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(CSIC-IEEC), Campus UAB, Torre C-5, parells, 2na planta, ES-08193 Bellaterra, Barcelona, Spain
2Penn State University, 104 Davey Lab, 113 University Park, PA 16802-6300, USA
3Northwestern University, Dearborn Observatory, 2131 Tech Drive, Evanston, IL 60208-2900, USA
4Center for Gravitational Wave Astronomy, University of Texas at Brownsville, Brownsville, TX 78520, USA
5Institut für Raumfahrtsysteme, Universität Stuttgart, Pfaffenwaldring 31, D-70550 Stuttgart, Germany
6National Astronomical Observatories of China, Chinese Academy of Sciences, 20A Datun Lu, Chaoyang District, 100012, Beijing, China
7Division of Theoretical Astronomy, National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan
8Kavli Institute for Astronomy and Astrophysics, Peking University, China
9Astronomisches Rechen-Institut, Mönchhofstraße 12-14, 69120, Zentrum für Astronomie, Universität Heidelberg, Germany

Accepted 2009 November 20. Received 2009 November 20; in original form 2009 October 9

ABSTRACT
Supermassive black holes (SMBHs) found in the centres of many galaxies are understood to
play a fundamental, active role in the cosmological structure formation process. In hierarchical
formation scenarios, SMBHs are expected to form binaries following the merger of their host
galaxies. If these binaries do not coalesce before the merger with a third galaxy, the formation of
a black hole triple system is possible. Numerical simulations of the dynamics of triples within
galaxy cores exhibit phases of very high eccentricity (as high as e ∼ 0.99). During these phases,
intense bursts of gravitational radiation can be emitted at orbital periapsis, which produces
a gravitational wave signal at frequencies substantially higher than the orbital frequency.
The likelihood of detection of these bursts with pulsar timing and the Laser Interferometer
Space Antenna (LISA) is estimated using several population models of SMBHs with masses
�107M�. Assuming that 10 per cent or more of binaries are in triple systems, we find that
up to a few dozen of these bursts will produce residuals >1 ns, within the sensitivity range
of forthcoming pulsar timing arrays. However, most of such bursts will be washed out in
the underlying confusion noise produced by all the other ‘standard’ SMBH binaries emitting
in the same frequency window. A detailed data analysis study would be required to assess
resolvability of such sources. Implementing a basic resolvability criterion, we find that the
chance of catching a resolvable burst at a 1 ns precision level is 2–50 per cent, depending on
the adopted SMBH evolution model. On the other hand, the probability of detecting bursts
produced by massive binaries (masses �107 M�) with LISA is negligible.
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1 IN T RO D U C T I O N

It is well established that most galaxies host supermassive black
holes (SMBHs) in their centres (Richstone et al. 1998). In the past
decade, compelling evidence of the correlation between the mass
of the central SMBH and the bulge velocity dispersion and lumi-
nosity has been collected (Ferrarese & Merritt 2000; Gebhardt et al.
2000; Merritt & Ferrarese 2001; Tremaine et al. 2002), indicat-

�E-mail: pau@aei.mpg.de

ing a coevolutionary scenario for SMBHs and their hosts. On a
cosmological scale, galaxy formation and evolution can be under-
stood by semi-analytic modelling, where properties of the baryonic
matter are followed in the evolving dark matter haloes obtained
from large-scale models of hierarchical gravitational structure for-
mation. A simple model of galaxy and central SMBH evolution
in which every merger of galaxies leads quickly to coalescence of
their central black holes (BHs) can quantitatively reproduce both
the SMBH mass–bulge luminosity relation (Kauffmann & Haehnelt
2000) and the SMBH mass–velocity dispersion relation (Haehnelt &
Kauffmann 2000).
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In this general picture, if both of the galaxies involved in a merger
host an SMBH, then the formation of an SMBH binary is an in-
evitable stage of the merging process. Following the merger, the
two BHs sink to the centre of the merger remnant because of dy-
namical friction (Begelman, Blandford & Rees 1980). When the
mass (either in gas or stars) enclosed in their orbit is of the order
of their own mass, they start to feel the gravitational pull of each
other, forming a bound binary. The subsequent binary evolution is,
however, still unclear. In order to coalesce, the binary must shed
its binding energy and angular momentum; a dynamical process
known in the literature as ‘hardening’. A crucial point in assessing
the fate of the binary is the efficiency with which it transfers energy
and angular momentum to the surrounding gas and stars.

The case of SMBH binaries in stellar environments has received
a lot of attention in the last decade. The system is usually mod-
elled as a massive binary embedded in a stellar background with
a given phase-space distribution. The region of phase space con-
taining stars that can interact with the SMBH binary in one orbital
period is known as the loss cone (Frank & Rees 1976; Amaro-
Seoane & Spurzem 2001; Milosavljević & Merritt 2003). As the
binary evolves, it ejects stars on intersecting orbits via the so-called
‘slingshot mechanism’, causing a progressive emptying of the loss
cone, which ultimately increases the hardening time-scale. Without
an efficient physical mechanism for repopulating the loss cone, the
binary will never proceed to small separations where coalescence
induced by gravitational radiation takes place within a Hubble time.
This is known as the stalling or ‘last parsec’ problem (Milosavljević
& Merritt 2001).

In the last decade, several solutions to the stalling issue have
been proposed. Axisymmetric or triaxial stellar distributions may
significantly shorten the coalescence time-scale (Yu 2002; Merritt
& Poon 2004; Berczik et al. 2006). This is because the presence
of deviations from spherical symmetry can produce ‘boxy’ orbits,
as seen by Berczik et al. (2006). These orbits produce centrophilic
stellar orbits and, therefore, replenish the loss cone. However, more
recent calculations by Amaro-Seoane & Santamaria (2009) of the
outcome of the merger of two clusters initially in parabolic orbits
(Amaro-Seoane & Freitag 2006) have not been able to reproduce
the rotation necessary to create the unstable bar structure. Other
studies have invoked eccentricities of the binary to refill the loss
cone, since this effect could alter the cross-section for super-elastic
scatterings (thus altering the state of the loss cone) and shorten the
gap to the onset of gravitational radiation effects (e.g. Hemsendorf,
Sigurdsson & Spurzem 2002; Aarseth 2003a; Amaro-Seoane &
Freitag 2006; Berczik et al. 2006; Amaro-Seoane, Miller & Fre-
itag 2009a). The presence of massive perturbers may also help
in replenishing the loss cone, boosting the binary hardening rate
(Perets, Hopman & Alexander 2007). On the other hand, in smooth
particle hydrodynamic simulations of SMBH binaries in gas-rich
environments, efficient hardening induced by the tidal interaction
between the binary and the gas medium has been observed, indicat-
ing a possible quick coalescence (Escala et al. 2005; Dotti, Colpi &
Haardt 2006). However, current simulations do not have the resolu-
tion to follow the binary fate down to the gravitational wave (GW)
emission regime, and robust conclusions about its late inspiral and
coalescence cannot be drawn. In any case, very massive low-redshift
systems, which are the major focus of our study, are more likely to
reside in massive gas-poor galaxies and their dynamics are probably
dominated by stellar interactions.

