (Congruence among distance
matrices) software [51], and special routines had to beemphted in order to
prepare the data for CADM (15 feature matrices per file plesaverall one for
each file), and also to extract the relevant information éthe output files.
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4.2.2 Coherence method

Next, | try to measuré for each of the feature matricés, corresponding to one
of the 141 features, its degree of coherence with the overatitix D. | propose
to do this by calculating the triangle coherence index fahe@ature matrixD
relative toD. To do this, | first define the excess of any two elemdntsl,; in
a setN, with respect to anV x N distance matrixD, relative to any element
L3 € N (Equation 4.4).

€.Z'CD(L1L2|L3) = D(Ll, Lg) + D(LQ, Lg) — D(Ll, LQ) (44)

The excess is, roughly spoken, the extra distance to belechbetween’,
and L, when the route is taken vihs, instead of taking the direct path from
to Lo. If Ly, Loy, L are the leaves of a weighed tree representing their distance
and if/ is the median of_,, Lo, L3 in that tree, the excesscp(LqLo|L3) of Ly
andL, relative toL; is twice the distance betweéandZ; in that tree (cf. Figure
4.1).

exc(L L IL )2
123

Figure 4.1: Excess value interpretation.

Based on that concept, th@&angle coherence inde\..;, inqe) IS then defined
as shown in Formulae 4.5. For every triplet of languabgd.», L3, the quotient
is taken of the excess relative to the overall matrimnd the excess relative to the
single feature matriXO . The triangle coherence index for a featétéhen is the
minimum of all these quotients. A larger triangle cohereimciex will indicate a
higher degree of coherence of a feature matrixwith the overall matrixD:

A coh—index(F) = sup(A € R>g : L1, Ly, Ly € L) (4.5)

2Thanks to Andreas Dress for suggesting and describing therence and rank methods.
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which implies
= excp(L1Lsa|L3) > X excp,(L1La|L3) (4.6)

My measure of coherence was first based on

€I'CD(L1L2|L3)
€ICDF (LlLQ‘LE})

Acoh—indem(P’) = min ( | Llu L27 L3 € L) (47)

but because there are too many cases when this value goeqdiosvto the poor

data coverage), a more appropriate measure was implemigedtion 4.8).

1+ ech(Lng\Lg)
1+ EXCpy (LlLQ‘Lg)

Acohfindea:(F’) = avg ( | L1>L2a LS € L) (48)

4.2.3 Rank method

Therankrky, (Ls) of alanguagd., with respect to a languade associated with
the distance matri@ is defined by:

rkr, (Le) = rky. (Ls) :== #{Ls € L|D(L1, L3) < D(Ly, L)}, (L1, L» € L).
4.9

In other words, for every element, | am counting the elements that have a dis-
tance measure relative g smaller or equal than the distance measure between
L, and L,. Metaphorically speaking, | am looking for the elementd @ at
least as good a friend df; as isL, [3, 25]. This map yields a new matrix, the
rank matrix:

RD(D(Ll,LQ)),VLl,LQ eL (410)

which is not necessarily symmetric, but has in general theeva along its di-
agonal. For example, the distance matrix in Table 4.1 wiltreasformed in the

0(4]|2
4101
4110

Table 4.1: Sample distance matrix

following rank matrix (Table 4.2).
Next, | consider for each feature, the sets of elements (languages) that share the
same feature value:

L(L,F)={L' € L|F(L) = F(L')} (4.11)
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Table 4.2: The rank matrix associated

Rank Matrix

Feature Value 1 Feature Value 2

Figure 4.2: This featureorrectlymaps to the rank associations (for L1) because
it groups together the L1’s best friend (L3) and L2 is moredipart.
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That means, that for every feature with possible values, and a set of lan-
guaged., | may obtain a maximum number of cluste¥swith various cardinality
for each grouping. Now, | am trying to map this clusters irite tank matrix by
measuring how well these clusters are identified by the raakix(Figure 4.2).

If the featureF’ fits well into the overall data structure encoded by the dista
matrix D, the relative ranksky(L') of the languaged’ in the subset (L, F')
should be significantly smaller for any givéne L than the ranksk, (L") of the
languaged.” in the complement \L (L, F') of L (L, F). Consequently, | propose
the following measure of fithess using the ranking procedure

IeL(L.F Tk?L L/
p(F):ZLZZLG(’) (L)

(A (4.12)
2

LeL

4.3 Conclusions

To test the three methods | decided to select the most datgddges from WALS,
and also choose one language per genus in order to have aigtrdazution of the
languages all over the world. Further, | also had to seleabaet of the available
features. From the 141 features in WALS | excluded featuneserning sign lan-
guages (139 and 140), the features that replicates datadnother maps (3, 25,
95, 96, and 97), and the feature dealing with writing syst€dd). Having the
ranked list of 150 languages (after this the number of datatpper language de-
creased dramatically), | randomly divided this in threeadats (50 languages per
dataset) to obtain a uniform distribution of the number dadzoints per dataset
(please note that even so, many languages had a poor datage)e

| run each of the three methods for each dataset and the raedglts are pre-
sented below, grouped by the methods (for lack of space,tbelfirst 10 ranked
feature numbers are presented).

Wichmann and Saunders performed a different analysis \wghsame pur-
pose [75]. Using their formula for calculating p-values giemented in [74]) for
each genus/feature dataset in WALS, and by averaging tladues/found for each
feature they generated a ranked-list of features whereatferdged) p-value de-
termines the rank-order of the corresponding feature mdeof its usefulness for
genealogical analyses (Table 4.6), cf. Equation 4.13 -, Avb®&rek = number of
possible values for a given features the number of languages in the genus, and
r = the number of times that the most significantly feature oecu

C(n,k,r)

o (4.13)

p(n, k,r) =
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Feature| Mantel | Feature
Number| Coefficient| Description
83 0.421 Order of Object and Verb
85 0.386 Order of Adposition and Noun Phrase
81 0.343 Order of Subject, Object and Verb
86 0.302 Order of Genitive and Noun
49 0.263 Number of Cases
88 0.239 Order of Demonstrative and Noun
98 0.238 | Alignment of Case Marking of Full Noun Phrases
51 0.237 Position of Case Affixes
50 0.234 Asymmetrical Case-Marking
102 0.231 Verbal Person Marking

Table 4.3: Ranking of WALS features using the Mantel method

Feature| Coherence Feature
Number| Coefficient| Description
11 0.505 Front Rounded Vowels
18 0.475 Absence of Common Consonants
73 0.447 The Optative
19 0.432 Presence of Uncommon Consonants
107 0.432 Passive Constructions
82 0.422 Order of Subject and Verb
6 0.421 Uvular Consonants
10 0.408 Vowel Nasalization
7 0.406 Glottalized Consonants
80 0.406 | Verbal Number and Suppletion
13 0.402 Tone
44 0.400 | Gender Distinctions in Independent Personal Prong

Table 4.4: Ranking of WALS features using the coherence aakth

uns
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Feature Rank Feature
Number| Coefficient| Description
11 1.306 Front Rounded Vowels
18 1.372 Absence of Common Consonants
83 1.637 Order of Object and Verb
85 1.804 Order of Adposition and Noun Phrase
107 1.835 Passive Constructions
82 2.007 Order of Object and Verb
130 2.025 Finger and Hand
73 2.069 The Optative
115 2.102 Negative Indefinite Pronouns and Predicate Negati
86 2.128 Order of Genitive and Noun
19 2.160 Presence of Uncommon Consonants
7 2.206 Glottalized Consonants

Table 4.5: Ranking of WALS features using the rank method

n/r

2.

i—maz(2,n—k(r—1)

C(n,k,r) :k<Z)Q(n—r,k—1,r+1)—

i=r

<(i _1) (lz) (Z) g (]:)Q(n ik — i,r)) (4.14)

Qn, k,r) =k" — i C(n, k,1) (4.15)

on

The ideal situation in this analyses would be that, irrespeof the method
used, the same features would appear highly consistenttwétioverall dataset.
The results however, in Table 4.7, showed no high correlatoetween the meth-
ods but at least they showed high correlation between tlzesgts for each method.

Because there is no complete consensus between the diffeethods®, |
can not draw any far-reaching conclusions about generalistemcy between in-
dividual features and the overall data structure of the WAHSwvever, for further
linguistic data collection it is important to get at leastoaigh impression about

what kind of features among the WALS data show a good comsigteith the

overall data structure. The following interpretations@oéderived by strictly de-
fined statistical tests, but by a manual inspection of therémed features from

3Based on conclusions from [22].
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Feature Numbef Feature Description
85 Order of Adposition and Noun Phrase
18 Absence of Common Consonants
90 Order of Relative Clause and Noun
88 Order of Demonstrative and Noun
11 Front Rounded Vowels
51 Position of Case Affixes
89 Order of Numeral and Noun
95 Relationship between the Order of Object and Verb
and the Order of Adposition and Noun Phrase
33 Coding of Nominal Plurality
87 Order of Adjective and Noun
86 Order of Genitive and Noun
81 Order of Subject, Object and Verb

Table 4.6: Ranking of WALS features using Wichmann and Sarssimethod

Coherenceg Rank
Mantel .22 .22
Coherence .65*%

Table 4.7: Correlations between the three methods in P@ansdSignificance p
< 0.001 are indicated with a star
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tel method

Mantel | Datasetl Dataset2 Dataset2
Datasetl 1 .0.671108566 0.687585822
Dataset? 1 0.731586636
Dataset3 1
Table 4.8: Pearson correlations between the results fatatesets using the Man-
Coherence Datasetl] Dataset2 Dataset2
Datasetl 1 0.901321099 .0.902387996
Dataset2 1 0.905746747
Dataset3 1

66

Table 4.9: Pearson correlations between the results faldtesets using the co-
herence method

Table 4.10: Pearson correlations between the resultsdatatasets using the rank

method

Rank | Datasetl] Dataset? Dataset2
Dataset]] 1 0.765369979 0.762146186
Dataset? 1 0.705553075
Dataset3 1
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the three methods

All three methods put various word order features high oir tia@king
(82=subject-word order, 83=0bject-word order, 85 = aditmsorder, 86 = genitive-
noun order, 88 = demonstrative-noun order). This agreetnemmteen methods
might be due to the fact that there are various features iM#ES about word
order, which are all more or less significantly correlatethweach other.

Besides word order features the rank and coherence methgde« to in-
clude the ones about the inventory of strictly defined kinfisansonants like
uvular consonants (feature 6), glottalised consonanguffe 7), the velar nasal
(feature 9), and also more generally, like the absence ofm@mconsonants (fea-
ture 5 and 18), the presence of common consonants (featural$8, both meth-
ods agree in ranking high features like: the passive (1@iflgdtional optatives
(73), front rounded vowels (11), and tone (13).

