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We point out that the elliptic genus of the K3 surface has a natural
decomposition in terms of dimensions of irreducible represen-
tations of the largest Mathieu group M24. The reason remains a
mystery.

1. INTRODUCTION AND CONCLUSIONS

The elliptic genus of a complex D-dimensional hyper-
Kähler manifold M is defined as

Zell(τ ; z) = TrR×R(−1)FL +FR qL0 q̄L̄0 e4πizJ 3
0 , L

in terms of the two-dimensional supersymmetric sigma
model whose target space is M [Witten 87]. Since M is
assumed to be hyper-Kähler, the two-dimensional the-
ory has N = 4 superconformal algebra as its symmetry.
Then L0 and L̄0 are zero modes of the left- and right-
moving Virasoro operators; J3

0 is the zero mode of the
third component of the affine SU(2) algebra; FL and
FR are the left- and right-moving fermion numbers. The
trace is taken over the Ramond sector of the theory.
This elliptic genus is a Jacobi form of weight zero and
index D/2.

The elliptic genus for the K3 surface was explicitly
calculated in [Eguchi et al. 89] and is given by

Zell(K3)(τ ; z) (1–1)

= 8

[(
θ2(τ ; z)
θ2(τ ; 0)

)2

+
(

θ3(τ ; z)
θ3(τ ; 0)

)2

+
(

θ4(τ ; z)
θ4(τ ; 0)

)2
]

.

Here θi(τ ; z) (i = 2, 3, 4) are Jacobi theta functions. Ac-
tually, the space of Jacobi forms of weight zero and in-
dex one is known to be one-dimensional, and thus the
above result could have been guessed without explicit
computation. We find that Zell(K3)(τ ; z = 0) = 24 and
Zell(K3)(τ ; z = 1/2) = 16 + O(q), and thus (1–1) repro-
duces the Euler number and signature of K3.

In [Eguchi et al. 89] and more recently in
[Eguchi and Hikami 09], the expansion of the K3 elliptic
genus in terms of the irreducible representations of the
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N = 4 superconformal algebra has been discussed in
detail. We first provide the data of representation theory
[Eguchi and Taormina 87, Eguchi and Taormina 88].
For a rigorous mathematical exposition, see, for example,
[Kac 98, Kac and Wakimoto 04].

Let us introduce the character formula of the BPS
(short) representation of spin � = 0 in the Ramond sector
with (−1)F insertion

chR̂
h= 1

4 ,�=0(τ ; z) =
θ1(τ ; z)2

η(τ)3 µ(τ ; z), (1–2)

µ(τ ; z) =
−ieπiz

θ1(τ ; z)

∞∑
n=−∞

(−1)n q
1
2 n(n+1)e2πinz

1 − qne2πiz
.

The BPS representation has nonvanishing index

chR̂
h= 1

4 ,�=0(τ ; z = 0) = 1.

We also introduce the character of a non-BPS (long) rep-
resentation with conformal dimension h:

qh− 3
8

θ1(τ ; z)2

η(τ)3 .

Then the elliptic genus is expanded as

Zell(K3)(τ ; z) = 24 chR̂
h= 1

4 ,�=0(τ ; z) + Σ(τ)
θ1(τ ; z)2

η(τ)3 ,

(1–3)

where the expansion function Σ(τ) is given by

Σ(τ) = −8
[
µ

(
τ ; z =

1
2

)
+ µ

(
τ ; z =

1 + τ

2

)
(1–4)

+ µ
(
τ ; z =

τ

2

)]
= −2 q−1/8

(
1 −

∞∑
n=1

Anqn
)
.

If one uses the relation that the non-BPS representation
splits into a sum of BPS representations at the unitarity
bound h = 1/4, then

q−
1
8
θ1(τ ; z)2

η(τ)3 = 2 chR̂
h= 1

4 ,�=0(τ ; z) + chR̂
h= 1

4 ,�= 1
2
(τ ; z),

the polar term in Σ may be eliminated, and the decom-
position (1–3) can also be written as

Zell(K3)(τ ; z) = 20 chR̂
h= 1

4 ,�=0(τ ; z) − 2 chR̂
h= 1

4 ,�= 1
2
(τ ; z)

+ 2
∞∑

n=1

Anqn− 1
8
θ1(τ ; z)2

η(τ)3 .

