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We study the tidal disruption of neutron stars in black hole-neutron star coalescing binaries. We

calculate the critical orbital separation at which the star is disrupted by the black hole tidal field for several

equations of state describing the matter inside the neutron star, and for a large set of the binary parameters.

When the disruption occurs before the star reaches the innermost stable circular orbit, the gravitational

wave (GW) signal emitted by the system is expected to exhibit a cutoff frequency �GW tide, which is a

distinctive feature of the waveform. We evaluate �GW tide and show that, if this frequency will be found in a

detected gravitational wave, it will allow one to determine the neutron star radius with an error of a few

percent, providing valuable information on the behavior of matter in the stellar core.
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I. INTRODUCTION

The coalescence of neutron star-neutron star (NS-NS)
and black hole-neutron star (BH-NS) binaries is one of the
most promising sources of gravitational waves to be de-
tected by ground based gravitational wave detectors like
Virgo and LIGO [1]. These detectors have now reached the
planned sensitivity and they will evolve toward a second
generation, the advanced (Virgo and LIGO) detectors, with
a sensitivity enhanced by an order of magnitude.
Furthermore, a design study for an even more sensitive
third generation detector, the Einstein Telescope, is in
progress [2].

In a recent study, based on a population synthesis ap-
proach [3], the formation and the evolution of compact
binary systems has been followed from the onset of star
formation, both in the galactic field, where their massive
binary progenitors evolve in isolation, and in dense clus-
ters, where they can form at high rates due to dynamical
interactions. The authors estimate that advanced LIGO
should detect the merger of NS-NS binaries at a rate of
�15 events per year and the merger of BH-NS binaries at a
rate of �1 per year. Similar estimates hold for the ad-
vanced version of Virgo. Thus, it is reasonable to expect
that in a near future we may be able to detect the gravita-
tional wave (GW) signals emitted by these sources and
study their features.

A further reason to be interested in these coalescing
binaries is that they have been proposed as providing the
engine for short gamma-ray bursts; the detection of a
gravitational wave signal emitted by one of these systems
in coincidence with a short gamma-ray burst would vali-
date this model, thus clarifying one of the most interesting
open issues in astrophysics.

In this paper we study the disruption of a neutron star in
a BH-NS coalescing binary, to envisage a method to extract
information on the equation of state (EOS) of matter in the
NS interior from the detection of the gravitational wave

signal emitted in the process. We use the affine model
approach [4–6], which treats the NS as an extended object,
which responds to its self-gravity, to its internal pressure
forces, and to the relativistic BH tidal field, under the
constraint that its shape is always that of an ellipsoid. In
the original formulation of this model, the internal struc-
ture of the star was treated at a Newtonian level and the
EOS was assumed to be polytropic. In [7] (to be referred to
as paper I hereafter) we have improved this approach by
introducing a general relativistic description of the stellar
structure, and generalizing the relevant equations to in-
clude more general equations of state. This improved
approach has been applied to study quasiequilibrium se-
quences of BH-NS binaries, and to determine the critical
orbital separation at which the star is torn apart by the black
hole tidal field.
When the NS is disrupted before reaching the innermost

stable circular orbit (ISCO), the emitted GW signal is
expected to change abruptly and its amplitude is expected
to decrease sharply; such signal should exhibit a cutoff
frequency �GW tide, corresponding to the orbit at which the
disruption occurs, i.e., �GW tide ¼ 2�orb tide. This prediction
is confirmed by numerical simulations where the coales-
cence of a black hole and a neutron star and the tidal
disruption of the star have been studied (i.) in the frame-
work of Newtonian gravity [8,9], and (ii.) in full general
relativity [10,11].
The frequency cutoff is a distinctive feature of the

