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ABSTRACT

We present, for the first time, a clear N-body (NB) realization of the strong mass segregation solution for the stellar
distribution around a massive black hole (MBH). We compare our NB results with those obtained by solving the
orbit-averaged Fokker—Planck (FP) equation in energy space. The NB segregation is slightly stronger than in the FP
solution, but both confirm the robustness of the regime of strong segregation when the number fraction of heavy stars
is a (realistically) small fraction of the total population. In view of recent observations revealing a dearth of giant stars
in the sub-parsec region of the Milky Way, we show that the timescales associated with cusp re-growth are not longer
than (0.1—0.25) x T, (r;,). These timescales are shorter than a Hubble time for black holes masses M, < 4 x 105M,
and we conclude that quasi-steady, mass-segregated, stellar cusps may be common around MBHs in this mass range.
Since extreme mass ratio inspirals detection rates by Laser Interferometer Space Antenna are expected to peak for
M, ~ 4 x 10°-10° M, a good fraction of these events should originate from strongly segregated stellar cusps.
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1. INTRODUCTION

The distribution of stars around a massive black hole (hence-
forth MBH) is a classical problem in stellar dynamics (Bahcall
& Wolf 1976; Lightman & Shapiro 1977). The observational
demonstration of the existence of nuclear stellar clusters (hence-
forth NSCs)—as revealed by a clear upturn in central surface
brightness—in the centers of galaxies makes its study ever more
timely. A number of NSCs in coexistence with a central MBH
have recently been detected (Graham & Spitler 2009) suggest-
ing that NSCs around MBHEs, like the one in the center of the
Milky Way, may be quite common.

The renewed interest in this theoretical problem is thus
motivated by the observational data in NSCs and, in particular,
the very rich and detailed data available for the stars orbiting
the Galactic MBH. At the same time, the prospects for detection
of gravitational waves (GWs) from extreme mass ratio inspirals
(henceforth EMRIs) with future GW detectors such as the Laser
Interferometer Space Antenna (LISA) also urge us to build a solid
theoretical understanding of sub-parsec structure of galactic
nuclei. In fact, EMRI rates will depend strongly on the stellar
density of compact remnants as well as on the detailed physics
within O(0.01 pc) of the hole, which is the region from which
these inspiralling sources are expected to originate (Hopman &
Alexander 2005).

Bahcall & Wolf (1976) have shown, through a kinetic treat-
ment, that, in the case where all stars are of the same mass,
this quasi-steady distribution takes the form of power laws,
p(r) ~ r~7, in physical space and f(E) ~ E? in energy space
(y =7/4and p = y — 3/2 = 1/4). This is the so-called zero-
flow solution for which the net flux of stars in energy space is
precisely zero. Preto et al. (2004) and Baumgardt et al. (2004a)
were the first to report N-body (NB) realizations of this solu-
tion, thereby validating the assumptions inherent to the Fokker—
Planck (FP) approximation—namely, that scattering is domi-
nated by uncorrelated, two-body encounters and, in particular,
dense stellar cusps populated with stars of the same mass are
robust against the ejection of stars from the cusp.
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The properties of stellar systems that display a range of stel-
lar masses are only very poorly reproduced by single-mass
models. It is well known from stellar dynamical theory that
when several masses are present there is mass segregation—a
process by which the heavy stars accumulate near the center
while the lighter ones float outward (Spitzer 1987; Khalisi et al.
2007). Accordingly, stars with different masses get distributed
with different density profiles. By assuming a stellar population
with two mass components, Bahcall & Wolf (1977)—henceforth
BW?77—generalized their early cusp solution and argued heuris-
tically for a scaling relation p;, = m/mpy x py that depends on
the star’s mass ratio only. However, they obtained no general re-
sult on the inner slope of the heavy objects; nor did they discuss
the dependence of the result on the component’s number frac-
tions. On the other hand, it was shown long ago by Hénon (1969)
that the presence of a mass spectrum leads to an increased rate
of stellar ejections from the core of a globular cluster, but he did
not include the presence of a MBH at the center. Hénon’s work
raises the question as to whether multi-mass stellar cusps, ob-
tained from the solution of the FP equation, are robust against
the ejection of stars from the cusp. Ejections—due to strong
encounters—are a priori excluded from the FP evolution, even
though they could occur in a real nucleus. Furthermore, even if
cusps were shown by NB results to be robust against stellar ejec-
tions (and we show that they are in this Letter), BW77 scaling
cannot be valid for arbitrary number fractions.