The coefficients An have been computed explicitly for
lower orders by expanding the series (1–4) (see Table 1),
and it has been conjectured that they are all positive
integers [Ooguri 89, Taormina and Wendlend 89, private
communication].

n 1 2 3 4 5 6 7 8 9 · · ·
An 45 231 770 2277 5796 13915 30843 65550 132825 · · ·

TABLE 1. The initial coefficients An of the series (1–4)

On the other hand, the asymptotic behavior of An

at large n has recently been derived using an ana-
logue of the Rademacher expansion of modular forms
[Eguchi and Hikami 09]:

An ≈ 2√
8n − 1

e2π
√

1
2 (n− 1

8 ) . (1–5)

It turns out that (1–5) gives a good estimate of An

even at smaller values of n, and this confirms the
positivity of the coefficients An . Note that the series
µ(τ ; z) (1–2) has the form of a Lerch sum (or mock
theta function) and thus has a complex modular
transformation law that involves Mordell’s integral.
In such a situation we can use the method recently
developed in [Zwegers 02, Bringmann and Ono 06,
Bringmann and Ono 08, Zagier 07] and construct the
Poincaré–Maass series to derive the above asymptotic
formula.

Table 1 contains a surprise: the first five coefficients,
A1 , . . . , A5 , are equal to the dimensions of the irreducible
representations of M24 , the largest Mathieu group; see
Section 2. The coefficients A6 and A7 can also be nicely
decomposed as sums of dimensions:1

A6 = 3520 + 10395,
A7 = 10395 + 5796 + 5544 + 5313 + 2024 + 1771.

For n ≥ 8, it is still possible to decompose An into a
sum of dimensions of irreducible representations of M24 ,
but the decompositions are not as unique.2

This observation can be compared to the famous ob-
servation in [Thompson 79], where the first few terms of
the expansion coefficients of J(q),

J(q) =
1
q

+ 196884 + 21493760q2 + · · · , (1–6)

could be naturally decomposed into the sum of the di-
mension of the irreducible representation of the monster

1 The tentative decomposition of A7 shown in a previous version
of this paper was incorrect in view of a later study of twisted el-
liptic genus in [Cheng 10, Gaberdiel et al. 10]. Here it is corrected
according to those papers.
2 It may also be interesting to point out that 2, 3, 5, 7, 11, 23 appear
in the prime factorization of An more frequently than any other
prime numbers and with certain periodicities in n. These are also
prime factors of the order of M24 .
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simple group. In [Conway and Norton 79] it is formulated
in terms of an infinite-dimensional graded representation
of the monster group

⊕
i Vi such that dim Vi is the coef-

ficient of qi of J(q), and Conway and Norton called this
observation monstrous moonshine.

It was then found [Frenkel et al. 88] that this represen-
tation is naturally associated with the two-dimensional
string propagating on R

26/Λ/Z2 , where Λ is the Leech
lattice. See, for example, [Gannon 04] for a recent review.

In our case, the existence of a natural vector
space whose graded dimension gives Σ(q) is guaran-
teed by the construction: it is the Hilbert space of the
two-dimensional supersymmetric conformal field theory
whose target space is K3. The problem is to identify the
action of M24 on it.3

The nonabelian symplectic symmetry of K3 was stud-
ied mathematically in [Mukai 88, Kondo 98]. Mukai enu-
merated eleven K3 surfaces that possess finite nonabelian
automorphism groups. It turns out that all these groups
are various subgroups of the Mathieu group M24 ; see Sec-
tion 3 for more details. Is it possible that these automor-
phism groups at isolated points in the moduli space of the
K3 surface are enhanced to M24 over the whole moduli
space when we consider the elliptic genus? This question
is currently under study using Gepner models and matrix
factorization.

As discussed in [Eguchi and Hikami 10], expansion co-
efficients of elliptic genera of hyper-Kähler manifolds in
general have an exponential growth and are closely re-
lated to the black hole entropy. In particular, in the case
of the kth symmetric product of the K3 surfaces we ob-
tain the leading behavior

An ≈ e2π
√

k 2
k + 1 n−( k

2 (k + 1 ) )
2

,

which gives the entropy of the standard D1-D5 black hole
S ≈ 2π

√
kn at large k (k = Q1Q5 , where Q1 and Q5 are

the numbers of D1 and D5 branes). Thus the elliptic
genus of the K3 surface may be considered as describ-
ing the multiplicity of microstates of a small black hole
with Q1 = Q5 = 1.