waveform emitted by a BH-NS coalescing binary and
indicates the disruption of the star. This was first pointed
out in [12], where a relation between �GW tide and the stellar
radius was derived, using the formulation of the affine
model appearing in [13] and describing the inspiralling
of an incompressible, homogeneous, Newtonian ellipsoid
moving on circular orbits around a rotating black hole.
Hints on the role of the compressibility were derived in
[12] using some results of [6], where the same process was
studied for a polytropic, Newtonian star.
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In this paper we study the relation between the cutoff
frequency and the neutron star EOS. Using the same ap-
proach developed in paper I, we explicitly compute for
which values of the masses of the binary components and
of the black hole angular momentum the star is tidally
disrupted before reaching the ISCO, for a variety of real-
istic equations of state. Knowing the disruption distance
rtide, we evaluate �GW tide and show how a measure of this
quantity from a detected GW signal may be used to infer
interesting information on the equation of state of matter in
the neutron star interior.

It is known that the fully relativistic numerical study of
the last phases of BH-NS binary coalescence is a quite
difficult task, especially for large values of the mass ratio
q ¼ MBH=MNS; this is due to a number of reasons, which
include the lack of symmetry, the difficulty in evolving the
NS while handling the BH singularity, and the prohibi-
tively high computational costs required to span the pa-
rameter space (mass ratio, EOS, spins, etc.). For these
reasons, the literature on the subject is limited to a re-
stricted number of studies, most of which are in the frame-
work of Newtonian gravity. BH-NS coalescence in general
relativity has been studied in the following papers (see [14]
for a recent review on the subject): nonspinning black hole
and MBH � MNS in [15]; q ¼ 10 in [16]; q ¼ 1, 3, 5 in
[10]; andMBH ¼ 3:2M�,MBH ¼ 4M�, andMNS ¼ 1:4M�
in [17]. In [18], quasiequilibrium sequences of black hole-
neutron star binaries have been studied in general relativity
for q ¼ 1, 2, 3, 5, 10. The case of a rotating black hole has
been considered in [10], where the coalescence has been
studied for three values of the black hole angular momen-
tum (a=MBH ¼ �0:5, 0, 0.75) and for q ¼ 3, whereas in
[11] the case q ¼ 10 has been investigated. It should be
stressed that in all these studies the neutron star is modeled
using a polytropic equation of state.

The improved affine model approach which we use in
our study is an approximate method, but it has the advan-
tage of allowing one to explore a large region of the
parameter space, including large values of the mass ratio
q ¼ MBH=MNS, and to use modern equations of state to
model matter in the neutron star interior, at a much lower
computational cost than fully relativistic simulations.

With respect to Ref. [12] our study introduces several
novelties: we describe the internal structure of the star
using general relativity, we explicitly take into account
the stellar compressibility and describe the matter inside
the star using realistic equations of state; in addition, in
[12] �GW tide was provided by the Kerr geometry in the
approximation of a point mass NS following geodesics in
this geometry, while we determine this quantity using the
2.5 post-Newtonian equations of motion for the orbital
dynamics of a binary system.

The plan of the paper is the following. In Sec. II we
briefly describe the affine approach; in Sec. III we discuss
how to determine the cutoff frequency �GW tide. The equa-

tions of state we employ are briefly described in Sec. IV; in
Sec. V we discuss the errors which affect the measure of
the binary parameters from a detected GW signal, and how
they propagate and affect the evaluation of �GW tide and of
the neutron star radius. The results of our study are re-
ported in Sec. VI and in Sec. VII we draw our conclusions.

II. THE IMPROVED AFFINE MODEL EQUATIONS

The equations of the improved affine model approach,
which we need in order to determine the radial distance
rtide at which the neutron star is torn apart by the tidal
interaction with the black hole, are described in detail in
paper I. Here we will summarize the assumptions under-
lying this approach and we shall write only the equations to
be solved.