In the methods that | have presented to measure consistdraselnot used
any information about genealogical relationships. StWanted to see whether
consistency might be a good predictor for genealogicaticglahips. To test this
hypothesis, | constructed a sample of eleven families fleeWALS, taking three
languages out of each family. The choice of families and Uaiggs was com-
pletely driven by data availability. | wanted to know how Welparticular selec-
tion of features would be able to distinguish pairs of reldesmguages from pairs
of unrelated languages in this sample. To investigate ltbmystructed an overall
distance matrix for the 33 languages sampled on the basikdzta in the WALS
(I simply put O as distance if the languages were part of timeestamily and
1 if they belonged to different families). The distance nuas were compiled
using the method as described in Equation 4.3 above and trooted various
distance matrices based on a selection of the features. dedettion of features
was determined by the ranking of features as given by th@wsnmeasures of
consistency that | have discussed. For every method | subs#y considered
the most consistent 25, 50, 75 and 100 features, and cotestrdistance matrices
on that basis. As a control, | also considered the amount @ifedole data as a
ranking, constructing distance matrices on the basis ob#s¢ coded 25, 50, 75
and 100 features. In this way, | had sixteen different distanatrices for my test
sample of 33 languages. All distances in such a matrix wexe divided into two
groups: one group with all distances between pairs of reél@eguages and one
group with all distances between pairs of unrelated langsiag

| wanted to know whether the distances between related &geguare gener-
ally smaller than the distances between unrelated languageinvestigate this,
| used a t-test to determine the significance of the diffezelbetween the two
groups. It turned out that the two groups were significanitfecent for all sets

4Thanks to Michael Cysouw for analyzing and producing thectusions.
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of features considered. Still, there are clear differermg/een the various se-
lections. This can be seen by considering the t-test statistemselves (not the
significances). These t-test statistics are summarizedgaré 4.3. Selecting
features by available data (the dotted line in Figure 4.3¢gjsome sort of base-
line to compare my various methods again. The dotted lingssiaw and rises
continuously, though the slope flattens the more featueesa@msidered. This in-
dicates that | am able to get a better differentiation betwe&ted and unrelated
language pairs the more features | consider, though therasé& be a level of
differentiation that cannot be improved upon. Looking nawh& various selec-
tion of features, | see that the best 25 features as selegtid Imethods all show
a clearly stronger differentiation between related anelated pairs compared to
taking the best coded 25 features. Taking the best 25 feaftom the Mantel
method even gives roughly the same differentiation as gbnyenonsidering all
features together. Various of the other selections evemawepon this. This in-
dicates that by selecting a set of consistent features mssiple to improve the
recognition of genealogical relationships compared tg$irtaking all available
data.

10 4
g
2
'F -
’_." —— mantel
8 7 s —B— coherence
5 . —&— rank
'y - - - k- - - available data
4 T T T T 1
235 a0 5 100 Al

Mutiber of highest ranked features used

Figure 4.3: T-test statistic for the differentiation beemerelated and unrelated
pairs of languages for language distances as establistssddnted sets of features
on the basis of the ranking of consistency.

A more appropriate approach in order to detect ‘good’ phgtagdic features
would be to build the same 134 feature matrices (one per esthre). Instead
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of building the overall data matrix D from WALS, one can buiidjood phyloge-

netic matrix (variants of building this matrix might incledveighing each edge
between languages and internal nodes as 1, count the famidfiamily and gen-

era classification, etc.). Applying in the same way the ma@sharesented above
should result in a feature classification of how good theufiest map into the

phylogenetic clustering. Again, if one would be interesteteature consistency
from the geographical point of view, the overall distancérmaan be built start-

ing with the geographical coordinates (as described in@e2t4) (also available

in WALS) and calculate the geographical distance betweasguages.

Of course, | redid the entire analyses for the WALSX recodath.d As ex-
pected, the same ‘theme’ came out as good fitting to the ddatd, with some
exceptions from the new binary features (Yes/No) that ‘bliop compared with
the original ones.

| have performed additional phylogenetic analyses, inmt@ebserve the in-
fluence of selecting different sets of features, based o eexthod’s ranking. |
selected the set of 33 languages with the most data pointgpgdoby families,
e.g. there should be at least 2 languages per family and dt4rlasguages per
family. | produced the distance matrices associated witalecton of best 25,
50, 75, and 100 features using the relative Hamming measune(of. Section
3.2.1.1). The matrices were then used in NNet algorithm hadhtost interesting
outputs are presented below.

First, | analyzed the results obtained by using the best@edfeatures from
each method. All methods successfully recognized the eriungt of languages
from Nakh-Daghestanian and Trans New Guinea families. @&hk method (Fig-
ure 4.4) is failing to group the Indo-European family as astdu but amazingly,
it recognizes the Australian and Austronesian familiese Tiddle position in
the comparison with the other two methods might be explaatgal by the struc-
ture of the network, which is mostly unresolved. The coheeanethod, which is
ranked worst for the 25 feature selection by the plot in Feglu3, also produced
an unstructured network and has no improvements in theifitas®ns. On the
other hand, the Mantel method is producing a well defined odtand it is the
only one that clusters the Altaic languages together, asasgdartially the Niger-
Congo languages, while the Indo-European family formsanstrcluster.

As the plot in Figure 4.3 suggested, the coherence seleatithre best 50 fea-
tures should provide a great improvement. Indeed, as aebictFigure 4.7, the
Indo-European family has now a well defined cluster, the Aungsian languages
are grouped together, as well as the ones that belong to heSEharan and Aus-
tralian families.

The selection of the best ranked 100 features for the sane@ate method, pro-
duces a well structured network, with improvements reguaytlhe Altaic, Uralic,
Sino-Tibetan and Trans New Guinea families (Figure 4.8)vadheless, by us-
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ing all features (the method is not important anymore as #tasgt is the same),
the resulting picture fails to cluster the Australian, N8aharan, Sino-Tibetan
and partially Afro-Asiatic families, suggesting that tlast ranked features added
might contain noise or that they are just not phylogenepcagentative.

The phylogenetic results presented in Figures (4.4 - 48yshgood corre-
lation with the plot in Figure 4.3 and also indicate what lganally believed that
each method manages to pick up signals from features censiss, but these
signals have different meanings.



Chapter 5

Phylogenetic Algorithms

5.1 Phylogenetic reconstruction algorithms

5.1.1 A rank-based hierarchical classification
5.1.1.1 Introduction

The purpose of this algorithm is the phylogenetic tree retroiction from dis-
similarity matrice$. This is a well-known problem and many algorithms were
implemented so far [14, 67, 32], especially that and thi®iesusual situation, a
dissimilarity matrix obtained from data will in general rfwg ultra-metric or ad-
ditive; so it it has to béorturedto give a tree. In this case by torture | understand
methodologies of modifying the original distance matrig][4methods of choos-
ing best alternatives in cases of tie decisions [71], or gastplex algorithms in
order to obtain the desired results [12, 26]. A standard tasituster analysis

is to associate, to any distance matfx aLinnean hierarchyr = R(D), i.e. a
collection® of subsetsX;, X, ... of the taxa se$, such that

ANB #0= #(AUB) < max(#A, #B) (5.1)

for all A, B € X. The central idea of Linnean hierarchies, and the assonsti
with a partially ordered set, was used also by E. Haeckel nstcoct his rooted
phylogenetic trees from the given knowledge of the “natorder” of the plant

Al the algorithms presented in this chapter were consgmidbllowing suggestions from
Andreas Dress.

74
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and the animal kingdoms just seven years after C. DarwinighddiThe Origins
of Speciegcf. [24, 39]). The idea of deriving hierarchies from disganty data
was first introduced in the 1960's by A.F. Parker Rhodes aiMl Reedham [65],
as well as J.D Apresjan [5, 6]. In a remarkable way, this piace is not restricted
to the conditiond(z,y) = D(y,z) > 0 andD(z,x) = 0 for all z,y in a setX,
and it works for any such map from X x X in any given linearly ordered set.
They suggested to consider the collection

hp=hp(X) :={AC X |a,be Ax e X — A= D(a,b) < D(a,X)} (5.2)

of the subsetsl of X for which, for any elemeni in A, any other elemeritin A
is “closer” toa than any element € X outsideA and they observed that these
subsets always form a Linnean hierarchy.

| produced a method which associates an ultra-metric mtdran arbitrary
real matrix, by an iterative procedure and | detected theahthies from the rank
matrix. If the original matrix has no structure, the expedatétra-metric matrix
is trivial, and gives rise to a star tree. This method, indteses ranks matri-
ces. Why ranks? | do not have much faith in the precise valtiaglssimilarity
matrix, but | like to believe that the order of the these valigesignificant. The
rank methods used the dissimilarity values to build a nesgrer matrix (the rank
matrix), on which further analyses are performed. Rank puaghave played an
important role in statistics [48]. In [3, 25] it is describ#tkir utility in phyloge-
netic reconstruction. By its nature, the method that | sthkedicribe does not give
branch lengths, but only tree topology.

51.1.2 Method

The mathematics and many extensions are presented in [BB§ svmore recent
paper describes the utility and applications as well as tbgrpm that was imple-
mented to deal various situation [3]. One defines a rank matof sizem as an
m xm matrix of integers such that: consider théh row of R, for1 < i < m. The
entry R;; is required to be equal to the number of entdigg such that?;, < R;;.
With this definition of rank, every rank matrix (for which adyagonal entry
is not larger than any entry on its row) determines a rooted, tbut the cur-
rent implementation provides only the clusters (hierashfound in a parenthe-
sis format. Given an arbitrary real x m matrix D, one produces a rank matrix
R = R(D) by : R;; is the number of entrieB,;, such thatD;, < D,;. Usually, the
hierarchies obtained by this algorithm are poor, in the viwag they do not offer
a full description of the clusters. For example, for 4 olge&t B, C, and D, one
might obtain the following hierarchies, depending on thialcdistance matrix:
{A}, {B}, {C}, {D}, {A, B, C, D}. These hierarchies can not imply an objects
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clustering, less a tree. To solve this, the following alénre is proposed. While
associating the rank matri( D) with a dissimilarityD gives rise to a map

R:RYY L R(X):Dw R(D), (5.3)
any map
T:R(X)xRX)—R (5.4)
allow us to define a map
Dr : RRX — R¥** . R Dr(R) (5.5)

in the opposite direction. Obviously, one may reiterates¢hprocedures, thus
deriving a whole family of dissimilaritie®’ : X x X — R(Il = 0,1,..) from
any dissimilarityD € R**X, for all I € N,. The experiments show that these
iterations always run into a cycle, i.e. there exists a uagmuallest numbere N
such thatD? = D’ holds for somej € N. In my implementation | used aS;
the distance formulae from Spearmann and Kendal to cakthiatnew distances
between the objects (rows) in the matrix.