Recently, Alexander & Hopman (2009)—henceforth AHO9—
stressed this latter point and have shown via FP calculations
that, indeed, in the limit where the number fraction of heavy
stars is realistically small, a new solution that they coined, the
strong mass segregation, is obtained with density scaling as
pa(r) ~ r=* where « 2 2. They have shown that there are two
Ny M} ) 4
NyM? 3+My /My °
The weak branch, for A > 1, corresponds to the scaling relations
found by BW77; while the strong branch, for A < 1, generalizes
the BW77 solution. There is a straightforward physical inter-
pretation. In the limit where heavy stars are very scarce, they

branches for the solution parameterized by A =
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barely interact with each other and instead sink to the center due
to dynamical friction against the sea of light stars. Therefore,
a quasi-steady state forms in which the heavy star’s current is
not nearly zero and thus the BW77 solution does not hold. As A
increases, self-scattering of heavies becomes important and the
resulting quasi-steady state forms with a nearly zero current for
stars of all masses, so BW77 solution is recovered.

For all these reasons, it is fundamental to verify the
Bahcall-Wolf solution—as well as its Alexander—Hopman
generalization—with NB integrations. There has been a surpris-
ingly small number of NB studies of multi-mass systems around
an MBH (Baumgardt et al. 2004b; Freitag et al. 2006), and none
of them reported the occurrence of strong mass segregation.

In this Letter, we use direct NB integrations to show for the
first time that: (1) strong mass segregation is a robust outcome of
the growth of stellar cusps around an MBH when A < 1; (2) the
BW77 solution is recovered when A > 1; (3) as a corollary, we
conclude that the rate of stellar ejections from the cusp is too low
to destroy the high-density cusps around MBHs—even though
ejections from the cusp do occur. Furthermore, having validated
the FP formalism, we proceed to use it to estimate the timescales
for cusp re-growth starting from a wider range of models. With
our FP solutions we show that, for M, < 5 x 109 Mg, the times
for re-growing stellar cusps are shorter than a Hubble time.
Our results clearly suggest that strongly segregated stellar cusps
around MBHs in this mass range may be quite common in NSCs
and should be taken into account when estimating EMRI event
rates.

2. MODELS AND INITIAL CONDITIONS

We have performed the NB simulations with a modified
version of NBODY4 (Aarseth 1999, 2003) adapted to the
GRAPE — 6 special-purpose hardware. The code was modified
to add the capture of stars by the MBH: stars that enter a critical
radius r¢,p from the hole are captured and their mass is added to
the hole. The new position and velocity of the massive particle
are calculated by imposing that capture processes conserve total
linear momentum. The maximum number of particles in the
memory of a micro-GRAPE board is ~1.2 x 103, which has been
shown to be sufficient to accurately describe the evolution of the
bulk properties of the NSC (Preto et al. 2004), but is not enough
to resolve its loss cone dynamics accurately. Therefore, we do
not attempt a detailed modeling of tidal disruption processes
and set the capture radius to be equal for all particles.

The MBH dominates the dynamics inside its influence radius
r, defined to be the radius which encloses twice of its mass at
t = 0. The stellar distribution evolves and reaches its asymptotic
quasi-steady state over relaxation timescales (Spitzer 1987):

3

o
T (ry) =034 ——H 1
1x(rn) Gl In A ey

where o5, and p, are, respectively, the one-dimensional ve-
locity dispersion and spatial density evaluated at rj,. Follow-
ing Preto et al. (2004), we define the Coulomb logarithm
InA = ln(rhohz/ZGm*), where m, = 1/N.

A realistic mass population of stars with a continuous range of
stellar masses can be approximately represented by two (well-
separated) mass scales: one in the range O(1 M) corresponding
to low-mass main-sequence stars, white dwarfs, and neutron
stars; another with O(10M) representing stellar black holes
(SBHs). The relative abundance of objects in these mass ranges
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Table 1
N-body Integrations
Runs y M./ M, fu A I InA
6 1 0.05 2.5x 1073 0.08 0.46 8.3
6 1 0.05 5.x 1073 0.15 0.46 8.3
6 1 0.05 7.5 %1073 0.23 0.46 8.3
6 1 0.05 0.01 0.31 0.46 8.3
4 1 0.05 0.429 13.2 0.46 8.3
2 1/2 0.01 2.5x 1073 0.08 0.26 7.2
2 1/2 0.01 5.x 1073 0.15 0.26 7.2
2 1/2 0.01 7.5 %1073 0.23 0.26 7.2
2 1/2 0.01 0.01 0.31 0.26 7.2