When scaled to very massive binaries (masses > 108 M�), the
inferred coalescence time-scales in a stellar-dominated environment
are of the order of few Gyr, indicating that SMBH binaries may be

relatively long-living systems. If the typical time-scale between two
subsequent mergers is comparable to the SMBH binary lifetime,
then a third BH may reach the nucleus when the binary is still in
place and the formation of SMBH triplets might be a common step in
the galaxy formation process. Recent studies of galaxy pairs lead to
the conclusion that 30–70 per cent of present-day massive galaxies
have undergone a major merger since redshift one (Bell et al. 2006;
Lin et al. 2008), where ‘major’ means with baryonic mass ratio of
the two components larger than 1/3 or 1/4 (depending on the study),
which is a quite conservative threshold. This means that, on average,
all massive galaxies have experienced a merger event in the last 10
billion years. Assuming uncorrelated events, and a typical binary
lifetime of 1 billion years, then 10 per cent of SMBH binaries may
form a triplet. With increasing redshift (and decreasing masses),
dynamical time-scales become shorter and shorter, implying that
triplets may have been more common in the high-redshift Universe.

In this paper, we focus on SMBH triplets, studying their dy-
namical evolution, GW emission and detectability. Employing so-
phisticated three-body scattering experiments calibrated on direct-
summation NBODY simulations, we study the dynamical evolution
of the system, finding surprisingly high eccentricities of the in-
ner SMBH binary (up to e > 0.99). Even though the triple in-
teraction would possibly lead to an ejection of one or even all
SMBHs (Valtonen et al. 1994), most of the systems are long living
(∼109 years; Hoffman & Loeb 2007), and final coalescence is more
common than ejection, confirming analytical results by Makino &
Ebisuzaki (1996). We model at the leading quadrupole order (Peters
& Mathews 1963) the bursts of gravitational radiation emitted in the
highly eccentric phase, assessing detectability with future GW ex-
periments. Adopting cosmologically and astrophysically motivated
models for SMBH formation and evolution, we estimate reliable
event rates.

In order to cover the low frequencies generated by the expected
cosmological population of coalescing SMBH binaries (e.g. Wyithe
& Loeb 2003; Sesana et al. 2004, 2005; Sesana, Volonteri & Haardt
2007) or plunges of compact objects such as stellar BHs on to su-
permassive ones (see e.g. Amaro-Seoane et al. 2007, for a review
and references therein), the space-born observatory Laser Interfer-
ometer Space Antenna (LISA) (Danzmann et al. 1998) has been
planned to be covering the range of frequencies of ∼10−4–10−1 Hz.
Moving to even lower frequencies, the Parkes Pulsar Timing Array
(PPTA; Manchester 2006, 2008), the European Pulsar Timing Array
(Janssen et al. 2008) and the North American Nanohertz Observa-
tory for Gravitational Waves (Jenet et al. 2009) are already col-
lecting data and improving their sensitivity in the frequency range
of ∼10−8–10−6 Hz, and in the next decade the planned Square
Kilometer Array (SKA; Lazio 2009) will provide a major leap in
sensitivity.

Throughout this paper, we consider only very massive systems,
with total mass ∼108 M�. Our goal is to investigate if the high-
frequency nature of eccentric bursts can provide information about
systems which would otherwise emit outside the frequency windows
of the planned GW experiments quoted above, by shifting wide
(separation �0.1 pc) SMBH binaries into the pulsar timing array
(PTA) window or by boosting relatively massive (masses >107 M�)
systems into the LISA domain. We note that the bursts analyzed here
are different from the ‘bursts with memory’, which arise during the
actual coalescence of SMBH binaries and are discussed in Pshirkov,
Baskaran & Postnov (2009) and van Haasteren & Levin (2009).

The structure of this paper is as follows. In Section 2, we describe
our comprehensive study of the dynamics of triple systems and
investigate the eccentricity evolution of the inner binary by using
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direct-summation N-body techniques and a statistical three-body
sample calibrated on the N-body results. In Section 3, we model the
GW signal produced by eccentric bursts and introduce observable
quantities for PTAs and LISA. In Section 4, we construct detailed
populations of emitting SMBH binaries and triplets, and discuss
our results in terms of signal observability and detection rates in
Section 5. Lastly, we briefly summarize our results in Section 6.

2 DYNAMICS O F TRIPLE SYSTEMS

In modelling the dynamics of BH triple systems within the centres
of galaxy merger remnants, direct N-body integrations provide the
most accuracy but are the most computationally expensive. We per-
formed eight direct N-body calculations and used these to test the
validity of an approximation scheme involving three-body SMBH
dynamics embedded in a smoothed galactic potential with dynami-
cal friction and gravitational radiation modelled by drag forces.

2.1 Direct N-body calculations

The direct-summation NBODY method we employed for all the calcu-
lations includes the Kustaanheimo and Stiefel (KS) regularization.
Thus, when two particles are tightly bound to each other or the
separation between them becomes very small during a hyperbolic
encounter, the system becomes a candidate to be regularized in
order to avoid problematical small individual time-steps (Kustaan-
heimo & Stiefel 1965). This procedure was later exported to systems
involving more than two particles. In particular, the KS regulariza-
tion has been adapted to isolated and perturbed three- and four-body
systems – the so-called triple (unperturbed three-body subsystems),
quad (unperturbed four-body subsystems) and the chain regulariza-
tion. The latter is invoked in our simulations whenever a regularized
pair has a close encounter with another single star or another pair
(Aarseth 2003b).

The basis of direct NBODY codes relies on an improved Hermite
integrator scheme (Aarseth 1999) for which we need not only the
accelerations but also their time derivative. The computational ef-
fort translates into accuracy so that we can reliably keep track of
the orbital evolution of every particle in our system. In order to
make a highly accurate estimate of the eccentricity evolution of the
SMBH system, we do not employ a softening to the gravitational
force [i.e. substituting the 1/r2 factor with 1/(r2 + ε2), where r is

the separation and ε is the softening parameter] that weakens the
interaction at small separations.

The initial conditions for the set of three SMBHs, used to con-
duct an exploration of the initial parameter space, are shown in
Table 1. For the stellar system, we use a Plummer model (Plummer
1911), which is an n = 5 polytrope with a compact core and an
extended outer envelope. In this model, the density is approxi-
mately constant in the centre and drops to zero in the outskirts,
φ = −GM�/

√
r2 + R2

P, with M� being the total stellar mass.
This defines the Plummer radius RP. We depict the initial condi-
tions in Fig. 1, relative to the circular and escape velocities of the
Plummer potential. We present results from eight direct numeri-
cal simulations, one using 512 000 stars using the special purpose
GRAPE6 system and the remaining simulations using BEOWULF PC clus-
ters and the Albert Einstein-Institut (AEI) mini-PCI GRAPE cluster
TUFFSTEIN.

2.2 Three-body improved statistics

While direct N-body simulations yield a very accurate result, they
should be seen as a way to calibrate and test faster, more approximate
simulations which can exhaustively cover the parameter space and
provide good statistics. We note that the SMBHs in the N-body
simulations are equal-mass, and (with the exception of simulation
H) all of the systems studied with this method are coplanar. This
was done because setting all SMBHs on a single plane accelerates
the dynamics, shortening the integration time.