Dr(i,j) = > _(R(i,k) — R(j,k))’ (5.6)
k
1 N N
DT(Z,j) = mZZIZJ(G, b) (57)
a=1 b=1
where
+1 if R(i,a) < R(i,b) AND R(j,a) < R(j,b)
+1 if R(i,a) > R(i,b) AND R(j,a) > R(j,b)
I j(a,b) = < =1 if R(i,a) > R(i,b) AND R(j,a) < R(j,b) (5.8)
—1 if R(i,a) < R(i,b) AND R(j,a) > R(j,b)
+0 else

\

Tests also showed that iterating until the cycle (converggrs achieved pro-
duce much better results, because the hierarchies obtareedell defined and
structured. Amazingly, the results showed that the cycies leven a step of 1, or
a step of 4

Dl = D' or D = D4 (5.9)

but | could not find a proper explanation for thestep results. For example, in
Figure 5.1, the initial rank matrix constructed for four etfs is used, together
with Spearmann’s formula in Equation 5.6 to construct a n&tadce matrix,
which is again reiterated. In the last step of the iteratibve, distance matrix
produces the same rank matrix as the initial one, therefarecycle must stop,
concluding in a step-cycle of four (note that the derivedatise matrices will
always have 0 on the diagonal and they will always be symunjetri
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Rank Matrix Derived Distance Matrix
123 )| 4 0| 4 |18|20
2|14 |3 4 |0 | 18|16

—
4 (3|1 2 18|18 | 0 | 2
4 (3|2 |1 20016 2 | O
1/2 ]3| 4 4 (21|20
2143 23|16
—
4 (4|1 2 21|23
4 (3|21 20| 16
1(2 4|3 0 18 | 18
2143 20| 16
—
3|41 2 18|20 0 | 4
4 (3|2 |1 18|16 | 4
1(2 4| 4 3 | 21|23
2|14 |3 0 |20| 16
—
3|4 /|1 2 21| 20
4 (3|2 |1 23| 16

Figure 5.1: Iterations using Spearman’s formula. Afteredations, the process is
entering in a cycle.
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Nevertheless, it is actually worth analyzing each cycletpat, as the evolu-
tion of size and correctness of the hierarchies might shtsvesting information.
In some cases, there might be the situation that even adtatiitg, the hierarchies
might not be fully descriptive.

That is why, I introduced a new improvement, a divide-andegeer approach.
Mainly, after convergence is achieved, | am looking onlyhe kargest two dis-
joint hierarchies, let say/; and H,, and disregard the other ones. That is also
because, and extensive tests proved it, one should havegeceafidence in the
largest hierarchies, and be at least sceptical about thi enes. Then, for each
of H, and H,, | can select the objects that form each hierarchy (remeiagr
they are disjoint), and restart the entire algorithm forheaicthem, by construct-
ing from the original distance matrix, the distances matriassociated t8; and

H, respectively (cf. Figure 5.2).

| 02345670 [Gasessn

] e e @6l e o]

4

{1

Figure 5.2: Divide and conquer search for hierarchies.

5.1.1.3 Applications

In this section | present an interesting example of a ‘pnolatec’ distance ma-
trix, and | compare the results from the rank algorithm withes phylogenetic
reconstruction algorithms based on distance matrices.irffhg distance matrix
is based on the picture in Figure 5.3, in which the distan¢edwen the two clus-
ters{A, B, C} and{a, b, ¢ is 2, which is equal with the distance betweémand
C, ora andc.

A B C a b ¢

Figure 5.3: Sample input data for algorithms comparisons .

Then, the associated distance matrix is the one showed Ie %ah as the length
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A|lB|Cla|b|c
A|l0|1|2|4|5|6
B|1/0[1|3/4|5
C|2|1|/]0(2|3|4
al4|3]2|0(1]|2
b|5(4|3|1|0]|1
c|6|5[4]2|1]|0

Table 5.1: Distance matrix associated

of the path between the points

Using the Neighbour-Joining, UPGMA and DQuartets algonghmplemented
in SplitsTree package, | obtained the following picturespthyed in Figures 5.4 -
5.8.

Figure 5.5: The result from the UPGMA algorithm.

Of course, this is not what | really wanted. Even if NJ (Figbré) showed the
reality, | am more interested in detecting the clusfgksB, C} and{a, b, ¢ (of
course, one can still interpret the NJ result as two clust&rse DQuartets (Figure
5.6 - 5.8) is not showing the correct clusters even if vari@alaes of the threshold
parameter are used. The UPGMA algorithm (Figure 5.5) im&spcorrectly the
problematic distance matrix, but somehow the picture sedigtgrted (this algo-
rithm proposes only tree topology, not the branch lengthise rank algorithm is
somehow in the middle, as it correctly finds the, B, C} and{a, b, ¢ clusters
but as | mentioned, the algorithm does not make any assungatiothe length of
the branches, but only on the typology (Figure 5.9).
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Figure 5.6: The result from the DQuartets algorithm.Thoésé= 0.0.

Figure 5.7: The result from the DQuartets algorithm.Thotdsi= 1.0.

Figure 5.8: The result from the DQuartets algorithm.Thotdsi= 2.0.

c

Figure 5.9: The result from the rank algorithm.

80



Chapter 5. Phylogenetic Algorithms 81

5.1.2 A Distance-Quartet Puzzling algorithm

Given a distance matrix, it seems reasonable to expectibawb species with the
smallest distance will have diverged most recently. In toldli the next smallest
distance in the matrix should indicate which two speciesmjed just before that,
and so forth. For example, if speciasndb are the close$tand speciea andc
are the next closest, the conclusion would be that specislb diverged most
recently, and that an ancestor of these two diverged fromiaspejust before that.

This clustering approach can be used for phylogenetic @eenstruction.
Once the two closest species have been identified, one caredké distances
between their virtual ancestor and all the remaining spgecié speciesa and
specied are the closest and speciess their ancestor, then one can define the
distance between that ancestand any other speciesusing one of the follow-
ing formulae:

Din(, ¢) = min(D(a, c), D(b,c)) (5.10)
Dypar(x,¢) = max(D(a,c), D(b,c)) (5.11)
Daeg (2, ¢) = %(D(a, &)+ D(b,¢)) (5.12)

The algorithm using (5.10) is called ‘nearest-neighboust@ring’ or ‘single
linkage method’, the one using (5.11) is referred to as Hest-neighbours clus-
tering’ or ‘complete linkage method’, and (5.12) is oftedl@a ‘weighed pair
group method using arithmetic averages’, or WPGMS [44].

5.1.2.1 Distance-Quartet Puzzling

Given a phylogenetic X-tré€ and four leaves, b, ¢, d such that exactly one edge
in T separates, b from ¢, d, the length of the unique internal edge of the induced
{a,b,c,d}-Treeis given by

wr(abled) = = (Dr(a,d)+ Dyp(b,c) — Dr(a,b) — Dr(c,d)) (5.13)

N~ DN~

(DT(G, C) + DT(b, d) — DT(&, b) — DT(C, d)) (514)

whereDr(x, y) denotes the sum of edge weights on the path that connextd
vy, z,y € X.

2This pair is often named eherry.



Chapter 5. Phylogenetic Algorithms 82

Thus, given a not necessary tree-like distance D, this sigde consider the
number

wp(abled) = %(max(D(a, ¢)+ D(b,d), D(a, d)+ D(b, ) — D(a,b) — D(c,d))
(5.15)
as a weight of the quartet treé|cd relative toD as depicted in Figure 5.10.
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Figure 5.10: Weight calculations for a) tree-like data ahddn tree-like data.

5.1.2.2 Linkage algorithms for weighed quartets

| now consider
Winaz(ab) = max{w(ab|cd) | ¢,d € X \ {a,b}, ¢ # d}, (5.16)

that denotes the maximum weight of all quartets separatiriy feom any two
other elements. Now, the procedure is continued as folldinst, one finds the
pair {a, b} contained in the quartet with maximal weight.

(a,b) = arg max{W,,a. (zy)} (5.17)
(z,y)€X?
Then, assuming that the pair, b) forms a cherry in the phylogenetic X-tree
that one plans to construct, one collapses the leaaeslb into one elemenfa, b}
and update the weights according to one of the formulae:

min(w(ac|de), w(bc|de)),
w({a,b}c|de) € ¢ max(w(ac|de),w(bc|de)),

(w (5.18)
avg(w(ac|de), w(be|de))

For whatever formula is used, one can now replace the twe$ay only one
of them and define its distances to the remaining leaves asated in equation
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5.18. The algorithm subsequently defines new clusters okteand distances,
until only four leaves are left. For these four leaves, ongoskes the quartet tree
configuration with the highest weight among the three pdgs#s. Then, one
builds the tree based on the information saved every timafanas deleted. The
three variants produce, in the worst case, three differeast but finding the same
cluster in at least two of them, will suggest that this clubtes some phylogenetic
relevance. Of course, this conclusion will be more conwviggf it is found in all
three trees.
Another variant is to build the weighted system as

Waum(ab) == > w(abled) Va,be X;a #b. (5.19)
c,de);\ia,b}

and to find the pair (a,b) that has the largest weight. For guate procedure,
one can choose one of the three alternatives (5.18) and ceripga,,(a't’) after
performing the update, or just use

o Weum(a, ¢)
Weum({a, b}, ¢) := max <Wsum(b, c)) (5.20)
The other parts of the algorithm (collapsing of cherriesta@e reconstruction)
remain unchanged. One can explore which variant of the iéfgorshould be
used. Thus, the analysis of the phylogenetic trees obtdipegplying different
variants on the same data set might be of interest in phyktgeanalysis (e.g.
checking the Molecular Clock Hypothesis [53]).

5.1.2.3 Algorithm

In the algorithm, one keeps track of the pairs later formimg ¢herries. Given a
setX = {a, b, c, d, e, f of taxa and a distance matrix on X, we compute the
phylogenetic X-tree as follows:

If (a,b) is the pair to be collapsed infa:, b}, one renames$a, b} to a, push
b onto the stackStack,...ca Of €lements removed, and puslonto the stack of
pairs Stack,qirs- Next, if the pair(d, e) is to be collapsed intd, the stacks con-
tain: Stack,emovea = €, b @andStack,.;rs = d,a. Whenever an element is pushed
onto Stack,emoved, it IS also deleted from the initial data set. At the last sbép
this part, one remains only with four elements: a, c, d, andldf starts with the
backtracking phase (Figure 5.11 ) (tfc|df ) forms the quartet configuration with
the largest weightv(ac|df), one first pops the stacks ¢— pop(Stack emoved)
d — pop(Stack,.;,s)) and replaces the ledfin the already constructed phyloge-
netic X-tree by the cherryd, e}. Analogously, the leaf: is replaced in the last
step by the cherrya, b}.
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Stack_removed: e,b Stack_removed: b
a Stack_pairs: d,a H f Stack_pairs: a
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Figure 5.11: Backtracking phase for the phylogenetic X-neconstruction (Al-
gorithm 1, lines 14-19) given a sét = {a, b, ¢, d, e, f} of taxa.

5.1.2.4 Time and space complexity

| now give a detailed analysis for the time and space comiyiexithis Distance
Quartet Puzzling algorithm.

Given a setX of taxa, there exist (") quartets. Therefore, there &€7)
weights to be computed (Algorithm 1, lines 1-5) that all hawvbe touched in the
second loop (Algorithm 1, lines 6-8). The third loop (Algbm 1, lines 9-16) is
executed X | — 4 times. In thei — ¢h iteration, the computation of the pair with
maximal weight takeg*'J"*") steps, the number of pairs of remaining taxa in
X. The operations in Algorithm 1 lines 11-14 take constangtirim Algorithm
1, line 15 the update procedure (Algorithm 2) for weights o&dets containing
a can be performed i@'X‘;"’l) steps. The reconstruction of the phylogenetic X-
tree (Algorithm 1, lines 18-25) can simply be performed mehr time. Hence,

the overall time complexity is:
|X|—4 . .
| X | X|—i+1 | X|—i—1
Tpissg = O (4 +; 5 +c + 3 +n
= O(n*)

The overall space complexity 3(n*) due to the storage of the weights of all

3(1%1) quartets.