Notes. Column 1: number of runs; Column 2: slope of the Dehnen’s model
inner cusp at + = 0; Column 3: ratio of BH mass to total cluster mass in
stars; Column 4: fy = Npg/N fraction of heavy mass particles; Column 5:
Alexander & Hopman parameter; Column 6: influence radius r;,; Column 7:
Coulomb logarithm at ry,. The total number of particles is N = 1.24 x 10° in all
runs; the mass ratio between heavy and light components is R = 10 for all runs.
Tidal capture radius rcap = 1077 in all runs. We use units G = Mpye =a = 1,
where My, is the total mass of the nuclear cluster and a is the Dehnen model’s
scale length.

is overwhelmingly dominated by the lighter stars—typical
number fractions of SBHs being O(1073) (Alexander 2005).

The initial NSC is built from a Dehnen spherical model
(Dehnen 1993) to which a massive particle is added at the center
atrest (Tremaine et al. 1994). Positions and velocities are Monte
Carlo realizations that accurately reproduce the spatial p(r) and
phase-space f(E) densities with stars of the same mass. In
order to generate a two-component model, we (1) specify the
mass ratio R = mpy/m; between heavy and light stars, and
respective number fractions fy = Ny /N and fi = 1 — fy,
through which the AH09 A parameter is fixed and (2) assign
the mass my or my randomly to each star according to the
statistical weights f and f7, respectively. The resulting model is
almost in dynamical equilibrium; deviations of virial ratio from
unity are <1%-2%. On a dynamical timescale, phase mixing
occurs, and the virial ratio converges to unity to within a fraction
of a percent. Following this prescription, the two-component
models start without any mass segregation, as would be expected
from a violently relaxed system. Dehnen model’s density has
p(r) o r7 at the center, and the corresponding distribution
function f(E) is isotropic. Table 1 gives the list of runs and
adopted parameters.

3. FOKKER-PLANCK MODELS FOR SEVERAL
STELLAR MASSES

We also study the evolution of NSCs with a multi-mass FP
formalism and compare results with NB integrations. The time-
dependent, orbit-averaged, isotropic, FP equation in energy
space is defined, for each component (Spitzer 1987; Chernoff &
Weinberg 1990), by

afi 0Fg afi
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Figure 1. Evolution of stellar mass within 0.1 r; from the MBH, for light and
heavy components. Smooth and noisy curves are from FP and NB integrations,
respectively.
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In this equation, i, j run from 1 to N, (number of mass compo-
nents), and 11; = m; /m... p(E) = 4 [7™'® dr 12\ /2(E — ®(r))
= —dq /0 E is the phase space accessible to each (bound) star of
specific energy E = —v?/2 + ®(r) > 0 (Spitzer 1987), and the
total gravitational potential ®(r) is the sum of the contribution
from the nuclear cluster plus the hole. The stellar distribution
and its resulting gravitational potential change substantially in-
side r;, only, so we keep the contribution from the stars to total
@(r) fixed throughout. This system of FP equations is more
general than those from BW77 and AHO9 in that it includes the
dynamics of stars unbound to the MBH. It is also more general
than those adopted by Merritt (2009) since it considers self-
consistently two-body scattering between all components and
it is, therefore, not limited to early evolution where the heavy
component is just a small perturbation on the light component.
As aresult, we can follow both weak and strong branches of the
solution throughout without restriction.

4. RESULTS

The density of stars around the MBH increases as the cusp
grows for both light and heavy components until it reaches a
quasi-steady state; afterward, the lights start to slowly expand.
This can be seen in Figure 1, where the mass inside a sphere of
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Figure 2. Mass density profiles, pr(left) and py (right), at the end of the
integrations. Arrows signal location of 0.1y, and rj. The asymptotic slope yy
decreases from 2 2 to ~ 7/4 while moving from the strong to the weak branch
of the solution.