In general, one wants to explore the whole parameter space, in-
cluding non-coplanar systems with different SMBH masses. For
this purpose, we performed an ensemble of 1000 three-body ex-
periments, with the three Euler angles of the outer orbit sam-
pled uniformly and a distribution of mass ratios motivated by Ex-
tended Press–Schechter theory (with typical mass ratios m1 : m2 : m3

around 3.5:1). In each experiment, we computed the Newtonian or-
bits of three SMBHs embedded in a smooth galactic potential and
added drag forces to account for gravitational radiation and dynam-
ical friction. We also included coalescence conditions when either
of the two SMBHs passes within three Schwarzschild radii of each
other, or the gravitational radiation time-scale becomes short rel-
ative to the orbital period of the binary. Close triple encounters
were treated using a KS-regularized few-body code provided by
Sverre Aarseth (Mikkola & Aarseth 1990, 1993), while the two-
body motion in between close encounters was followed with a

Table 1. Initial conditions for the set of three SMBHs in each of the eight direct N-body simulations.

Model A B C D E F G H

N � 64 000 64 000 64 000 64 000 64 000 64 000 512 000 256 000
R/RP 0.400 12 0.800 06 0.400 12 0.800 06 0.200 25 0.600 17 0.600 17 0.494 97

0.400 12 0.203 03 0.640 31 0.539 56 0.203 03 0.640 31 0.640 31 0.202 78
0.400 12 0.203 03 0.400 12 0.203 03 0.203 03 0.400 12 0.400 12 0.202 78

V /V esc 0.074 76 0.074 76 0.074 76 0.700 00 0.747 62 0.649 91 0.649 91 0.707 11
0.074 76 0.074 76 0.074 76 0.093 45 0.074 76 0.074 76 0.074 76 0.093 45
0.074 76 0.074 76 0.074 76 0.093 45 0.074 76 0.074 76 0.074 76 0.093 45

V /V circ 0.208 86 0.135 43 0.208 86 1.268 02 3.845 16 1.363 91 1.363 91 1.683 76
0.208 86 0.379 56 0.151 08 0.208 86 0.379 56 0.151 08 0.151 08 0.474 96
0.208 86 0.379 56 0.208 86 0.474 42 0.379 56 0.208 86 0.208 86 0.474 96

Note. N� is the total number of stars employed in the simulation, V is their velocity, R is their position, RP

is the position of the SMBHs in terms of the Plummer radius, V esc is their escape velocity and V circ is their
circular velocity. The mass of the SMBHs in N-body units is 1 × 10−2, they are equal-mass and the mass
of a star 1.15 × 10−5.
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Figure 1. Initial conditions for the different direct N-body simulations in
the RP, V plane. For each simulation, we choose the separation between two
SMBHs to be substantially smaller than the distance to the third SMBH. The
initial parameters are selected in such a way that they are random but with
an initial velocity smaller than the escape velocity Vesc and with a radius
r < RP. We also show the circular velocity in the figure, Vcirc. Initially the
set of three SMBHs of simulation A is represented with red solid bullets;
for simulation B, with green solid triangles; for simulation C, with cyan
open triangles; for simulation D, with blue open squares; for simulation E,
with pink open circles; for simulation H with solid orange squares and for
simulations F and G with black crosses. In the case of simulations A, B, C,
D, E, F and G, the three SMBHs are set initially in a planar configuration.
In the case of simulation H, they have a z-component different from zero in
both the coordinates and velocities. In the cases of simulations A, B, C, E
and H, we slightly modified the positions of the symbols in order to avoid
an overlap.

simple fourth-order Runge–Kutta integrator (see Hoffman & Loeb
2007 for further details on the code). The initial conditions are those
for the canonical initial conditions as in Hoffman & Loeb (2007).
We performed each run twice – once with gravitational radiation
drag and the coalescence conditions, and once without.

The three-body experiments are divided into two computational
regimes based upon a dimensionless parameter, α, that measures
the relative tidal perturbation to the inner binary by the interloper
at apoapsis:

α = 2
R3

apo Msingle

Mbin, smaller D
3
single

, (1)

where Rapo is the apoapsis separation of the two inner binary mem-
bers, Msingle is the mass of the single SMBH, Mbin, smaller is the mass
of the smaller inner binary member and Dsingle is the distance of
the interloper (single SMBH) from the inner binary centre of mass.
In the limit α → 0, we know that the period of the inner binary is
perfectly Keplerian (plus gravitational radiation), since the pertur-
bation to the force from the third body is negligible, and thus we
can do orbit-averaged integration instead of precisely integrating
the trajectories of all three bodies. The two regimes are defined as
follows.

(i) The first regime corresponds to when a three-body interaction
is taking place (defined by α > 10−5), an extremely conservative
criterion for when we need to do the full three-body integration.

(ii) The second regime corresponds to when the single SMBH
and binary are wandering separately through the galaxy (α < 10−5),
often of the order of a Hubble time.

In regime (i), the three-SMBH dynamics are integrated using Sverre
Aarseth’s high-precision, regularized CHAIN code. Gravitational ra-
diation and stellar-dynamical friction are treated as perturbing,
velocity-dependent forces on the three separate bodies. In regime
(ii), the separate orbits of the single and binary centre of mass
are followed using a simple fourth-order Runge–Kutta integrator
and the evolution of the binary semimajor axis and eccentricity are
evolved using orbit-averaged equations.

In computational regime (ii) (between three-body encounters),
the stellar interactions are treated using the hard binary prescription
of Quinlan (1996). The eccentricity evolution of the inner binary
under stellar interactions for near equal-mass hard binaries is quite
weak, so it is neglected entirely and only the binary semimajor axis
is evolved under stellar interactions. The eccentricity is evolved
under gravitational radiation as given by Peters (1964). Dynamical
friction tends to increase the eccentricity of a binary in the super-
sonic regime (where the orbital speed exceeds the stellar velocity
dispersion) and to circularize it in the subsonic regime. Since the
triple SMBH system starts out supersonic in these three-body ex-
periments, this effect produces a slight increase in the outer binary
eccentricity during the initial inspiral of the third SMBH. Although
we neglect the eccentricity evolution of the inner binary during this
phase, we find that its eccentricity is thermalized by the first reso-
nant three-body encounter. The time-scale of the chaotic three-body
interactions (∼105 years) is much shorter than the stellar-dynamical
time-scale (107–1010 years), so any effect of stellar interactions dur-
ing these encounters is completely negligible. Thus, stellar interac-
tions play only following two roles in our three-body simulations.

(a) They bring the third BH in to interact with the inner binary
from an initial marginally stable hierarchical triple configuration.

(b) During phase (ii), stellar-dynamical interactions gradually
decrease the binary semimajor axis, so that it enters the next three-
body encounter harder than it left the last one if the time between
encounters is long (>107 years). The binary may even coalesce
between encounters due to this gradual shrinking.

Consequently, the distribution in eccentricities is best estimated
using the fraction of time that binaries spend at a given eccentricity
while in computational regime (i) since there is minimal evolution of
the eccentricity while in regime (ii). We note that the overwhelming
majority of the time spent in regime (i) is still spent with α small
enough that the system can be thought of as a separate inner and
outer binary, and so the instantaneous inner binary semimajor axis
and eccentricity are well defined.