5.1.2.5 Applications

| applied the DistQ algorithm on a distance matrix cons&dcas in Section
3.2.1.1for 12 languages grouped in 6 families (2 languagefamily). | processed
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11

15
16
17
18
19
20
21
22
23
24

25

input : Distance matriD, set of taxaX
output: Phylogenetic X-tree

forall {x,y,v,z} € (}) do
w(xy|vz) < CalculateWeight  (xy|vz)
w(xv|yz) < CalculateWeight  (xv|yz)
w(xz|vy) < CalculateWeight  (xz|vy)

end

forall {a,b} € () do

| computew(ab)

end

for i — 1to #(X) — 4 do
(a,b)  argman, yex {W(xy)}
X — X—{b}
Stackremoved < PUsh (Stackremoved, b)
Stackpairs «— push (Stackpais, a)
a — CollapsePair (a,b)
w — UpdateWeights (a,b|X]y)

end

*V ={ab,c,d,u,v}, E={{a,u},{b,u}, {c, v}, {d,v}, {u,v}}*
(ab|cd) « arg maxw,v,zex{w(xy |vz)}

tree — treeFromQuarted(ab|cd)
for j «— #(X)—4to1do

y <~ Pop (StaCkremoved)

z — pop (Stackpairs)

cherry «— formCherry (y,z)

tree

— replaceTreeNodeZwithCherry (tree, z, cherry)
end

Algorithm 1: Distance quartet puzzling algorithm.
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input : Taxaa, b, data setX and weighted system
output: Updated Weights

1 forall z € X \ {a,b} do

2 | forall y,z € X\ {a,b,2} do

3 w(ax|yz) < UpdateFunction(w(bx|yz), w(ax|yz))
4 where UpdateFunctioa {min, maz, avg}
5 end

6 end

Algorithm 2 : Update Weights (a,pbX | w).

the matrix with the DistQ variants explained in Formulae85(dsing minimum),
and in Formulae 5.1.2.2, and the trees obtained are depictéidure 5.12, and
Figure 5.13 respectively. Compared with the results obthiby using the NJ
algorithm (Figure 5.14) on the same distance matrix, thpustof the two algo-
rithms bear an obvious similarity to each other.

This algorithm as well as the NJ correctly clusters the |laggs from Indo-
European, Altaic, Australian and Nakh-Daghestanian fasiilwhile the same
problem for Austronesian and Afro-Asiatic families is enntered by both algo-
rithms. Interestingly, the DistQ algorithm has nicely ¢ared the Indo-European,
Altaic and Nakh-Daghestanian together, while NJ placedrite-European fam-
ily opposite to the other two. Note that DistQ will always piade binary trees
(because using the ‘cherries’ methodology) and it does smiirae any informa-
tion about the length of the branches as the output that geritlim produces is
just the simple tree Newick expression (without lengths).
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Figure 5.12: The result from the DistQ algorithm using ti@imum weighvari-
ant.

Indonesian_Austronesian

1.0 ArabicEgypligh_Afro_Asiatic

Kayardild_Australian [ o Maor_Austronesian

Mangarrayi_Australian , %

o

Hausa_Afro_Asiatic

[French_Indo_European | 'i
|Eng|ish Indo_European |

B
[Turkish ic] ® |Lezgian_Nakh_Daghestanial
Hunzib _Nakh Daghestanian

Evenki_Altaic
Figure 5.13: The result from the DistQ algorithm using gfhabal weightvariant.
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Figure 5.14: The result from the NJ algorithm.

5.2 The entropy algorithm

5.2.1 Description

Considering a system S consisting of a finite number of subsyswith finite
state spaces;, .., 5, and an assignment of an energy E(s) for each global state
s = (s1,,8,) € 51 x .. x S, of the systenyt, the associated partition function

O(T) = 0p(T) == > _exp(—E(s)/T) (5.21)
sES
and the average energy of the system
_ Y oses E(S)exp(—E(s)/T)
o(T)

can be computed in a number of steps that grow linearly withitin a constant
depending on the tree-width of the associated interactistem (cf. [6]).
Given:

E(T) : (5.22)

¢ afinite alphabet/, a dissimilarity map

D=UxU-— Rsy:(a,3) — D(a, ) (5.23)
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with
D(a,a) =0, D(a, B) = D(B, ) (5.24)

e afinite setX C UY of aligned sequences and an X-tiEe= (V, E), i.e., a
finite tree with vertex set V and edge set E without verticedegfree 2 for
which X coincides with its leaf set

VI(T) ={veV:#{ec E:vece}=1} (5.25)

e andamap): X— > U.

Then, one can consider the syst8hwhose state space is the set of all extensions
¢ : V— > U of ¢, and associate, to any sughits internal energy

E(p):= > D(p(u),¢(v)) (5.26)

{uv}eFE

Invoking concepts due to Boltzmann, one can then estimatguhlity of the
treeT relative toy by its average energy

E(w,T)=EW.T)r =Y E()p(y ZE 2 EW)T) (5 o7)

@p(T)
or, as well, by the closely related entropy

entr(v, T) = entr(v, T)r = Y _ =In(pr())p1(¢) = In(®(T)) + E(, T)/T)

%2}
(5.28)
of the probability distribution

p=pr = (pr(p)), = e:cp(—qg(ng,)T)/T) (5.29)

Remarkably, using a simple recursive dynamic programmahngise (based
on the fact that, after all, a tree has tree-width one), tieses can be computed
algorithmically in linear time relative t¢: X, with a constant depending gal?,
cf. [5]. So, considering a family oV mapsi, , vy, : X— > U (corresponding
to an X-labeled family of aligned sequenceslir), one can associate to this -
and compute for every X-trég and everyl’ € R~ - the sum

N
>_ B T)r (5.30)

It is this sum that | suggest to use as a measure of fit.
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Using the approach presented above, | can now compute thiéimgsuanti-
ties E(T)x and®Z.. To this end, | define maps

™ - {1727 7Z} xU — R>0 : (]7 Oé) = Wi(jv Oé) (531)
and
0; - {1727 7Z} xU — R>0 : (]7 Oé) = ai(jv Oé) (532)

foralli =n,n —1,...,1 (anti-)recursively as follows:
Fori :=nl putm, := 1 ando, := 0 and assuming that;,; ando;; have been
defined already for some< n, | put

Wi(j> Oé) = 7ri+1(ja Oé) (533)
and

Ji(j> Oé) = Ui+1(ja Oé) (534)
forall j € 1,2,...,i — j(:) while, for j := j(¢), | first define maps; andcs; from
U x U into R-q andR, respectively by

i (a, B) = mip1(J, @) X w1 (4, B) x exp(—=Dji1(a, 8)/T) (5.35)
and
oi(a, B) == oi1(j,a) + 0ip1 (i + 1, 8) + Djia (e, B) (5.36)

that | used to define the required quantitie§/, «) ando;(j, ) distinguishing the
cases > k(i.e.i+ 1 € V;)andi < k. Incase > k| put

mi(j, ) = m; (@, (i + 1)) (5.37)

and
oi(j, ) := ol (a,0(i + 1)), (5.38)

in casel < k, | put
mi(j,0) =Y m(a,0) (5.39)
3

and

0i(j,0) =Y _ o7 (a, B)mi (e, B)/mi, @) (5.40)
3

The formulae presented previously allow us now to conclbde t

oL(y) =Y m(l,) (5.41)
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and

E@W, T)r =Y o1(1,a)mi(1, ) /L () (5.42)

must hold.
In other words, | can compute these two quantities by a segueinaltogether

2a(n—k—1)+(k—1)(2a®> +a—1)+(k—1)(2a*+2a)+3a—1,a = #U (5.43)

summations and products over functions defined.itNow | would like to sketch
some implementation details of the algorithm. Assume thatfollowing num-
bering of the tree nodes holdis=1,2,....,nandV; =k + 1,k + 2,...,n and for
vi e {1,2,...,n — 1}, 3 exactly one verte¥ = j(i),j < i, with{j,i + 1} € E.
The example tree in Figure 5.15 illustrates this numberomyention.

Figure 5.15: Tree encoding sample.

| associate with every nodea corresponding row in arrays

m:1,2,..,nxaando:1,2,...nxa
At the initial step,r is filled with 1-s andr with 0-s. Arraysr serve for “accumu-
lation” of exp(— K E') ando for “accumulation” of E.
| have to compute

O(x | T,K) =) exp(—KE(X)) (5.44)

X
and
> E(X)erp(—KE(X)) (5.45)
X

To this end, | “remove” nodes from the tree (and correspamndows from arrays
7w ando) sequentially, beginning with node By removing of the node + 1, |
make the following update of the array (for instancg,
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[ wli+1,ay] @li+1,a] ... 7i+1,a,] ] =
iy ) wliyon] o0 T[H, ) \

i), en]l  w(i)hea] ... w[i{i), o] !
7|2, ] Fr[ﬁ.lnz] e T2
| w1, o] r[lieg] ... w[liag] ] /

(o 8) = wli + L] = 7(j(7). 5] * exp(-K D{a. 3))

!

wlili), el =3 xla, 3)
3

7t 0] alt,ag] ... w[hoy]

wli(i),aq] wli(i).aq] ... #wli(i), e,

T[2, ] Fr[ﬁ.lnz] sui mByan]
| w[lai]  x[l,az] [l 4] |

Figure 5.16: Update process overview. Each internal nedkei$ used to update
its parent. Same procedure is applied to the sigma matrix.
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After each step one goes one row “deeper” in the above matrknalogues
manipulations have to be done with the arrayoo. It follows from the above
considerations that at the end of the whole procedure onetiea-th row ofr
ando; these rows then are used to compute the averaged energy

Op(w) =) 7(l,a) (5.46)

(%

E@,T)x =Y _o(la)r(l,a)/@k (1) (5.47)
The algorithm is implemented in QALD software and can belgased for
any given tree and sequences. Attention must be payed orx#oe @rrespon-
dence between the number of leaves in the sequence file andriizer of leaves
in the Newicktree expression

5.2.2 Applications
5.2.2.1 Analyzing Dunn’s paper

In this Science paper [30], Dunn et al. used 120 binary gratcaldeatures
(Yes/No) in order to :

e check the phylogenetic information contained in thesaufestfor Oceanic
languages

¢ weigh and use accordingly the most relevant features inr dodéetect the
genealogical relationships for Papua New Guinea languages

Itis somehow similar to my approach, as they first produce>@mam-likelihood
analysis of the known data and the traditional tree, and theigh the ‘best’
features obtained for another language family. The presesigorithm produced
the following most relevant features (Table 5.2), whileittagproach leads to
the results in Table 5.3 with the Pearson s correlationfeneht between ranked
features ofr = 0.880014.