Here the situation is somewhat similar to a model of
black hole described in [Witten 07], where microstates of
a small black hole span the representation space of the
monster group. Although the partition function of the
theory is discussed, the relevant CFT is modular invari-

3 Dong and Mason pursued the analogue of monstrous moonshine
in the case of M24 ; see, for example, [Dong and Mason 94] and
references therein. So far, there is no direct connection between
their work and the geometry of K3.

ant separately in left and right sectors, and the discussion
is effectively the same as considering the elliptic genus.

It will be extremely interesting to see whether the
Mathieu group M24 in fact acts on the elliptic genus
of K3.

2. APPENDIX: DATA ON M24

The largest Mathieu group, M24 , has

210 · 33 · 5 · 7 · 11 · 23 = 244823040

elements. There are 26 conjugacy classes and 26
irreducible representations. The character table is
given in Table 2, whose data are taken from
[Math. Soc. Japan 07, Conway et al. 85]. The conju-
gacy class is labeled according to the convention of
[Conway et al. 85]. In the character table, e±p stands for

e±p = (±√−p − 1)/2.

The dimensions of the irreducible representations are,
in increasing order,

1, 23, 45, 45, 231, 231, 252, 253, 483, 770, 770,

990, 990, 1035, 1035, 1035, 1265, 1771, 2024, 2277,

3312, 3520, 5313, 5796, 5544, 10395.

Here the irreducible representations of dimensions

45, 231, 770, 990, 1035

come in complex conjugate pairs. There is in addition an
extra real 1035-dimensional irreducible representation.

3. APPENDIX: M24 AND THE CLASSICAL GEOMETRY
OF K3

Here we briefly summarize the relation between the clas-
sical geometry of the K3 surface and M24 , first found in
[Mukai 88] and elaborated in [Kondo 98].

Before proceeding, we need to recall the definition of
M24 . Of many equivalent ways to define it, one that is
most understandable to string theorists is to use an even
self-dual lattice of dimension 24. Consider the root lattice
of A1 whose generator has squared length 2. Let us denote
its weight lattice by A∗

1 , whose generator has squared
length 1/2. Take the 24-dimensional lattice A1

24 . This is
even but not self-dual, because the dual lattice is A∗

1
24 .

An even self-dual lattice N containing A1
24 will have the

structure

A1
24 ⊂ N ⊂ A∗

1
24 .

Let G = N/A1
24 , which is a vector subspace of

A∗
1
24/A1

24 � Z2
24 . Let us represent an element of G by a
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1A 2A 3A 5A 4B 7A 7B 8A 6A 11A 15A 15B 14A 14B 23A 23B 12B 6B 4C 3B 2B 10A 21A 21B 4A 12A

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
23 7 5 3 3 2 2 1 1 1 0 0 0 0 0 0 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1

252 28 9 2 4 0 0 0 1 −1 −1 −1 0 0 −1 −1 0 0 0 0 12 2 0 0 4 1
253 13 10 3 1 1 1 −1 −2 0 0 0 −1 −1 0 0 1 1 1 1 −11 −1 1 1 −3 0

1771 −21 16 1 −5 0 0 −1 0 0 1 1 0 0 0 0 −1 −1 −1 7 11 1 0 0 3 0
3520 64 10 0 0 −1 −1 0 −2 0 0 0 1 1 1 1 0 0 0 −8 0 0 −1 −1 0 0

45 −3 0 0 1 e+
7 e−7 −1 0 1 0 0 −e+

7 −e−7 −1 −1 1 −1 1 3 5 0 e−7 e+
7 −3 0

45 −3 0 0 1 e−7 e+
7 −1 0 1 0 0 −e−7 −e+

7 −1 −1 1 −1 1 3 5 0 e+
7 e−7 −3 0

990 −18 0 0 2 e+
7 e−7 0 0 0 0 0 e+

7 e−7 1 1 1 −1 −2 3 −10 0 e−7 e+
7 6 0

990 −18 0 0 2 e−7 e+
7 0 0 0 0 0 e−7 e+

7 1 1 1 −1 −2 3 −10 0 e+
7 e−7 6 0

1035 −21 0 0 3 2e+
7 2e−7 −1 0 1 0 0 0 0 0 0 −1 1 −1 −3 −5 0 −e−7 −e+

7 3 0
1035 −21 0 0 3 2e−7 2e+

7 −1 0 1 0 0 0 0 0 0 −1 1 −1 −3 −5 0 −e+
7 −e−7 3 0

1035 27 0 0 −1 −1 −1 1 0 1 0 0 −1 −1 0 0 0 2 3 6 35 0 −1 −1 3 0
231 7 −3 1 −1 0 0 −1 1 0 e+