2.3 Distribution of eccentricities

Fig. 2(a) shows the fraction of the time that the binary (closest
SMBH pair) spends above a given eccentricity during close en-
counters, averaged over 1000 three-body experiments. The red solid
curves are the results of the standard runs including gravitational ra-
diation drag and coalescence conditions while the blue solid curves
are the ‘Newtonian’ case with these effects neglected. The dashed
red and blue curves are averaged over only those experiments where
the initial BH configuration has inclination <39◦, the critical angle
for Kozai oscillations, for comparison with the direct N-body simu-
lations that use coplanar initial conditions. The black (dot–dashed)
line shows the thermal distribution of eccentricities for reference
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Figure 2. Cumulative fraction of time for the set of 1000 three-body simulations. The red, solid line corresponds to all simulations with the 2.5 post-
Newtonian correction term; the blue solid line corresponds to the same simulations but without it (i.e. purely Newtonian); the dot–dashed red curve is like
the first case but taking into account only systems in which the third SMBH had an inclination below the critical Kozai angle of 39◦, to compare with the
direct N-body simulations of Fig. (4); the dot–dashed blue curve is the same, but for the Newtonian cases and the dot–dashed black curve corresponds to
the thermal distribution, since the direct N-body simulations do not have relativistic correction terms. The top-left panel shows the eccentricity computed
from the instantaneous positions and velocities of the two binary members, and the top-right panel shows the ratio of the actual to the thermal distribution.
For the Newtonian runs, the distribution is within a factor of 2 of thermal down to 1 − e = 0.01 and within a factor of 3 of thermal down to ∼1 − e =
0.001. The bottom two panels show the pericentre distances of the binary in pc and in units of the sum of the Schwarzschild radii of the two binary members.
No coalescence was allowed during close encounters for the Newtonian runs. We can see that the distributions converge, with respect to the statistics, from
the fact that they are substantially the same as the lower number experiments and that the Newtonian and gravitational radiation distributions match at low
eccentricities.

purposes. Three-body interactions result in a thermal distribution
of eccentricities, truncated at very high eccentricities by coales-
cence in collisions when gravitational radiation is included. The
similarity of the dashed and solid curves shows that once the initial
secular evolution is over, the system quickly thermalizes and little
memory of the initial configuration is maintained. Fig. 2(b) shows
the ratio of the thermal to the actual distribution as a function of
eccentricity. The first close encounter in each experiment has been
excluded from these plots, since it begins from a stable hierarchical
triple configuration and includes a long period of secular evolution,
whereas chaotic three-body encounters are the focus of this work.

The runs with and without gravitational radiation closely follow
each other and the thermal distribution up to eccentricities e ∼ 0.99.
At higher eccentricities, the Newtonian distribution remains within
a factor of 2 to 3 of the thermal distribution, but the gravitational ra-
diation curve falls off sharply, since these high-eccentricity systems
coalesce quickly through emission of GWs. To verify this interpre-
tation of Fig. 2, we plot the time spent at different locations in the
tgr–(1 − e) plane in Fig. 3, where the gravitational radiation time-
scale is computed from the instantaneous (a, e) of the binary. The
eccentricity where the red and blue curves diverge in Fig. 2(b) (1 −
e ∼ 0.01) is the value where the typical tgr falls to just a few orbital
periods, so that the binary can coalesce quickly by gravitational
radiation before the third body scatters it on to a lower eccentric-
ity orbit. Figs 2(c) and (d) show the time spent by the binary at

various pericentre separations, in pc and in Schwarzschild radii.
Note that the gravitational radiation curve diverges sharply from
the Newtonian one when the pericentre separation reaches ∼100
Schwarzschild radii. We show the fraction of time spent at different
eccentricities and the fraction of time spent at different pericentre
separations for the N-body simulations in Fig. 4. The qualitative
features are retained.

3 G RAVI TATI ONA L WAV ES: A NA LY SI S
O F T H E SI G NA L

In this section, we make use of the leading Newtonian order deriva-
tion of the GW radiation from eccentric binaries, as described in
Peters & Mathews (1963). We also make use of geometric units,
with G = c = 1. Consider a system with masses M2 < M1, orbiting
with an orbital rest-frame frequency f r = ω/2π, and with eccen-
tricity e; at the quadrupole leading order, the luminosity Ė emitted
by the system averaged over one complete orbit is

Ė = 32

5
M10/3(2πfr)

10/3F (e) = ĖcF (e), (2)

where

F (e) =
∞∑

n=0

g(n, e) = 1 + 73
24 e2 + 37

96 e4

(1 − e2)7/2
(3)
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Figure 3. Time spent at different locations in the tgr– (1 − e) plane in the
Newtonian simulations (blue lines) of Fig. 2. P = t/tclose is the probability
of finding the binary in a given bin at a randomly chosen time, where
tclose is the total simulation time spent in close three-body encounters. The
simulation being presented here is the same as the Newtonian simulation
(blue lines) in Fig. 2. The purpose of this figure is to understand whether
gravitational radiation is the main reason for the fall-off in the eccentricity
distribution, since the highest eccentricity systems have short coalescence
times and quickly disappear. tgr is in years in the upper panel and in orbital
periods in the lower panel (the typical resonant encounter takes of the order
of 105 years). Note that 1 − e = 0.002 is about where tgr falls to less than
an orbital period.

and M = M
3/5
1 M

3/5
2 /(M1 +M2)1/5 is the chirp mass of the system.

Ėc, defined by the right-hand side of equation (2), is the luminosity
emitted by a circular binary orbiting at the same frequency f r. The
binary radiates GWs in the whole spectrum of harmonics f r,n =

nf r (n = 1, 2, . . .), and the relative power radiated in each single
harmonic is described by the function g(n, e), defined as

g(n, e) = n4

32

[
B2

n + (1 − e2)A2
n + 4

3n2
Jn(ne)2

]
, (4)

where Jn(x) are the Bessel functions and An and Bn are also defined
in terms of the Jn as

Bn = Jn−2(ne) − 2eJn−1(ne) + 2

n
Jn(ne)

+ 2eJn+1(ne) − Jn+2(ne), (5)

An = Jn−2(ne) − 2Jn(ne) + Jn+2(ne). (6)

The total luminosity of the source can then be written, using equa-
tions (2) and (3), as the sum of the component radiated at each
single harmonic:

Ė =
∞∑

n=0

Ėn =
∞∑

n=0

Ėcg(n, e). (7)

Given a general GW characterized by the two polarized compo-
nent waves h+ and h×, the rms amplitude of the wave is defined
as h = √〈h2+ + h2×〉, where 〈〉 denotes the average over directions
and over time. The flux radiated in the GW field is related to the
derivatives of its amplitude components by the relation (Thorne
1987)

dE

dt dA
= 1

16π

(
ḣ2

+ + ḣ2
×
)
. (8)

The sinusoidal nature of the waves implies 〈ḣ2
++ḣ2

×〉 = 4π2f 2
r 〈h2

++
h2

×〉. So that integrating equation (8) over a spherical surface of
radius dL (the luminosity distance from the source) centred at the
source and averaging over an orbital period, directly relates Ė to
the wave rms amplitude. We can then infer that the rms amplitude
and the energy radiated in the nth harmonic are related as (Finn &
Thorne 2000)

hn = 1

πd

√
Ėn

fr,n
= 2

√
32

5

M5/3

ndL
(2πfr)

2/3
√

g(n, e), (9)

where d = dL/(1 + z). In the limit of a circular orbit [i.e. g(n, e) =
δn,2 in the Kronecker-δ notation], equation (9) returns the usual
sky–polarization averaged amplitude (Thorne 1987).