3The Newicktree expression is automatically converted to the intemnatbering convention
explained in Figure 5.15.
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FeatNr

FeatDescr

97

VS Intransitive Clauses

59

S Prefix marking

61

A Prefix Marking

44

Decimal Numerals

14

Article-Noun Fix Order

66

Verb Variation ClauseType

67

Verb Variation Person

12

Definite Or Specific Articles

98

Verb Initial Transitive Clauses

52

Postpositions

85

Verb Classifiers

35

Possessive Classifiers

41

Marked Possessor

13

Indefinite Or Non-Specific Articles

29

Plural-Marked Noun

Table 5.2: My list of best features

FeatNr FeatDescr
97 VS Intransitive Clauses
59 S Prefix Marking
61 A Prefix Marking
66 Verb Variation Clause Type
67 Verb Variation Person
98 Verb Initial Transitive Clauses$
50 Oblique Case Marking
83 Reflexive Morphology
74 Recipient Object
44 Decimal Numerals
35 Possessive Classifiers
52 Postpositions
29 Plural-Marked Noun
12 Definite Or Specific Articles
14 Article-Noun Fix Order

Table 5.3: Dunn’s list of best features

94
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5.2.2.2 Detecting the best tree for a sequence file

The algorithm can also be used on the opposite directiorerGavset of trees and
one alignment, the algorithm tries to match the sequenceadb tree, and there-
fore detects the ‘best’ one. An illustrative example of tviffedent tree topologies
is presented in Figure 5.17. If the alignment from Table 5.4nalyzed together

A — A

— B

- — B C
e
— 1)

— 1

—F —F

Tree X Tree Y

Figure 5.17: 2 different tree topologies.

with these two trees, it is clear that Tree Y is a better fittimghis data as both

WELINDN

@]
NN R R
LSS

3

Table 5.4: Sample data set.

column 1 and column 3 in the table support the sphtB,C} vs {D,E}, while
column 2 induces the spHtA,B} vs {C} and{A, B, C} vs{D,E}.

5.2.2.3 Detecting the distances between trees

A new and interesting idéaeven if not completely tested, was implemented to
discover the distances between trees, meaning how diffdistant are two trees ,
with respect with their topologies. Having two trees T1 a2ddnd their data sets

4Thanks to Séren Wichmann for collaborating on this idea.
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D1 and D2 (I assume here that the trees ‘perfectly’ fit to tdaie), | propose a
new distance measure between trees as shown in Equatian 5.48

dist(T1,T2) = Entr(T1, D2) + Entr(T2, D1) (5.48)

Therefore, having the trees topologies in Figure 5.18 asi tferfect data sets,

T T2 T3

Figure 5.18: 3 different tree topologies.

D1 for T1, D2 for T2 and D3 for T3 respectively as shown in TabIg | will

D1| D2 | D3
Al 1|12
Bl 1|11
cil1|2 )1

Table 5.5: Data set

obtain the following distances between trees as presentéahie 5.6.

dist(T1,72)| 1.00045
dist(T1,73)| 1.00045
dist(T2,73)| 2.00013

Table 5.6: Distances between trees

5| generate the ‘perfect’ data set by supplying the necessalnmns to match each cluster in
the tree topology.
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5.2.2.4 Future improvements

The algorithm can be improved for future research. One daaWios the impos-
sibility of dealing with missing data. This might be solveda simplistic way
by supplying the universal missing symbols (e.g., “?”, ‘With all the possible
values found in the corresponding column of the alignmantare complex, by
applying specific mathematical procedures [54]. Anothgrromement might be
achieved by performing statistics on the features enexgikges, and/or on each
feature values distribution. The distance measuremergeba trees might be
improved if specific details about the trees and the alignrasnprovided. Char-
acter distance matrix can be incorporated in the algorithmd, this will provide a
general valuable procedure for various datasets.

Nevertheless, | believe that this algorithm, even as sirapli is, might pro-
vide deep hidden information about a data set and the phy&igetree associ-
ated.
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QALD software

Most of the analyses and methods described in this thesis weslemented in
a software package called QALD (Quantitative Analyses ofuistic Data) that
interacts with data from both the original WALS and the resb®ALSX. Us-
ing the MySql engine (Appendix 8.1) [1], appropriate comsvens of the data
were made for an easier interaction between the Visual Seiironmentand
the databases. The aim of the QALD package is to be a tool fibr detabase
interrogation and phylogenetic analyses of the data coadkin the WALS data-
base. Moreover, QALD offers various algorithms for datalysia, classification
of languages by family or geographical location, and methiod selecting the
most informative features. The QALD software is availaldeastand-alone ver-
sion, and can be downloaded frditip://lingweb.eva.mpg.de/phylogenetictools/

It was implemented in Visual 6.0 and it uses OpenGL functions for graphi-
cal display. It is a Single Document Interface (SDI) projggte and classes were
created to deal with various issues:

entropy algorithm (CEntropy),

WALS analyses (CWalsDB),

MySaql interaction (CMySqlMap),

graphical manipulation (CBody3D, CVertex3D).

Lvisual Studio 6.0 offers a friendly user interface to pragnaing in VisualC, Visual Basic,
Visual Java, as well as in-line help for predefined classes/arious projects types.

98
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In this way, the source code became very well structured asglt® be integrated
if required, in other software implementations. Graphioahipulations are a new
set of features to modify a tree by using the mouse, while thpy algorithm
(see Section 5.2) can be applied to the trees. Because iing asDocument-
View architecture, all the graphical elements are savetierCDocumentlass,
while the actual drawing operation is implemented in @eDrawfunction from
CViewclass, by performing the necessary checking on the docueiemients,
thus allowing real-time updating of the graphical elemenfthis approach per-
mits easier implementation of functions likinda Save Print or Modify Tree
Many of the graphical ideas implemented here were actualty gf the author’s
university thesis [2].

6.1 Loading, displaying and modifying tree struc-
tures

As shown in Figure 6.1, the graphical user interface (GURhef software con-
sists in a display/modify window, a set of utility buttonspliays in a left toolbar,
menus, as well as dialog boxes to set parameters, run th@dsedind display the
results. All the buttons have correspondences in menushanttats are also pro-
vided. The drawing area is used to display the tree (loadwd file or obtained
from phylogenetic algorithms), as well as modifying theragrically (by mouse
action). Using then th8ave tredoutton, one can use the modified tree for further
investigation.

The graphical drawing is not a very esthetically one, bus ibme of the few
implementations to display, modify (by mouse action) anetghe trees using the
‘Newick’ tree expression described in
http://evolution.genetics.washington.edu/phylipickwoc.htm] or as exempli-
fiedin 6.1.

((Finnish, Hungarian), (Romanian, (Italian, (Spanish, Portuguese))));
(6.1)
Nevertheless, converting such a simple parenthesis famaagraphical represen-
tation of the tree implies some preprocessing steps (AlyorB).
This implementation deals with two major problems:

e construct the tree structure based on the tree expredRead{reeFile, An-
alyzeTreeExpression

e assign the correct coordinates of the graphical elemeatd,can be dis-
played and allow mouse input modificatioi®@a{culate TreePosition Many
tree representations will not fit in a user screen (as thelszdo be large
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sy HEH

w Modfy  Minimum Energy dlgorithm ~ Help

ODezHE =1k
|$J |
]
ﬂ%
N9
%
N8
NE N7
|Finni5h |Hunaarian Romanian | Italian |Snanish |Po|‘tuuue55& 3
m B

Figure 6.1: Main user interface of the QALD software.

input : The file name that contains the tree expres§i&tring
strFileName
output: Tree structur€€TreeNodeyTreeRoot

1 strTreeExpression = ReadTreeFile(strFileName)
2 gTreeRoot =AnalyzeTreeExpression(strTreeExpressipon, 0
3 gTreeRoot = CalculateTreePosition()

Algorithm 3: Conversion from tree expression to graphical elements.
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enough in order to be able to distinguish the structure anuddify it),
so scroll bars (both horizontal and vertical) were necdgsarplemented.
This implies more calculations of coordinates (especiafiytheselectop-
eration) but unfortunately complete reliability tests aeot performed?

While in the functionReadTreeFilenly a string analysis is performed (based on
identifying the node separators, e.g. comma sign, left &t signs) to detect
the leaves and assign them unique ID-s. In contrastAtiedyzeTreeExpression
routine is a more complex one. This is a recursive functioddtect the actual
internal structure of the tree, e.g. the parent nodes arthiiidren (an illustrative
example is presented in Figure 6.2). Before calling thiscfiom for the first

input : The tree expressio@StringstrTreeExpression the level in
the treeCint nLevel
output: Tree structure€€TreeNodgTreeRoot

structureListPair = FindParanthesisPair(strTreeExgioes

strUpdatedTreeExpresion strTreeExpression

forall pairs € structureList Pair do
strUpdatedTreeExpresion = ReplacelnString
(strUpdatedTreeExpresion, pairs, nextinternalNode)

5 gTreeRoot = InsertParentNode(pairs, nextinternalNode)

6 nextinternalNode— nextinternalNode + 1

7 end

8

9

A W N P

nLevel— nLevel + 1
AnalyzeTreeExpression(strUpdatedTreeExpression, &l).ev

Algorithm 4 : Building the tree structure.

time, the structurgTreeRoots initialized as a node of the typeot with all the
leaves as its children (cl.evel Oin Figure 6.25. In the first step, cf Algorithm

4, line 1, a list of current replaceable pairs are detecteanff samplef,H and
S,Pare found). These pairs are replaced_evel 1with the internal nodedl6
andN7 respectively (the next available numbering after inclgdime leaves). By
replacing | mean the search in the tree structure to find blethents to be re-
placed, find their common parent (on this level, their pavahite theroot), and
replace theoot pointers to these elements to a pointer to the new elemerd to b
inserted, while the new element’s pointers to the childreald be inherited from

2|f scrollbars are used, the drawing must be updated withahect coordinates in order to be
able to recognize the correct selection point (the pointrevtige left mouse click was performed).

3ThenLevelvariable is saved in thigee structureand it will be used in the assigning of graph-
ical coordinates to the nodes.
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the above parent, th®@ot in this case). This is done until all the pairs on the
current level are replaced, then thieevelcounter is increased (Algorithm 4, line
8), and a new call to th&nalyzeTreeExpressidanction is made (Line 9) with
the updated tree expression. This procedure continuetbatg are no more pairs
found in the continuously updated tree expression, withi¢hgark that before the
end, an unique ID is also assigned to thet, as in Figure 6.2 th&l101D.

((F,H),(R,(L(5.P)))):

I I I I | I Level 0
F HRI S P
|
N6 N7
{Nﬁa{Rs{I’N?}}}; Level 1
F H R : I S P
NS
(N6,(R,N8)): Nrf'_l N7 Level2
F HR I S P
(N6.N9): N6 Level 3
I
F
N10; N6 - Level 4
I
F

Figure 6.2: Building trees from string expression.

The definition of theCTreeNodeclass is described in Appendix 8.3. It is de-
rived from classCObjectfor better serialization (save/load) operations. In the
drawing, red squares indicate the modifiable objects, éginternal nodes that
one can select, move or delete in order to obtain the dessedts. These actions
can be performed by selecting the appropriate buttons defiyganel Select and
MoveandSelect and Delejeand by choosing the internal nodes that must support
the operation. Please note that the usual behavior is toprdA selection of an
internal node together with a specific operation will imgiat the same operation
will be applied to the entire subtree that is dependent orchlosen node, e.g. to
all its children.

Now, the calculus of the graphical coordinates of the noglesiin-hand pro-
cedure, the only problem being to deal with scroll bar actidime entire tree does
not have enough space to be display in one screen, or onlpfoars to be visu-
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alized.

Because there is no need to worry about where exactly to puhthleaves,
the algorithm is free to decide on the size of the picturdnalyzing each node
(starting with the leaves and continuing with the internati@s until the algo-
rithm arrives at the root), it is possible to determine, & 8ize of thedraw area
is known, what coordinates each of the nodes should haven, Tokowing the
relationships between nodes (parent-child), it is trittatletect how to draw the
lines between them. In this case, the choice was similaradogiram (straight
lines, not obliques), but this can be easily changed intcerfenmcy variants.