0.1r,, centered on the MBH, is depicted as a function of time.
Curves from FP and NB are shown together for three different
runs with A = 0.08, 0.23 corresponding to strong segregation,

and A = 13.2 to weak segregation branches. Timescaling
between NB and FP is related through T5° = InA/N TP,

In the three cases shown (as in all others cases tested but not
shown), the agreement between both methods is very good,
although there is a noticeable tendency for the heavy particles in
the NB runs to segregate more strongly in the central cusp—this
is especially the case in the strong branch. Figure 1 also suggests
that a quasi-steady state (and maximum central concentration)
have been reached by the end of the runs corresponding to
t ~ (0.1—-0.2)T,,(ry,). We stress that mass segregation, whether
in the weak or strong branch, speeds up cusp growth by factors
ranging from 4 to 10 in comparison with the single-mass case
(Preto et al. 2004). Figure 2 displays the spatial density profiles
pr(r) and pgy(r) at late times, ¢ ~ 0.27,;,(r,). The agreement
between both methods is again quite good although there is
the tendency, in the strong branch, for NB’s asymptotic slope
yL to be slightly smaller than in FP—for which yy nin = 1.5.
The slopes of the inner density profiles of the heavy component
decrease as the solution evolves from the strong to the weak
branch when A is increased, as expected. In the limit of A > 1,
yy tends to evolve to a quasi-steady state close to the 7/4
solution, while for A <« 1, yy 2 2. The asymptotic inner

~
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density slopes, in both solution branches, of the light component
extend out to ~0.1r,; in contrast, the heavy component shows a
different behavior depending on the solution branch: on the weak
branch, yy’s asymptotic slope also extends only up to ~0.1ry,
while on the strong branch it extends virtually all the way to
;. In the strong branch, the density of the heavy component
exceeds that of the light for r < 0.01r, (and will therefore
dominate the interaction events with the MBH); in the weak
branch, py > pg throughout.

Although there are some differences in quantitative detail,
these NB results broadly confirm the FP calculations and
validate its inherent assumptions—at least in what concerns
the description of the bulk properties of stellar distributions.

5. IMPLICATION FOR GALACTIC NUCLEI AND
SOURCES OF GWs

Analysis of the number counts of spectroscopically identified
old stars in the sub-parsec region of our own Milky Way
(Buchholz et al. 2009; Do et al. 2009)—believed to be complete
down to magnitude K = 15.5—reveals a deficit of old stars
with respect to the high number a strongly segregated cusp
would entail. Although the slope of the density profile is still
weakly constrained, the best fits from number counts data seem
to exclude with certainty slopes y > 1 (Schodel et al. 2009), and
there could be a core with a stellar density decreasing toward
the center, y < 0, although such a fit is only marginally better
than one with y ~ 1/2.

Although we deem it to be too early to conclude the
inexistence of a segregated cusp around SgrA*, since the
detectable stars (essentially giants) are still a small fraction
of the stellar population as a whole, we next compute the time
necessary for cusp growth if at some point a central core is carved
in the stellar distribution. Having validated the FP approach and
its results, we study Equations (2) and (3), which are orders of
magnitude faster to solve than NB integrations.

We choose as an initial condition a model with y =
1/2, since the isotropization time—the time necessary for the
establishment of this shallow cusp starting from a hole in the
spatial distribution—is < T, (ry) (Merritt 2009), and we are
interested in the evolution over O(T,,) timescales. Figure 3
shows the evolving phase-space f(E) and spatial p(r) densities
for both components (R = 10 and fy = 0.001 constitute our
fiducial case). It can be seen that, by r ~ 0.25 T,;,(ry), cusps
withy, ~ 1.5and yy ~ 2 (or pp ~ 0.05and py ~ 0.5 inphase
space) are fully developed; a little earlier, at t ~ 0.2 T,;,(rp),
the density cusp py(r) is already fully developed down to
r ~ 0.01r, (~ 0.02 pc if scaled to the Milky Way nucleus).

In order to convert our timescales to years in the Milky Way
nucleus: (1) we adopt M, = 0.05 My,., meaning the nucleus
weighs 8 x 107 My; (2) the radius enclosing 10° M, is 1 pc;
and (3) using Equation (1), we obtain 7,;,(2.5 pc) ~ 24 Gyr
consistent with Merritt (2009). If there was some event carving
a hole in the stellar distribution around SgrA* more than 6
Gyr ago, then there was enough time for a very steep cusp of
SBHs to have re-grown. Merritt (2009) overestimated the time
for cusp re-growth by neglecting heavy—heavy and heavy-light
scattering. This is only approximately valid as long as py < pp.
The comparison of our Figure 3 with Figure 14 from Merritt
(2009) shows that early evolution is similar, but after ~2 Gyr
our full FP solution starts to evolve faster. This corresponds
exactly to when the assumption py < p is no longer valid.