Figure 4. Left-hand panel: fraction of time for the direct N-body simulations at which the binary BH has eccentricity in the range 1 − e for the 512 000 stars
simulation (thin green curve) and for the lower resolution simulations. The thick red curve corresponds to the average of these lower resolution computations
and the dashed curve to the thermal distribution. Right-hand panel: cumulative fraction of time spent on a certain periapsis distance for all direct N-body
simulations following the same colour labelling. One N-body unit of distance is U |R = 1.1 pc.
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3.1 Observed quantities

Since we are interested in an estimate of the detectability of ex-
tremely eccentric binaries (induced by triple interactions) by means
of pulsar timing (and possibly LISA) observations, we first introduce
an extension of the characteristic amplitude to include eccentric bi-
naries. Eccentric binaries emit pulses of GWs at their periapsis
passages, and the rms amplitude of each harmonic is given by equa-
tion (9). However, hn is an average amplitude related to the average
luminosity along the orbit. The actual relevant time for the burst is
the periapsis passage time-scale T p = (1 − e)3/2T orb (Torb is the
binary orbital period), and if the burst is detected almost all the
energy radiated along the whole orbit is seen on the time-scale Tp.
This means that the relevant detectable amplitude of each harmonic
during the burst is

hobs,n = hn

√
T fr,n, (10)

where the factor T = max(Torb, Tobs) takes into account the fact that
if T orb < T obs, multiple bursts are visible during the observation.
Equation (10) is a crude approximation, nevertheless it catches
the basic features of the observed signal: this is given by the rms
amplitude of each single nth harmonic multiplied by the square
root of the cycles completed by the harmonic in an orbital period,
assuming that the binary orbit is a fixed ellipse and GW emission
does not change the orbital parameters.

The search for GWs using pulsar timing data exploits the effect of
gravitational radiation on the propagation of the radio waves from
one (or more) pulsar(s). A passing GW would imprint a character-
istic signature on the time of arrival of radio pulses (e.g. Sazhin
1978; Detweiler 1979; Bertotti, Carr & Rees 1983), producing a
so-called timing residual. We refer the reader to Jenet et al. (2004)
and Sesana, Vecchio & Volonteri (2009, hereafter SVV09) for a de-
tailed mathematical description of the GW-induced residuals. The
residuals are defined as integrals of the GW during the observation
time. For a collection of harmonics, the residuals are given by

R(T ) =
∫ T

0

∞∑
n=0

[
α2 − β2

2(1 + γ )
h+,n + αβ

(1 + γ )
h×,n

]
dt, (11)

where α, β and γ are the direction cosines of the pulsar relative
to a Cartesian coordinate system defined with the z-axis along the
direction of propagation of the GW and the x and y axes defining
the + polarization. The harmonics of the two polarizations, h+,n

and h×,n, can be found in section 3.2 of Pierro et al. (2001). The
rms residual δtgw is then formally defined as

√
〈R(T )2〉.

A simple derivation of the average timing residual δtgw generated
by a circular binary is given by SVV09. With the notations adopted
above, their equation (20) reads as

δtgw(f ) =
√

8

15

h2

2πfr

√
f Tobs , (12)

where the observed frequency f is related to f r as f = f r/(1 + z)
(with z being the redshift of the source), the factor

√
f Tobs takes

into account for the signal ‘build-up’ with the square root of the
number of cycles and

√
8/15 comes from the angle average of the

amplitude of the signal (cf. equations 17–21 of SVV09). We can
generalize this derivation to the case of bursts produced by eccentric
binaries, relating the hobs,n of each harmonic to the induced residual
residual at its peculiar frequency via

δtgw(fn) =
√

8

15

hobs,n

2πfr,n
. (13)

The total residual can then be assumed to be of the order of

δtgw =
[ ∞∑

n=0

δt2
gw(fn)

]1/2

. (14)

The estimation given in equations (13) and (14) is justified because
the integral in equation (11) gives products of sines and cosines
of different harmonics that drop to zero when averaged over the
observation, leaving only a sum of the square signals produced
by each single harmonic [those terms including cos2(2πfnt) and
sin2(2πfnt)]. We shall plot, in Section 4, R(T) for selected eccentric
bursts, and we will see that δtgw, as defined by equations (13) and
(14), gives a good estimate of the amplitude of the induced residual.

For inferring LISA detectability, given hobs,n, an estimate of the
signal-to-noise ratio (SNR) in the LISA detector is straightforwardly
computed as

SNR2 = 4
∞∑

n=0

h2
obs,n

5f Sf

, (15)

where Sf is the one-side noise spectral density of the detector. We
adopted the Sf given in equation (48) of Barack & Cutler (2004),
based on the LISA Pre-Phase A Report. We extended the sensitivity
down to 10−5 Hz and considered detection with two independent
TDI interferometers (which implies a gain of a factor of 2 in Sf ).
The SNR computed in this way may seem a poor approximation.
However, we have checked the SNRs against those obtained follow-
ing the procedure given in Section V–B of Barack & Cutler (2004),
where the binary is consistently evolved with orbit-averaged post-
Newtonian equations, and found agreement at a 20–30 per cent
level, which is acceptable since we are interested in a preliminary
estimation of source detectability.1

3.2 Some heuristic considerations

The previous derivation can be used to achieve a heuristic under-
standing of what we may expect to actually detect. Let us consider
two binaries ‘1’ and ‘2’ with the same masses, and semimajor axes
related as a2 = a1(1 − e) (suppose ‘2’ is in circular orbit and ‘1’ on
a very eccentric orbit, i.e. 1 − e � 1). Equations (2) and (3) provide
the luminosity averaged over an orbital period. The eccentric binary
‘1’ has an orbital period T 1 ∝ a

3/2
1 . But, it emits GWs in a short

burst of duration of the order of its periapsis passage that is T p ∝
[a1(1 − e)]3/2. The mean luminosity of the eccentric binary during
the periapsis burst is then

Ė1,p = Ė1
T1

Tp
∝ F (e)

a5
1

(1 − e)−3/2, (16)

where we used the Newtonian relation to switch from f to a in
equation (2) and ignored the source redshift. According to equa-
tions (8) and (9), we can write h1 ≈

√
Ė1,p/fp, where we make the

assumption that f p is the ‘dominant frequency of the burst’, which
corresponds to the ‘periapsis frequency’, f p ∼ f 1(1 − e)−3/2. A
circular binary with semimajor a2 simply emits a periodic wave
with amplitude h2 ≈

√
Ė2/f2, where Ė2 ∝ 1/a5

2 . Remembering
that a2 = a1(1 − e) and, consequently, f p ≈ f , the h1/h2 ratio
reads

h1

h2
∼

[
1 + 73

24 e2 + 37
96 e4

(1 + e)7/2

]1/2

= O(1). (17)

1 The difference is mainly due to the fact that the orbital parameters change
during the strong GW emission burst, and this is not taken into account in
equations (10) and (15).
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Since PTAs detect a timing residual that is δt ∼ h/f , it follows
that δt1/δt2 ∼ h1/h2. The timing residual caused by a burst that
happens to be at the right frequency for PTA (∼10−8 Hz), generated
by a very eccentric binary with an orbital frequency f � 10−8, is
then of the same order of the residual caused by a circular binary
emitting at f = 10−8. The signal is, however, quite different, and it
is spread over a broad frequency band. This heuristic consideration
suggests that PTA detection of such extreme events may be rather
difficult, because their signal may be overwhelmed by GW emit-
ted by ‘conventional’ binaries with shorter periods. On the other
hand, we might expect some interesting effects for LISA, since this
mechanism can boost the GW frequency by more than three order
of magnitudes and signals from systems that would emit at much
lower frequencies, may be shifted into the LISA domain.