Nevertheless, it is possible to save the picture back toNsvick’ tree ex-
pression format (useful if a tree was changed) by pressi@#vebutton or by
choosing th&Save Treérom theEdit menu. The procedure is based on a tree pars-
ing methodology, which starts with the root node, and theaiees its ID with
the ID’s of the children in a parentheses format, i.e. surdmad by parentheses
and separated by commas. Then, recursively, the same mistapplied to all its
children until the leaf nodes are reached.

6.2 Algorithms

6.2.1 Entropy algorithm

The entropy algorithm (described in Section 5.2.1) can bessed from the menu
Minimum Energy Algorithmor by pressing directhPALT+E. This will result in
displaying the parameter settings dialog box, where the et specify the
name and the location of the tree file (by pressingRlease upload the graph file
button), the sequence file (by pressing Btease upload the sequence bigton),
the value of the temperature constant and the name of thetdu& By pressing
the Performbutton, the algorithm is applied to the specified files. Assas the
operation is finished, a small dialog box containing the masults is displayed.
As depicted in Figure 6.4, the summary shows the fitting \&@faeeach character
(i.e. each column in the alignment file) to the specified trEleese information
are also saved in a text format, with tab-separated fieldbgifile specified as the
output.

4 choser.bottom = gnNrLevels * 155 andr.right = gnNrLeaves x 100 wherer is
a rectangle structure (with.top = 0 andr.left = 0) that represent the drawing dimension.
The number of leavegiNrLeavesand the number of levelg(NrLevel} are global variables
determined apriori
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Entopy algorithm settings

Algarithm parameters

| Fleaze upload the graph file | |graph.t:-:t
| Pleaze upload the sequences file | |Ieave&.t:-:t
| Temperature parameter |D.1

| Save results to: | |tree.u:uut

| Pertorrm the Minimum Energy Algarthm |

Cancel

x)

Figure 6.3: The dialog box for the entropy algorithm.

RESHLISSUIHN,

Character 1 produced energy: 5.297333 for 16 languages
Character 2 produced energy: 5731343 for 16 languages
Character 3 produced energy: 5507753 for 16 languages
Character 4 produced energy: 5731343 for 16 languages
Character 5 produced energy: 6507753 for 16 languages
Character B produced energy: 5.487177 for 16 languages

Figure 6.4: Results summary for the entropy algorithm.

104
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6.2.2 Phylogenetic algorithms

105

The phylogenetic reconstruction algorithms implementaa loe accessed from

the menuPhylogenetic AlgorithmsThe

dialog box as shown in Figure 6.5 will

then be displayed. The user must choose the distance mér{infstandard for-

Phylogenetic Analysis E

Please browse the distance matrix file

+ Rank classifier
" Quartet-Puzzling algorithm
M

Wizualization option

™ Just give me the tree file

" Usze TreeWiew

o]

Flease chooze the phylogenetic algorithm to be used

&+ Use QaLD to dizplay the tree

|dist_matlix.txt

Abbrechen |

Figure 6.5: Phylogenetic algorithms dialog box.

mat [32]) by opening a browse file dialog box from tBewsebutton, the phylo-
genetic algorithm to be performed on the distance matrix@assifier, distance
guartet puzzling or the standard neighbour-joining) arel ritethod for the vi-
sualization of the tree produced by the algorithm selecty pressing theDk
button, the appropriate algorithm is performed (with pblesintermediate steps
for setting the necessary parameters, e.g. the rank ctassiéithod, the distance

quartet-algorithm).

6.2.2.1 Rank classifier algorithm

The rank classifier algorithm needs a series of parametat#m be set in the

dialog box presented in Figure 6.6 (it

can be accessed afender selects this

algorithm from the options in Figure 6.5). A short descoptof the parameters
(as they are saved in the parameter file) is presented below:

e file_format = the format of the input matrix. The matrices can be similar-
ity matrices or dissimilarity matrices, and can includenot, information
about the number and the names of the objects. When no nasspei-
fied, numbers are assigned to identify the objects in theubtitpe.
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Rank parameters g|

Distance matrix type $

File format Dizzimilarity matrix including names j

Cucles

Mumber of cycles 100
Distance measure used in cycles F.endall -

Other

Divide and congquer es
k value 0 -

[ Detailed cutput information

Figure 6.6: Rank classifier algorithm dialog box.

3
Human 0 1 2
Gorila 1 0 2
Whale 2 2 O

Table 6.1: Phylip matrix format including the number andriaenes of the species

e nr_cycles = the maximum number of cycles to be performed if the conver-
gence it is not achieved initially.

e distance = the formula used to build a new matrix based on a previous
distance (rank) matrix, for every cycle. Two methods arelem@nted:
using the Spearman distance formula or using the Kenda#irie formula
respectively.

e divide = the divide and conquer parameter to specify whether thoslgh
be performed or not. A Yes/No option is provided.

e output_type = the type of output that one might need. It can be either of
the variants: (i) only a Newick tree expression that can leelus tree-view
programs or, (ii) a detailed (if the check box is selected)leyy-cycle
output, if one wants to investigate the various rank classifns of the
objects.



Chapter 6. QALD software 107

6.2.2.2 Distance quartet-puzzling algorithm

The parameters for the distance quartet-puzzling algar{istQ) are fewer, and
can be set in the dialog box displayed in Figure 6.7. As theadce matrix file
was already specified in a previous step, this dialog box Ig ased to specify
which variant of the algorithm should be performed: the mitm, the maximum,
the average or using the sum, as described in 5.1.2.

Distance Quartet Puzzling Algorithm parameters

Fleaze zelect the wariant of the algarithm to be performed

" Using minimum weight method

" Usging maximum weight method

{* lzing average weight method

i Using global weight method

Abbrechen

Figure 6.7: Distance-quartet algorithm dialog box.

6.2.3 Results

The results are usually files that contain the tree exprederonat of the inputed
data. Their name, if no other decisions are made, is compiogedthe initial
distance matrix file name, to which the extensioutis added. To visualize these
expressions, the user might choose between the QALD saftavad the TreeView
program from phylip package [32].

Of course, one can use the tree expression from the file aspah data to
any phylogenetic drawing program, as the parenthesis focoratained in this
file is widely accepted by such programs. Unfortunately,déning and printing
functions of the QALD software are not implemented becabsg tequired too
much effort, and | have concentrated on the algorithmic. part

6.3 Dealing with missing data

As explained in Section 3.1, there are many ways to deal wisising data.
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Deal with missing data EJ

Parameters

| Flease upload the trees file | |

| Flease upload the leaves file ||

| Temperature parameter |

Options

3Kl

Fill ins the missing data

Femove features that have miszing data

Remove leaves that have mizsing data for all features
Remove leaves that have mizging data for each feature
Fill and compare

| earange aligrnment

Cancel

Figure 6.8: Dealing with missing data.

The entropy algorithm as implemented in the QALD packagersfthe pos-
sibility of various ways to deal with missing data (cf. Figg.8):

¢ Fill the missing data. It is worth to use this is the range atdiee values is
as small as possible (preferably 0/1).

e Remove features that have missing data. Features thaircom&sing data
are removed from the analyses.

e Remove leaves that have missing data for all features. Tieesees are
removed whenever they contain missing data in all positions

¢ Remove leaves that have missing data for each feature. Tuersees are
removed whenever they contain missing data for a feature.

e Add one feature at the time. Perform the entropy algorithnabalyzing
each feature at the time. This approach is useful when therésaare rank
ordered by their known fitting to the data

6.4 Languages analyses

This part of the QALD package offers a quick and informativewof the data
in WALS. The user might select a group of languages, genefanoities to be

5If one has a list of best ranked features, by applying therilyn and observing the resolution
of the results, one can detect a level of confidence abovehwth&features added agamaging
the result.
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visualized, and the displayed pictures are obtained frarethnologue file [35]
as shown in Figure 6.9.

Indo-European

Indo-European (449)

Albanian (4)
Gheg (1)
Albanian, Gheg [aln] (Serbia and Monteneqgro)
Tosk (3)

Albanian, Arbéreshé [aze] (Italy
Albanian, Arvanitika [aaf] (Greece)
Albanian, Tosk [als] (Albania

Armenian (1)

Armenian [hye] (Armenia
Baitic (3}

Eastern (2)

Latvian [av] (Latvia
Lithuanian [lit] (Lithuania)
Western (1)

Frussian [prg] (Foland
Celtic (7
Insular (7

Brythonic (3)
Breton [bre] (France)
Cornish [cor] (United Kingdom?)
Welsh [cym] (United Kingdom)

Goidelic (4)
Gaelic, Hiberno-Scottish [ghe] (United Kingdorm)
Gaelic, Scottish [ala] (United Kingdorm)
Gaelic, Irish [gle] (reland)

Figure 6.9: Sample information froethnologue

There is also the possibility of performing the algorithmsl aistance meth-
ods presented in this thesis (as depicted in Figure 6.10) ke results can be
easily compared with the NJ or ethnologue ones. A choice sthdce matrix
building procedure is offered (as explained in Section By2allowing theHam-
ming relative NormD, NormSandNormS+NormDvariants. Also, the user may
choose which features of WALS to be used: the ‘best’ phylegerones, all, a
predefined group as found in WALS or any set of individualliested features.
The visualization of the results are the same as in SectihB.6.

Please note that the selections of languages and feateresraulative, mean-
ing that by selecting the Turkic language and the Indo-Eeaodamily, the method-
ologies will analyze all the languages grouped in the Indosean family plus
the Turkic language. Please also note that by selecting gyfama genus, the
software is evaluating all the languages in that family angerespectively, and
in many cases each of these groupings contain poor codeddgag. By check-
ing the Use Wals Extendedheck box, the feature list is updated with the 266
extended features obtained as explained in Chapter 2, whilghecking it will
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use the original 141 features for further analysis.

WWals Analysis
-~ Select data

I Lahguages I Genera I Farnilies
Enaglish A || |Adamawa-Ubar A || | Afro-Asiatic A
French A =i |Hadza —|
Finnish Alacalufan Kadugli
Riuzsian Albarian Khoisan
Spanizh Algonguian Laal
Tiwkich ¥ akes M | Miner-Conan
O 9 |em = (|G =

 Select method

I Select phylogenetic method

T Rark classifier
" Distd
i NJ

|+ Uze anly the tap Ianguages” 50

Select features

Select features group

Select best phylogenetic features I 100

v Use wWalsEstended |

I Select distance measure

" Hamming Fealtive
 NomD
& Mams
" MomD and NomS

Select vizualization procedure

7 Tree expression
& Qald
0 TreeView

ak | Cancel I

I Comments

110

X)

Figure 6.10: The phylogenetic analyses of WALS data.
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Conclusions

The extensive use of computational tools for analyzingoterdata sets in linguis-
tic community indicates recognition of their potential m field. Well-designed

experiments with a clearly defined objective and with dabaest in sufficient de-

tail in different formats should provide a valuable reseui@r discovering many
different aspects of language characteristics, univieysahd history. In this re-

search | showed that by combining these data sets with \&n@ashematical mod-
els and computational algorithms, one can obtain improgsdIts that could not
be reached by traditional research methods. These impewsean be further
developed and applied/tested to other data sets, in ordetter understand the
methodologies and to be able to better interpret the results

Meanwhile, the results of the present study imply that mesearch must be
pursued in this area. This thesis has offered the resultgmbrations of a ty-
pological data set using computationally-driven phylagensoftware developed
largely for the use of biologists.