15 e−15 0 0 1 1 0 0 3 0 −9 1 0 0 −1 −1
231 7 −3 1 −1 0 0 −1 1 0 e−15 e+

15 0 0 1 1 0 0 3 0 −9 1 0 0 −1 −1
770 −14 5 0 −2 0 0 0 1 0 0 0 0 0 e+

23 e−23 1 1 −2 −7 10 0 0 0 2 −1
770 −14 5 0 −2 0 0 0 1 0 0 0 0 0 e−23 e+

23 1 1 −2 −7 10 0 0 0 2 −1
483 35 6 −2 3 0 0 −1 2 −1 1 1 0 0 0 0 0 0 3 0 3 −2 0 0 3 0

1265 49 5 0 1 −2 −2 1 1 0 0 0 0 0 0 0 0 0 −3 8 −15 0 1 1 −7 −1
2024 8 −1 −1 0 1 1 0 −1 0 −1 −1 1 1 0 0 0 0 0 8 24 −1 1 1 8 −1
2277 21 0 −3 1 2 2 −1 0 0 0 0 0 0 0 0 0 2 −3 6 −19 1 −1 −1 −3 0
3312 48 0 −3 0 1 1 0 0 1 0 0 −1 −1 0 0 0 −2 0 −6 16 1 1 1 0 0
5313 49 −15 3 −3 0 0 −1 1 0 0 0 0 0 0 0 0 0 −3 0 9 −1 0 0 1 1
5796 −28 −9 1 4 0 0 0 −1 −1 1 1 0 0 0 0 0 0 0 0 36 1 0 0 −4 −1
5544 −56 9 −1 0 0 0 0 1 0 −1 −1 0 0 1 1 0 0 0 0 24 −1 0 0 −8 1

10395 −21 0 0 −1 0 0 1 0 0 0 0 0 0 −1 −1 0 0 3 0 −45 0 0 0 3 0

TABLE 2. Character table of M24 .

sequence of 24 zeros and ones, and define the weight of a
vector to be the number of ones in it.

The self-duality of N translates to the fact that G is
12-dimensional. The evenness translates to the fact that
only the weight of every element of G is a multiple of 4.
Let us further demand that only the vectors of N whose
length squared is two be the roots of A1

24 and not more.
Then G does not have an element with weight 4.

These conditions fix the form of G uniquely, and G is
known as the extended binary Golay code. The group
M24 is defined as the subgroup of the permutation group
S24 of the coordinates of Z2

24 that preserves G.
The lattice N thus constructed defines a chiral CFT

with c = 24 whose current algebra is A1
24 . Therefore M24

is the discrete symmetry of this chiral CFT.

Now let us recall that the cohomology lattice of K3,

Λ = H∗(K3, Z),

is also an even self-dual lattice of dimension 24, but with
signature (4, 20). The close connection between M24 and
the geometry of the K3 surface stems from this fact.

Take a K3 surface S, and let G be its symmetry pre-
serving the holomorphic 2-form. Let ΛG be the part of
Λ preserved by G, and ΛG its orthogonal complement.
Then ΛG is inside the primitive part of H1,1 , and thus
it is negative definite. Using Nikulin’s result, it can be
shown that ΛG is a sublattice of N . Therefore G is a
subgroup of M24 .

The subgroup G cannot be M24 itself, however. The
action of G on S preserves at least H0 , H4 , H2,0 ,
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H0,2 , and the Kähler form. Hence ΛG is at least five-
dimensional, and ΛG is at most 19-dimensional. This
implies that the action of G on N as real linear maps
should at least have a five-dimensional fixed subspace.
This translates to the fact that the action of G on 24
points as a subgroup of M24 splits them into at least five
orbits.

Similarly, starting from a subgroup G of M24 that acts
on 24 points with at least five orbits, one can construct
the action of G on H1,1 . Using the global Torelli theorem,
this translates to the existence of a K3 surface S whose
symmetry is G.

One example is the Fermat quartic X4 + Y 4 + Z4 +
W 4 = 0 in CP

3 . The symmetry is (Z4)2
� S4 , with 384

elements. This is indeed a subgroup of M24 that decom-
poses 24 points into five orbits, of lengths 1, 1, 2, 4, and
16.

More examples and details of the analysis can be found
in [Mukai 88, Kondo 98].
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