The number fraction fi of SBHs is sensitive to the initial mass
function (IMF) of high-mass stars. There are indications the IMF
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Figure 3. Phase-space and spatial densities (upper and lower panels, respec-
tively). Model starts with y = 1/2; fz = 1073 and R = 10. Densities increase
monotonically with time and are plotted at ¢/ 7,1, = 0, 0.05, 0.1, 0.2, 0.25.

in galactic nuclei is top heavy (Maness et al. 2007) so we adopt
a range of values fy € [1073, 1072]; the mass distribution
of SBHs is also weakly constrained so we follow O’Leary
et al. (2009) in considering several mass ratios R = 10, 15,
and 20. Figure 4 shows the relaxation times at the influence
radius for nuclei with MBH masses in the range of interest for
LISA; the straight line is a linear fit to the points. The shaded
region corresponds to the range [0.1 T, (r;), 0.2 T, (r,)] and
represents the time stellar cusps take to grow starting from
an isotropic core. The shaded region’s width results from the
distribution of values for R and f. In the ranges we adopted,
increasing R or fy both has the effect of decreasing the time
for cusp growth. At early times, SBHs essentially evolve under
dynamical friction with characteristic timescale T;r ~ T,/ /R;
increasing fy leads to an increased rate of self-scattering
between SBHs at late times.

6. SUMMARY AND DISCUSSION

Our results show that strong mass segregation is a robust
outcome from the growth of stellar cusps around MBHs.
We have used NB integrations with two masses—light and
heavy components representing main-sequence stars and SBHs
respectively—and compared the results with those obtained with
the FP formalism. The broad agreement between both methods
validates the FP description of the bulk properties of time-
evolving stellar distribution around a MBH—and its underlying
assumptions.

Using the FP equation to study cusp growth under a variety of
initial conditions purported to represent cored nuclei, we have
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Figure 4. Single-mass relaxation time at r;, for single-mass, cored models as a
function of MBH mass. The shaded area covers [0.17}y, 0.27};, ]—the time for

cusp re-growth. Its finite width results from the distribution of parameters. The
horizontal curve signals 13 Gyr.

shown that the timescales associated with cusp re-growth are
clearly shorter than a Hubble time for nuclei with MBHs in
the mass range M, < 5 x 10°M,—even though the relaxation
time, as estimated for a single-mass stellar distribution, exceeds
a Hubble time in the upper part of this mass range. There-
fore, our work strongly suggests that quasi-steady—strongly
segregated—stellar cusps may be common around MBHs with
masses in this range.

EMRIs of compact remnants will be detectable by LISA
precisely for MBHs in this mass range (de Freitas Pacheco et al.
2006; Amaro-Seoane et al. 2007; Babak et al. 2007). Estimates
for event and detection rates by LISA customarily assume that
the stellar cusps are in steady state (Hopman & Alexander 2006a,
2006b). But recent observations reveal a dearth of giants inside
1 pc from SgrA* and raise the possibility that cored nuclei
are common—this scenario has been thoroughly explored by
Merritt (2009).

Although stellar cusps may re-grow in less than a Hubble
time, the existence of cored nuclei still remains plausible—
especially for nuclei with MBHs in the upper part of the mass
range—since re-growth timescales are still quite long (e.g.,
6 Gyr in Milky Way type nuclei). However, since EMRI
detection rates by LISA are expected to peak around M, ~
4 x 10°-10° M, (Gair 2009), and re-growth times are <1 Gyr
for My < 1.2% 100 M, we still expect that a substantial fraction
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of EMRI events will originate from segregated stellar cusps.
Finally, indirect observations alone will reveal whether there is
a “hidden” cusp of old stars and their dark remnants around
SgrA* (Weinberg et al. 2005; Preto & Saha 2009).

M.P. and P.A.S. acknowledge support by Deutsches Zentrum
fiir Luft- und Raumfahrt (DLR). The simulations have been
carried out on the dedicated high-performance GRAPE-6A
clusters at the Astronomisches Rechen-Institut in Heidelberg*
and the TUFFSTEIN cluster of the AEL
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