As mentioned, the utility of typological databases for digtal linguistic re-
search cannot be fully assessed until more extensive dasleve been con-
structed. Nor can we hope to bring our results to bear on bketapirical prob-
lems before relevant databases have been enlarged. The Wé#taBase provides
a good beginning, as long as the problems of overlap and basitet categories
are taken into account. Simply filling out the missing datshi@e WALS matrix
for the set of languages that one would like to compare woluhdy constitute
a useful step forward.

The typological (dis-)similarities in WALS provide usefaformation in his-
torical analysis of languages. For example, selecting afsé® languages from

111
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the Indo-European family and using the NormS variant fofdiog the distance

matrix produced the network depicted in Figure 7.1. Theltésshowing a clear

split between the Indic languages and the European languag&vell as a correct
grouping of most of the genera.

| showed various methodologies for analyzing typologicekd First, | have
presented a method for quantifying the influence of diffetgpological features
for establishing linguistic genealogies. | showed that kyfgerming a careful
analysis and by recoding the initial data, important digcm@s of various prob-
lems/advantages can be detected. | presented methodolfgimproving dis-
tance measurements, and the results obtained by using\uhgaats showed a
good improvement. Each of the approaches improved the bemidts, therefore
it must be further considered in order to completely un@erstthe results ob-
tained, and maybe to be able to build a new, complete and ppat® distance
measurement method. The entropy algorithm (Section 5a)eprto be an useful
tool when dealing with various data sets and phylogenegestr Its applications
are multiple, and therefore further investigations/iny@mments must be consid-
ered. The QALD software implemented in this research wilphegientists to
have a clearer picture on both the universal accepted pbgkig relationships
between languages, and on various methodologies and talgarihat one can
perform for a specific data set.

A final phylogenetic analysis was performed by trying to gntge the dis-
tances between feature values for the recoded WALSX. Coesily, | chose a
data set of 13 genera, with two best coded languages selectedch genera in
order to have a good variability and world-wide distributi@s comparison of the
results can be consulted in Figure 7.2 (using original dathralative Hamming
distance) and Figure 7.3 (using WALSX and the characteadcs measures, cf.
Section 2.2.1.4).

Further research should be focused on the degree of condidermcder that
one can accept hypotheses concerning genealogical redatps generated by a
given algorithm on the basis of typological data. A good adaheoretical work
will need to go into exploring adequate ways of comparinggrii order to cor-
rectly assessed the validity of a phylogenetic tree obthirseng typological data.
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Figure 7.1: NNet using the Indo-European data set.
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Appendix

8.1 MySql script for building WALS

Building the database

# Created by...: Mihai Albulbu@eva.mpg.de

# Description..: Create WalsX database together with altdéibles

# Orig Date....: 27/01/05

# Modified Date: 27/06/06

# delete database if exists

DROP DATABASE IF EXISTS WalsTemp;

# create a new database

CREATE DATABASE WalsTemp;

# specify that we are using it

USE WalsX;

# create tables

CREATE TABLE language (languagt INT UNIQUE, standardname CHAR(100),
wals. code char(100), longituddgext char(100), latitudetext char(100), longi-
tude. num INT, latitude num INT, genusID INT, macra area ID INT, loca-
tion CHAR(100), amountof_refs INT, comment CHAR(255), amourdf_ data-
points INT, all countries CHAR(255), allothernames CHAR(255), alfoutled-
genames CHAR(255), alkuhlennames CHAR(255), alfegions CHAR(255),
othernameslabel CHAR(255));

Copying the datall the data were initially saved inABfiles, as exported from
the original database. Then the next script helped copyiagiata into the new

116
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MySql database.

# Created by...: Mihai Albu albu@eva.mpg.de

# Description..: insert values in tables from tab delimiitzs

# Orig Date....: 27/01/05

# Modified Date: 27/06/06

USE WalsTemp;

LOAD DATA INFILE * Tabs add_ref.tab INTOTABLFEadd_ref;
SHOW WARNINGS;

The above two last lines were repeated for all the tablesam#tabase.

8.2 Features from WALSX that allow character dis-
tance implementation

Table 8.1: Features from WALSX that allosharacter dis-
tanceimplementation

Feature FeatValue Description
1. Consonant inventories 1 Small consonant inventories
2 Moderately small consonant in-
ventories
3 Average consonant inventories
4 Moderately large consonant in-
ventories
5 Large consonant inventories
2. Vowel quality inventories | 1 Small vowel inventories
2 Average vowel inventories
3 Large vowel inventories
17. Type of velar nasal 1 No velar nasal
2 Velar nasal initially
3 Velar nasal, but no initially
21. Syllable structure 1 Simple syllable structure
2 Moderately complex syllable
structure
3 Complex syllable structure
23. Types of tone 1 No tone system
2 Simple tone system
Continued on next page
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Table 8.1 — continued from previous page

Feature FeatValue Description
3 Complex tone system
48. Inflectional synthesis gfl 0-1 category per word

the verb

2-3 categories per word
4-5 categories per word
6-7 categories per word
8-9 categories per word
10-11 categories per word
12-13 categories per word

RPINO O WDN

56. Prefixing and suffixing in
inflectional morphology

Strongly suffixing

Weakly suffixing
Intermediate
Weakly prefixing
Strongly prefixing

58. Reduplication

WNRFROOWDN

No productive reduplication
Full reduplication only
Productive full and partial redu
plication

64. Number of genders

None

Two

Three

Four

Five or more

ROk, WNPR

71. Plural types in huma
nouns

-

w N

No plural

Plural optional
Plural obligatory

73. Plural types in inanimatesl
nouns

w N

No plural

Plural optional
Plural obligatory

90. Distance contrast inl
demonstratives

N

B~ W

No distance constrast

Two way contrast
Three way contrast
Four way contrast

D

Continued on next pag
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Table 8.1 — continued from previous page

1t

It

Feature FeatValue Description
5 Five or more way contrast
110. Number of cases 1 No or borderline case
2 2 case categories
3 3 case categories
4 4 case categories
5 5 case categories
6 6-7 case categories
7 8-9 case categories
8 10 or more case categories
117. Comitatives and intru-1 Identity
mentals
2 Mixed
3 Differentiation
125. Presence of numerall Absent
classifier
2 Optional
3 Obligatory
132. Type of possesive classid No possessive classification
fication
2 Two classes
3 Three to five classes
4 More than five classes
133. Genitives, Adjectives 1 Weakly differentiated
and Relatives Clauses
2 Moderately differentiated
3 Higly differentiated
169. Order of subject and verbl Subject precedes verb
2 Both orders with either dominar
3 Subject follows verb
170. Order of object and verb 1 Object precedes verb
2 Both orders with either dominar
3 Object follows verb
174. Order of genitive and1 Genitive—Noun
noun
2 Both orders with either dominar
3 Noun-Genitive

1t

Continued on next pag
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Table 8.1 — continued from previous page

Feature FeatValue Description
176. Order of demonstrativesl Demonstratives before noun
and noun
2 No dominant order
3 Demonstratives after noun
181. Order of degree wordl Degree word precedes adjective
and adjective
2 No dominant order
3 Degree word follows adjective
184. Position of interrogative 1 Interrogative phrases obligatory
phrases in content question initial
2 Mixed
3 Interrogative phrases not obliga-
tory initial
202. Verbal marking 1 None
2 One argument
3 Two arguments
226. Predicative adjectivesl Predicative adjectives have ver-
description bal encoding
2 Predicative adjectives have
mixed encoding
3 Predicative adjectives have non
verbal encoding
237. Purpose clause 1 Balanced purpose clause
2 Balanced/deranked purpose
clause
3 Deranked purpose clause
238. When clause 1 Balanced when clause
2 Balanced/deranked when clause
3 Deranked when clause
239. Reason clause 1 Balanced reason clause
2 Balanced/deranked reason clause
3 Deranked reason clause
240. Utterance complementl Balanced utterance complement
clause clause
2 Balanced/deranked utterance

complement clause

Continued on next pag
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Table 8.1 — continued from previous page

Feature

FeatValue

Description

3

Deranked utterance compleme
clause

nt

244. Number of non-derive
basic colour categories

d1

3 categories

Between 3 and 4 categories
4 categories
Between 4 and 5 categories
5 categories
Between 5 and 6 categories
6 categories

245. Number of basic coloy
categories

RPINO O WDN

3, between 3 and 4, or 4 cat
gories

9]
]

2 Between 4 and 5, 5, or between 5
and 6 categories
3 6 or between 6 and 7 categories
4 7 or between 7 and 8 categories
5 8 or between 8 and 9 categories
6 9 or between 9 and 10 categories
7 More than 10 categories
8.3 Definition of classCTreeNode
class CTreeNode : public CObject
{
public:
CTreeNode(); \ * the class constructor *\
virtual "CTreeNode();\ * the class destructor *\
CString strParentID;\ * the unique stringlD of the parent
int NNrChildren;\ * the number of children *\
CString strLabel;\ * the actual node name *\
CString strType;\ * the type of the structure=node, leaf, root
int = strArrayChildren;\ * array of pointers to
the children nodes *\
CString strParent;\ * the name of the parent node *\
int nLevel;\ * the level in the hierarchy tree *\
int nID;\ * unique ID number
CString strStatus;\ * selected, unselected, deleted *\
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int xPos;\ * X coordinate of the graphical display *\
int yPos;\ * Y coordinate of the graphical display *\

}

8.4 Implemetation of clasCTreeEnergy

CTreeEnergy::CTreeEnergy()
{

gnSequenceSize = 0;
gnAlphSize = 0;
gnGraphSize = 0;
gnNrLines = 0;
nSequenceSize = 0;

nAlphabetSize = 0;

dTemperature = 0.0;

}

int CTreeEnergy::LoadGraph(char * strGraphFileName)
{

char buffer[1024] ={0};

int nNodeValue =0;

int nCursor =0;

FILE * hndFile = NULL;

hndFile = fopen(strGraphFileName, "r");

if (hndFile '= NULL)

{

while(fgets(buffer, sizeof(buffer), hndFile)I=NULL)
nCursor ++;

fclose(hndFile);

}

nCursor ++;

pGraph = (int *) calloc(nCursor, sizeof(int));

nCursor = 0;

hndFile = fopen(strGraphFileName, "r");

if (hndFile = NULL)

{

while(fgets(buffer, sizeof(buffer), hndFile)!=NULL)
{
nNodeValue = atoi(buffer);
pGraph[nCursor] = nNodeValue;
nCursor ++;
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}
fclose(hndFile);

}

nCursor ++;
gnGraphSize = nCursor;
return 1;

}

int CTreeEnergy::LoadLeaves(char * strLeavesFileName)
{
FILE * hndFile = NULL;
char buffer[18000] = {0},
int nrLine = O;
int i = 0;
int j = 0;
long len = O;
char chint[2] = {O};
hndFile = fopen(strLeavesFileName, "r");
if (hndFile '= NULL)
{
fgets(buffer, sizeof(buffer), hndFile);
gnAlphSize = atoi(buffer);
while(fgets(buffer, sizeof(buffer), hndFile)!=NULL)
{
nrLine ++;
len = strlen(buffer);