4 C O N S T RU C T I N G TH E S I G NA L F RO M
B INARY AND TRIPLET POPULATION
M O D E L S

4.1 Hierarchical models for SMBH evolution

To draw sensible predictions about the number of expected de-
tectable GW bursts, we need to model the population of triple sys-
tems that form during the SMBH hierarchical build up. We start by
considering the SMBH binary population. We are mainly interested
here in probing massive systems M = M1 + M2 > 107 M�, so that
we can use catalogues of systems extracted from the Millennium
Run (Springel et al. 2005). We employ the very same catalogues
used in SVV09; the reader is referred to section 2 of that paper
for details, here we merely summarize the basics of the procedure.
We compile catalogues of galaxy mergers from the semi-analytical
model of Bertone, De Lucia & Thomas (2007) applied to the Mil-
lennium Run. We then associate a pair of merging SMBHs to each
merging pair of spheroids (elliptical galaxies or bulges of spirals)
according to four different SMBH-host prescriptions (section 2.2
of SVV09). Here we consider the three Tu models presented in
SVV09, in which SMBHs correlate with the spheroid masses ac-
cording to the relation given by Tundo et al. (2007), and differ
from each other in the adopted accretion prescription: the Tu–SA
model (accretion triggered on to the more massive BH before the
final coalescence), the Tu–DA model (accretion triggered before the
merger on to both BHs) and the Tu–NA model (accretion triggered
after the coalescence). We also investigate the dependence on the
adopted SMBH binary population by considering the La–SA and
Tr–SA models (see SVV09 for details). The catalogues of coalesc-
ing binaries obtained in this way are then properly weighted over the
observable volume shell at each redshift to obtain the differential
distribution d3N/dMdz dtr, i.e. the coalescence rate (the number
of coalescences N per unit proper time dt r) in the chirp mass and
redshift interval [M,M + dM] and [z, z + dz], respectively.

4.2 Signal from SMBH binaries and triplets

The GW signal can be divided into two contributions – one from
the binaries, and one from the triplets. We will refer to the latter
as bursting sources, since we consider the GW bursts they emit at
the periastron in their eccentric phase. In this study, we consider
the binary population emitting in the PTA domain to be composed
of circular systems dynamically driven by GW emission only. The

Figure 5. Two-dimensional joint probability distribution P(rp, e) for the
inner binary in the [rp, e] plane (where rp = a(1 − e)). The distribution
is obtained averaging over the 1000 three-body experiments described in
Section 2.2.

GW signal is then given by (Sesana, Vecchio & Colacino 2008)

h2
c(f ) =

∫ ∞

0
dz

∫ ∞

0
dM d3N

dz dM dlnfr
h2(fr), (18)

where h is the sky–polarization average of each single source
(Thorne 1987) and d3N/dz dM dlnfr is the instantaneous popula-
tion of comoving systems, emitting in a given logarithmic frequency
interval with chirp mass and redshift in the range [M,M + dM]
and [z, z + dz], and is given by

d3N

dz dM dlnfr
= (1 − Ft)

d3N

dz dM dtr

dtr

dlnfr
, (19)

where

dtr

dlnfr
= 5

64π8/3
M−5/3f −8/3

r . (20)

In equation (19), Ft is the fraction of coalescing binaries that have
experienced a triple interaction. This can be estimated simply by
knowing the likelihood of forming triple systems because of two
subsequent mergers. The galaxy merger rate drops dramatically at
low redshift, and the typical time-scale between two subsequent
major merger could be as long as ∼1010 years. This means that
massive galaxies may have experienced, on average, just one major
merger since z = 1 (see e.g. Bell et al. 2006). If we assume that
survival time of a binary is ∼109 years, adopting the simplifying
assumptions of uncorrelated mergers with a Poissonian delay dis-
tribution with a characteristic time of 1010 years, the probability of
having two subsequent mergers in a 109-year time interval is ∼0.1.
We will consider two different situations, choosing the fraction of
SMBH binaries experiencing a triple interaction to be Ft = 0.1 or
Ft = 0.5.

By knowing Ft, we can write the coalescence rate of binaries
that have experienced a triple interactions as Ft × d3N/dz dM dtr.
From the three-body scattering presented in Section 2.2, we derive
the joint probability distribution for the inner binary of having a
certain periastron and a certain eccentricity, P(rp, e). This quantity
is plotted in Fig. 5 for our set of the 1000 three-body realizations.
This probability distribution refers to systems with mean total mass
∼4 × 108 M�. To extend it to a wider range of masses, we assume a
triplet lifetime T = 109 yr independently of the masses (which are
in a narrow range peaked around 108 M� in our case) and rescale
P(rp, e) so that, in the GW-dominated regime, elements in the
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(rp, e) space having the same coalescence time-scale T gw(rp, e) have
the same probability value P(rp, e). Since T gw ∝ a4/[M1M2(M1 +
M2)], assuming an invariant binary mass ratio distribution in the
relevant mass range (which is a good approximation given the nar-
row mass range we are dealing with), the y-axis in Fig. 5 is rescaled
for any given total mass of the binary M according to (M/4 ×
108 M�)3/4. We then compute the distribution of eccentric binaries
emitting an observable burst as

N (M, z, rp, e) = d3N

dz dM dtr
× Ft × T × P(rp, e)

× min[1, (Tobs/Torb)], (21)

where the factor min[1, (T obs/T orb)] takes into account the fact
that if the binary period is longer than the observation time, only
a fraction T obs/T orb of the systems is actually bursting during the
observation.

4.3 Practical computation of the signal

The relevant frequency band for pulsar timing observations is be-
tween 1/T obs and the Nyquist frequency 1/(2
t) – where 
t is
the time between two adjacent observations, corresponding to 3 ×
10−9–10−7 Hz. The frequency resolution bin is 
f = 1/T obs, and
we assume T obs = 10 yr throughout the paper. Every realistic
frequency-domain computation of the signal has to take into ac-
count the frequency resolution bin 
f of the observation. The
signal is therefore evaluated for discrete frequency bins 
fj cen-
tred at discrete values of the frequency fj, where f (j+1) = fj + 
f .
What we actually collect in our code is the numerical distribution

3N/
z
M
fr, where 
f r = (1 + z)
f . The integral in equa-
tion (18) is then replaced as a sum over redshift and chirp mass, and
the value of the characteristic strain at each discrete frequency fj is
computed as

h2
c(fj ) =

∑
z

∑
M


3N


z
M
fr,j
fr h

2(z,M, fr)
z
M, (22)

where 
f r,j = (1 + z)
fj is the jth frequency bin shifted according
to the cosmological redshift of the sources. Equation (22) is simply
read as the sum of the squares of the characteristic strains of all the
sources emitting in the observed frequency bin 
fj. If we produce
a family of α = 1, . . . , K sources by performing a Monte Carlo
sampling of the numerical distribution 
3N/
z
M
fr of the
emitting binary population, the characteristic strain is computed as

h2
c(fj ) =

K∑
α=1

hc,α(z,M, fα,r )2�[fα,r , 
fj (1 + z)], (23)

where �[f α,r, 
fj(1 + z)] = 1 if f α,r ∈ 
fj(1 + z) and is null else-
where. To recover equation (22), the characteristic amplitude of the
individual source is given by h2

c,α = h2
αf α,r/
f r,j ≈ h2

αfj/
fj =
h2

αfjT obs, i.e. the sky and polarization averaged amplitude square,
multiplied by the number of cycles completed in the observation
time. The induced rms residual of each individual source is then
given by equation (12). Note that in the limit of large K (formally,
K → ∞), hc(fj) computed according to equation (23) is inde-
pendent of Tobs (because the increment of the contribution of each
single source according to the number of cycles completed during
Tobs is balanced by the fact that we sum over a frequency bin that
is proportional to 1/T obs), and its value coincides with the one ob-
tained from the standard energy-based definition of hc(f ) (Sesana
et al. 2008). On the other hand, when K is small (i.e. we sum over
a small number of sources), fluctuations become important in the

computation of the signal in each frequency bin. Numerical com-
putation according to equation (23) allows us to account for signal
fluctuations, which are missing in the analytical definition of the
characteristic amplitude of the GW spectrum (e.g. Phinney 2001),
but are important in the actual computation of the observed signal.
Given hc, the induced rms timing residual produced by the whole
emitting population is simply given by hc(fi)/(2πfi).

We generate a population of emitting binaries according to the
numerical distribution 
3N/
z
M
fr, and sum all the hc,α con-
tributions in every frequency bin to obtain the characteristic strain
of the signal. We then generate, again using a Monte Carlo sam-
pling, a population of emitting eccentric binaries in triple systems
from the distribution given in equation (21) and compute their GW
bursts and the induced rms residuals according to equations (9, 10,
13, 14). For the few systems reaching 10−5 Hz with their higher
harmonics, we also compute the SNR produced in the LISA de-
tector using equation (15), adopting the Sf given in equation (48)
of Barack & Cutler (2004), extended downwards to 10−5 Hz as
described in Section 3.1. We consider five different SMBH binary
populations presented in SSV09 (Tu–SA, Tu–DA, Tu–NA, La–SA,
Tr–SA) with two different fractions of triplets Ft = 0.1, 0.5, for a
grand total of 10 different models. We run 50 (when Ft = 0.5; 100
if Ft = 0.1) independent Monte Carlo realizations of each single
model, which allows us to perform a statistical study of the prop-
erties of the bursting sources. We consider only systems with e >

0.66, because highly eccentric systems are those expected to burst
at high frequencies, where the contribution of the overall circular
binary population declines. Also because high eccentricities result
in a well-defined burst shape which may be essential to distinguish
it from periodic sources.

5 R ESULTS

5.1 description of the signal

All the relevant features of the signal are plotted in Fig. 6 for a
realization of the Tu–DA model with Ft = 0.5. A Monte Carlo gen-
erated signal is depicted as a blue jagged line. The magenta points
represent all the binary systems producing a δtgw > 0.1 ns; there
are ∼4000 sources in this particular realization. The cyan ‘arcs’ of
dots represent the contribution to the signal coming from eccentric
binaries in triple systems (bursting sources), where contributions
from all harmonics falling in the same frequency bin were added
in the quadrature. The black triangles correspond to the brightest
source in each frequency bin. If a source is brighter than the sum
of all the contributions coming from the other sources emitting in
the same bin, we consider that source resolvable and we mark it
with a superposed red triangle. The red jagged line is the resulting
stochastic level of the signal, after the contribution from the resolv-
able sources has been subtracted. The arc-like black (red) tracks
represent the more luminous (resolvable) bursting systems in the
realization. In this particular case, there were five resolvable bursts
with rms residual δtgw = 3.5, 0.07, 0.04, 0.01, 0.002 ns. However,
considering realistic PTA sensitivities achievable in the near future
(∼1 ns, with the SKA), only the brightest one would have a good
chance of being detected.

We note that we introduced the concept of resolvable source in
the frequency domain, assuming that a source is resolvable if its
strain is larger than the sum of the strains of all the other sources
in that frequency bin. This definition is, however, only appropri-
ate for monochromatic sources. A very eccentric burst, emitting a
whole spectrum of harmonics, may not be the brightest source in
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Figure 6. Representation of all the relevant features of a Monte Carlo gen-
erated signal. The Tu–DA model with F = 0.5 is assumed. The jagged
blue line is an individual Monte Carlo realization of the signal. The small
black triangles label the characteristic strain of the brightest source in each
frequency bin. If the source is resolvable, it is also labelled with a big red
triangle. The jagged red line is the stochastic level of the signal, i.e. once the
resolvable sources in each frequency bin are subtracted. The magenta points
label all the systems producing an rms residual (computed through equa-
tion 12) larger than 0.1 ns over 10 years. The cyan ‘arcs’ of dots represent the
contribution to the signal coming from eccentric binaries in triple systems
(bursting sources), again assuming that their total rms residual is larger than
0.1 ns (equation 14). The arc-like black (red) tracks represent the spectrum
of the more luminous (resolvable) bursting systems in the realization, and
have the only purpose of guiding the reader eye. The dotted oblique lines
mark different rms residual levels as a function of the frequency.

any of the frequency bins; however, it may produce a significantly
larger rms residuals with respect to other individual circular bina-
ries. Moreover, in the time domain, the signature of these bursts is
quite different with respect to periodic circular binaries, resulting
in long bumps or narrow well-localized bursts (see Fig. 10). Given
these caveats, we will also present results in terms of total num-
ber of sources, independent of their resolvability according to our
definition.

A sample of different realizations of the signal is collected in
Fig. 7, for individual realizations of the three different Tu mod-
els. Only the brightest sources are plotted in this case. Given
the small number of systems involved, their phenomenology is
quite variable. For example, the realization illustrated in the left-
middle panel shows three resolvable bursts with δtgw � 3 ns; the one
in the lower-left panel does not show any individually resolvable
bursts.

5.2 Statistic of bursting sources

To quantify the statistics of the bursting sources, we cast the results
in terms of the cumulative number of sources as a function of the
timing residuals:

N (δtgw) =
∫ ∞

δtgw

dN

d(δt ′
gw)

d(δt ′
gw) , (24)

where the distribution dN/d(δt ′
gw) is the average over the 50 (100)

Monte Carlo realizations of each model. We compute this average

both considering all the sources emitting over a given δtgw thresh-
old (obtaining the total distribution of bursting sources), as well
as considering only resolvable sources as defined in the previous
section (obtaining the distribution of bursting resolvable sources).
In Fig. 8, N (δtgw) for all the sources is shown. Depending on the
adopted model, and on the fraction of triplets assumed, there are
few hundred to few thousand binaries contributing to the signal at
a level �1 ns. The number of triplets over this threshold is between
20 and 60 assuming F = 0.5, and, not surprisingly, a factor of 5
lower if we assume F = 0.1. If triple interactions of SMBHs are
common (say, F > 0.1), we may therefore expect 1-to-100 bursts
from eccentric sources contributing to the GW signal at a resid-
ual level of >1 ns. The eccentricity distribution of these bursts is
basically flat in the considered eccentricity range (0.66, 1). If we
consider resolvable sources only, the figures are not as promising.
As shown in Fig. 9, a timing precision of 0.1 ns is needed to guar-
antee the detectability of a resolvable burst if F = 0.5. At a 1 ns
level, we have less than one resolvable burst, we can then interpret
the results in terms of the probability of having such bursts in our
observable Universe. This probability ranges from 2 to 50 per cent
depending on the adopted model, and the eccentricity distribution
of these resolvable events is biased towards high values, peaking
around e = 0.9. La–SA and Tr–SA give similar results both qual-
itatively and quantitatively, therefore we do not plot them in the
figures in order to keep them clear. Again, we stress the fact that
our definition of resolvable source is rather arbitrary and does not
take into account for the peculiar shape of the burst, we then con-
sider these figures as lower limits to the actual detectability of these
bursts.