}

}
fclose(hndFile);

hndFile = fopen(strLeavesFileName, "r");

ppSequences = (int =) calloc(gnGraphSize + 1, sizeof(int *));
for( i=0; i<gnGraphSize + 1; i++)
ppSequences[i] = (int *)calloc(len, sizeof(int));

gnNrLines = nrLine ;

gnSequenceSize = len-1;

if (hndFile '= NULL)

{

fgets(buffer, sizeof(buffer), hndFile);

gnAlphSize = atoi(buffer);

nrLine = gnGraphSize - gnNrLines+1;
while(fgets(buffer, sizeof(buffer), hndFile)I=NULL)
{
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for (i = 0; i< len-1; i++)
{
strncpy(chint, &buffer[i], 1);
ppSequences[nrLine][i] = atoi(chint);
}
nrLine ++;
}

}
fclose(hndFile);

return gnSequencesSize;

}
int CTreeEnergy::FirstLeaf()

{

int nRetLeaf = O;

nRetLeaf = gnGraphSize - gnNrLines +1,;
return nRetLeaf;

}
void CTreeEnergy::GraphEnergy()

{

double * MatrixPi;
double ** MatrixSigma;
int i = 0;

intj =0

int nindexSeqgSize = 0;
int nindexGraphSize =0;
int nFirstLeaf = 0;

int nCrtNode = 0;
double * nRowPi;
double * nRowSigma;
double dPi = 0.0;
double dSigma = 0.0;
int nindexAlpha = 0;
int nindexBeta = O;
double dTemp = 0.0;
double Z0 = 0.0;

double EO 0.0;
int dSeq = 0;
double dist = 0.0;

double expp = 0.0;

MatrixPi =
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(double =+ ) calloc(gnGraphSize+1, sizeof(double *));
for( i=0; i<gnGraphSize+1; i++)

MatrixPi[i] =

(double  *)calloc(gnAlphSize, sizeof(double));

MatrixSigma =

(double =+ ) calloc(gnGraphSize+1, sizeof(double *));
for( i=0; i<gnGraphSize+1; i++)

MatrixSigma[i] =

(double  *)calloc(gnAlphSize, sizeof(double));
dEnergy = (double *) calloc(gnSequenceSize+1, sizeof(double));
nFirstLeaf = FirstLeaf();

for (nIndexSeqSize=0; nindexSeqSize < gnSequenceSize;
nindexSeqSize++)

{
for (i = 0; i< gnGraphSize; i++)
{
for (| = 0; J < gnAlphSize; j ++)
{
MatrixPi[i][j] = 1.0;
MatrixSigmali][j] = 0.0;
}
}

for(nindexGraphSize = gnGraphSize; nindexGraphSize > 1;
nindexGraphSize --)

{

nCrtNode = pGraph[nindexGraphSize - 2];

nRowPi = (double ) calloc(gnAlphSize+1, sizeof(double));

nRowSigma = (double *) calloc(gnAlphSize+1, sizeof(double));

for( i = 1; i <= gnAlphSize; i ++)

{

nRowPi[i] = MatrixPi[nCrtNode-1][i-1];
nRowSigma[i] = MatrixSigma[nCrtNode-1][i-1];

}
dPi = 0.0;
dSigma = 0.0;

for (nindexAlpha = 1; nindexAlpha <= gnAlphSize; nindexAlp

ha ++)
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{
if (nindexGraphSize >= nFirstLeaf)

{
dSeq = ppSequences[nindexGraphSize][nindexSeqSize];
if(dSeq == 0)
dSeq = 1;
dist = Distance(nindexAlpha, dSeq);
expp = exp(-dist/dTemperature);
MatrixPi[nCrtNode-1][nIndexAlpha-1] =
nRowPi[nIndexAlpha] *
MatrixPi[nIndexGraphSize-1][dSeq-1] *
expp;
MatrixSigma[nCrtNode-1][nIndexAlpha-1] =
nRowSigma[nindexAlpha] +
MatrixSigma[nindexGraphSize-1][dSeq-1] +
Distance(nindexAlpha, dSeq);
}
else
{

for (nIndexBeta = 1; nindexBeta <= gnAlphSize; nindexBeta +

{
dTemp = nRowPi[nindexAlpha] *

MatrixPi[nIndexGraphSize-1][nIndexBeta-1] *

exp(-Distance(nindexAlpha, nindexBeta)/
dTemperature);
dPi += dTemp;
dSigma +=(nRowSigma[nindexAlpha] +
MatrixSigma[nindexGraphSize-1][nIndexBeta-1] +
Distance(nindexAlpha, nindexBeta)) * dTemp;
}
MatrixPi[nCrtNode-1][nIndexAlpha-1] = dPi;
MatrixSigma[nCrtNode-1][nIndexAlpha-1] = dSigma/dPi;
}
}

free(nRowPi);
free(nRowSigma);

}
Z0 = 0.0;
EO = 0.0;

for (i = 1; i <= gnAlphSize; i ++)
{

+)
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Z0 += MatrixPi[O][i-1];
EO += MatrixSigma[O][i-1] *  MatrixPi[O][i-1];
}
EO = EO0/Z0;
dEnergy[nindexSeqSize+1] = EO;
printf("Energy for feature:\%d is \%.20f $ n$",
nindexSeqSize, EO);
dEnergy[0] += EO;
}
for (i=0;i<gnGraphSize+1;i++)
free(MatrixPi[i]);
free(MatrixPi);
for (i=0;i<gnGraphSize+1;i++)
free(MatrixSigmali]);
free(MatrixSigma);

}
double CTreeEnergy::Distance(int a, int b)

{

if (@ == Db)
return 0.0;
else

return 1.0;

}
void CTreeEnergy::CleanMemory()

{

int i = 0;

for (i=0;i<gnGraphSize + 1;i++)
free(ppSequencesi]);

free(ppSequences);

free(dEnergy);

free(pGraph);

}

8.5 Drawing function for MDS output

Private Sub Form_Load()
Dim |, i As Integer

Dim xDim As Double
Dim yDim As Double
Dim xCenter As Double



Chapter 8. Appendix 128

Dim yCenter As Double
Dim xLeft As Double
Dim yLeft As Double
Dim xRight As Double
Dim yRight As Double
Dim strLine As String
Dim x(100) As Double
Dim y(100) As Double
Dim dScale As Double
Dim k As Integer
Dim varsplits() As String
Dim varArrayStruct(127) As ArrayStruct
'Need this so that a box is drawn when frm loads.
Me.AutoRedraw = True
Me.BackColor = RGB(255, 255, 255)
Me.ForeColor = RGB(0, 0, 0)
Me.DrawStyle = 0 ’'DrawStyle is solid line
Me.Cls
Me.DrawWidth = 1
xLeft = 300
yLeft = 300
xRight = 15000
yRight = 10500
Me.Line (xLeft, yLeft)-(xRight, yRight), , B 'Draw a box
xCenter = (xRight - xLeft) / 2
yCenter = (yRight - yLeft) / 2
Me.Line (xCenter, yLeft + 100)-(xCenter, yRight - 100)
Me.Line (xLeft + 100, yCenter)-(xRight - 100, yCenter)
Me.Circle (xCenter, yCenter), 100
dScale = 2000
i =0
Open App.Path & "$\ Outs\ coord_50 distall. TXT$" For Input
Do While EOF(1) = False
Line Input #1, strLine
varsplits = Split(strLine, vbTab)

Me.Circle (xCenter + dScale * varsplits(1),
yCenter - dScale = varsplits(2)), 30, vbRed
Me.CurrentX = xCenter + dScale * varsplits(1)

Me.CurrentY = yCenter - dScale * varsplits(2)
Me.Print varsplits(0)
varArrayStruct(i).id = Clnt(varsplits(0))

As #1
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varArrayStruct(i).x = xCenter + dScale * varsplits(1)
varArrayStruct(i).y = yCenter - dScale * varsplits(2)
=i+ 1

Loop

Close #1

Open App.Path & "$\ Outs\ congr_ 50 _ distall.txt$" For Input
j=0
Do While EOF(1) = False
Line Input #1, strLine
varsplits = Split(strLine, vbTab)
For i = 1 To UBound(varsplits) - 1
If CDbl(varsplits(i)) <= 0.0001 Then
Me.DrawStyle = 0
Me.DrawWidth = 1
Me.ForeColor = vbRed
End If
If CDbl(varsplits(i)) <= 0.0001 Then
Me.Line (varArrayStruct(j).x, varArrayStruct(j).y)-
(varArrayStruct(i - 1).x, varArrayStruct(i - 1).y)
k =k +1
End If
Next i
j=1+1
Loop
Close #1

End Sub

8.6 Conversion from WALS to WALSX

Dim strfile As String

Dim strLine As String

ReDim gnewFeaturesiD(0)

strfile = filename

FileOpen(l1, strfile, OpenMode.Input)
System.Windows.Forms.Application.DoEvents()
gError = 0

strLine = Linelnput(1)

txtComment. Text = ™

Do While InStr(strLine, "#features description”) = 0

As #1
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strLine = Linelnput(1)
If InStr(strLine, "#") = 0 And strLine <> " Then
txtComment. Text = txtComment.Text & vbCrLf & strLine
End If
Loop
strLine = Linelnput(1)
‘txtComment. Text = txtComment.Text & vbCrLf & strLine
strLine = Linelnput(1)
txtComment. Text = txtComment.Text & vbCrLf
'now we have features description
Do While InStr(strLine, "#values description”) = 0
If strLine $<>$ "™ Then
SaveFeaturesDescriptions((strLine))
If gError = 1 Then
Exit Sub
End If
txtComment. Text = txtComment.Text & vbCrLf & strLine
End If
strLine = Linelnput(1)
Loop
strLine = Linelnput(1)
‘txtComment. Text = txtComment.Text & vbCrLf & strLine
strLine = Linelnput(1)
txtComment. Text = txtComment.Text & vbCrLf
Do While InStr(strLine, "#features values") = 0
If strLine $<>$ "™ Then
SaveValuesDescriptions((strLine))
txtComment. Text = txtComment.Text & vbCrLf & strLine
End If
strLine = Linelnput(1)
Loop
strLine = Linelnput(1)
‘txtComment. Text = txtComment.Text & vbCrLf & strLine
strLine = Linelnput(1)
txtComment. Text = txtComment.Text & vbCrLf
Do While InStr(strLine, "#chance") = 0
If strLine $<>$ "™ Then
SaveFeaturesValues((strLine))
txtComment. Text = txtComment.Text & vbCrLf & strLine
End If
strLine = Linelnput(1)
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Loop
strLine = Linelnput(1)
‘txtComment.Text = txtComment.Text & vbCrLf & strLine
strLine = Linelnput(1)
txtComment.Text = txtComment.Text & vbCrLf
Do While InStr(strLine, "#dependencies”) = 0
If strLine $<>$ " Then
SaveChancelnfo((strLine))
txtComment.Text = txtComment.Text & vbCrLf & strLine
End If
vstrLine = Linelnput(1)
Loop
strLine = Linelnput(1)
‘txtComment.Text = txtComment.Text & vbCrLf & strLine
strLine = Linelnput(1)
txtComment.Text = txtComment.Text & vbCrLf
Do While InStr(strLine, "#end") = 0O
If strLine $<>$ "™ Then
SaveDependenciesinfo((strLine))
txtComment.Text = txtComment.Text & vbCrLf & strLine
End If
strLine = Linelnput(1)
Loop

FileClose(1)
Exit Sub
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