5.3 Signal samples in the time domain

To give a feeling of how the actual signals would appear, we also
computed residuals in the time domain for selected sources. To this
purpose, we evolved the system using equations (27)–(31) of Barack
& Cutler (2004) assuming non-spinning SMBHs. We then computed
all the components h+,n and h×,n (following Pierro et al. 2001)
and finally evaluated the residuals R(T) integrating equation (11).
The actual shape of the residuals is rather complex and depends
on the geometry of the system: the relative orientation of the source
to the pulsars (encoded in the direction cosines α, β and γ in equa-
tion 11); the polarization angle of the source �; the inclination i;
the initial phase of the orbit 0 and an angle φp describing the
orientation of the periastron in the orbital plane (see e.g. Barack &
Cutler 2004 for a definition of all these quantities).

Examples of the phenomenology of bursting sources are given
in Fig. 10 for a sample of eccentric systems found in one selected
realization of the model Tu–DA. In the left-hand panels, we show
the three brightest resolvable sources, while in the right-hand panels
we show three of the brightest bursts which would be unresolvable
according to our definition, because their power spectra would be
overwhelmed by the signal produced by the standard circular bina-
ries found in the realization. Parameters of the binaries are given
in Table 2. Bursts can be generated by very eccentric long-period
binaries (as in the two lower panels) or by relatively short-period
systems (e.g. central-left panel), in which case multiple bursts are
visible in the observation times. The width of the burst depends on
the periastron passage time-scale: systems with T p � T obs produce
narrow features in the data stream (e.g. lower-left panel), while
systems with T p ≈ T obs give a characteristic bump shaping all over
the data span (e.g. upper-right panel). Given the integral nature
of the signal (equation 11), its shape is also heavily dependent on 0
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Figure 7. Sample of individual Monte Carlo realizations of the signal generated using Tu–DA (left-hand panels), Tu–SA (central panels) and Tu–NA (right-
hand panels) models (F = 0.5). Line and point style as in Fig. 6. The two dashed lines in each panel represent the sensitivity of the PPTA (upper) survey and
an indicative sensitivity of 1 ns for SKA (lower).

Figure 8. Cumulative number N (δtgw) of circular binaries (thin lines) and
bursting triplets (thick lines) emitting over a given δtGW threshold as a
function of δtGW. In each panel, the different linestyles refer to the Tu–
SA (solid), Tu–DA (long-dashed) and Tu–NA (short-dashed) models. The
fraction of triplets assumed is labelled in each panel.

Figure 9. Same as Fig. 8, but considering only the resolvable sources in the
computation of N (δtgw) according to equation (24). Linestyle as in Fig. 8.

(e.g. the cumulative residual can be positive or negative depending
on the binary orbital phase at the beginning of the detection), on φp

and on �. The inclination of the source i and its aperture angle to
the pulsar determine the amplitude of the signal.
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Figure 10. Examples of timing residual, found in a particular realization of
the model Tu–DA, computed according to equation (11). Different linestyles
correspond to different aperture angles θ between the pulsar and the source;
θ = π/2 (dotted), π/3 (short-dashed), π/6 (long-dashed). In all the cases,
� = π/4 and i = π/3. φp is random and 0 is chosen so that the burst
occurs during the observation. The rms residual computed according to
equation (14) is also shown. Parameters of the sources are listed in Table 2.

Table 2. Parameters of the sources plotted in Fig. 10.

M1 (M�) M2 (M�) f r (Hz) z e δtgw(ns)

1.4 × 109 4.4 × 108 1.92 × 10−10 0.965 0.232 6.82
9.9 × 108 4.2 × 107 7.5 × 10−9 0.88 0.082 1.57
9.8 × 108 3.9 × 108 1.38 × 10−10 0.979 0.775 2.11
6.8 × 108 4.1 × 108 2.31 × 10−11 0.973 0.922 2.66
1.2 × 109 4.1 × 108 4.03 × 10−10 0.84 0.239 9.84
5.6 × 109 2.7 × 108 2.11 × 10−10 0.75 0.086 15.2

Note. Rows in the table (from the top to the bottom) correspond to the panels
of Fig. 10 considered counterclockwise, starting from the upper-left panel.

5.4 A note for LISA

We also collected catalogues of systems bursting in the LISA win-
dow, to check for detectability. Unfortunately, prospects for detec-
tion with LISA are not as promising as for PTAs. In a total of 750
realization of the 10 different models, we found ∼50 sources burst-
ing in the LISA window producing an SNR >0.1. Unfortunately,
none of them produced an SNR >8, necessary for a confident de-
tection. We then conclude that even with a consistent population
of SMBH triplets forming during the cosmic history, burst from
massive (say M ∼ 108 M�) eccentric binaries are unlikely to be
produced at a significant rate for LISA. On the other hand, if for-
mation of triple systems was common in the past, for system in
the LISA mass range (∼105–107 M�), very peculiar signals from
coalescing eccentric binaries may be common in the data stream.
However, this is beyond the scope of this paper, where we focused
on massive binaries (M > 107 M�) only.

6 C O N C L U S I O N S

We have addressed in this work three different points in the evolution
of triplets of SMBHs in the Universe: the astrodynamics of the
system, the potential GW signature and the detectability.

We have performed eight different direct-summation N-body
simulations, one including more than half a million of particles,
to calibrate 1000 three-body scattering experiments, which include
post-Newtonian corrections, in order to have a statistical descrip-
tion of the system. Both numerical tools agree that the inner binary
of SMBHs will go through a phase of extremely high eccentricity,
which is the motivation for the rest of the work.

These three-body excitations of episodic high-eccentricity con-
figurations of the close SMBH binary produce interesting GW bursts
that may be detectable with forthcoming experiments such as PTAs
and LISA. The extreme eccentricities of such bursts on one hand
would leave a very distinctive signature, but on the other require the
development of appropriate analysis techniques.

To compute likely event rates, we extracted catalogues of merg-
ing galaxies from the Millennium Run, and populated them with
SMBHs following the known MBH–bulges relations. We then esti-
mated the fractions of triplets and their eccentricity distribution, and
computed the induced signals in both PTAs and the LISA detector.

We found that, depending on the details of the SMBH population
model, if the fraction of triplets is ≥0.1, few to a hundred of GW
bursts would be produced at a >1 ns level in the PTA frequency
domain. Most of the signals will be washed out in the confusion
noise due to the emission of ‘ordinary’ low eccentric binaries. How-
ever, their peculiar features may guide the development of targeted
data analysis techniques that may help to recognize them even if
overwhelmed by the confusion noise. Employing a minimal crite-
rion for source resolvability (which provides a strict lower limit),
we found that less than one system may be actually pinned down
at ns precisions. By running several dozens of Monte Carlo real-
ization of the signal from the cosmological population of SMBH
binaries and triplets, we quantified a statistical 2–50 per cent chance
of having a resolvable burst in the Universe (assuming 10 years of
observation). The probability for detection with LISA is essentially
nil. However, we stress the fact that we focused on systems with
M > 107 M�; our results then simply imply that it is extremely
unlikely that a system which would normally emit outside the LISA
range will produce a burst in the LISA window because of resonant
three-body interactions. On the other hand, if a consistent fraction
of light binaries (M < 107 M�) is involved in triple systems, we
may expect several eccentricity-driven coalescences to be observed
by LISA. This eventuality would call for the development of ex-
tremely eccentric templates (e > 0.9) for merging SMBHs, and of
adequate analysis techniques to extract the signal.
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