A. Relevant assumptions and equations

We consider a star in the tidal field of a Kerr BH whose
center of mass follows equatorial, circular orbits; while
moving, the star maintains an ellipsoidal shape; more
precisely it is a Riemann-S type ellipsoid, i.e., its spin
and vorticity are parallel and their ratio is constant (see
[19]). The NS equilibrium structure is determined using the
stellar structure equations of general relativity, while dy-
namical behavior is governed by Newtonian hydrodynam-
ics improved by the use of an effective relativistic self-
gravity potential. The equations for the NS deformations
are written in the principal frame, i.e., the frame associated
with the principal axes of the stellar ellipsoid. Tidal effects
on the orbital motion are neglected, as well as the pertur-
bation that the star induces on the BH.
We study the evolution of the system in the quasiequili-

brium approximation, i.e., we neglect all time derivatives
appearing in the ordinary differential equations of the
model. Physically this means that we assume that the NS
follows a quasiequilibrium sequence during the BH-NS
coalescence; according to the model, moreover, the circu-
lation C of the fluid along this sequence is constant. In
particular, we set C ¼ 0, that is, we consider the NS fluid to
be irrotational. In the principal frame, the fluid variables of
the improved affine model are five: the three principal axes
of the stellar ellipsoid a1, a2, and a3; the angular frequency
of the internal fluid motion�; and the star spin�. The axes
a1 and a2 both belong to the orbital plane, while a3 is
perpendicular to it; a1 indicates the axis that lies along the
binary orbital radius. The quasiequilibrium equations gov-
erning these variables are

0 ¼ a1ð�2 þ�2Þ � 2a2��þ 1

2

bVcMR3
NSa1

~A1 þ R2
NScM �

a1

� c11a1 (1)
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0 ¼ a2ð�2 þ�2Þ � 2a1��þ 1

2

bVcMR3
NSa2

~A2 þ R2
NScM �

a2

� c22a2 (2)

0 ¼ 1

2

bVcMR3
NSa3

~A3 þ R2
NScM �

a3
� c33a3 (3)

� ¼ � (4)

where bV and cM are, respectively, the effective relativistic
self-gravity potential and the scalar quadrupole moment of
the NS at spherical equilibrium (see below). RNS is the NS

radius and the ~Ai’s are defined as

~A i ¼
Z 1

0

d�

ða2i þ �Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða21 þ �Þða22 þ �Þða23 þ �Þ

q : (5)

The cij’s denote the components of the BH tidal tensor in

the principal frame; �—which is connected to � by
_� � �—is the angle that brings the parallel-propagated
frame in the principal frame, by a rotation around the a3
axis [20]. Finally,� is an angle that governs the rotation of
the parallel-propagated frame in order to preserve its par-
allel transport, and its time evolution is given by

_� ¼
ffiffiffiffiffiffiffiffiffiffi
MBH

r3

s
; (6)

where MBH and r are the BH mass and the BH-NS orbital
separation, respectively. Notice that the last equation and
Eq. (4) imply that

� ¼
ffiffiffiffiffiffiffiffiffiffi
MBH

r3

s
: (7)

The fifth equation for the five fluid variables is provided by
the definition of the circulation

C ¼
cM
R2
NS

½ða21 þ a22Þ�� 2a1a2��; (8)

so that for irrotational fluids one has

� ¼ 2a1a2�

a21 þ a22
: (9)

The effective relativistic self-gravity potential is given
by

bV ¼ �4�
Z RNS

0

d�TOV

dr̂
r̂3�̂dr̂; (10)

where d�TOV=dr̂ is given by the Tolman-Oppenheimer-
Volkoff (TOV) stellar structure equations

d�TOV

dr
¼ ½�ðrÞ þ PðrÞ�½mTOVðrÞ þ 4�r3PðrÞ�

�ðrÞr½r� 2mTOVðrÞ�
mTOVðrÞ ¼ 4�

Z r

0
dr0r02�ðr0Þ:

The scalar quadrupole moment cM is defined as

cM ¼ 4�

3

Z RNS

0
r4�dr (11)

and, like bV, must be calculated at spherical equilibrium.
Finally, the relevant Kerr BH tidal tensor components are

c11 ¼ MBH

r3

�
1� 3

r2 þ K

r2
cos2ð���Þ

�
(12)

c22 ¼ MBH

r3

�
1� 3

r2 þ K

r2
sin2ð���Þ

�
(13)

c33 ¼ MBH

r3

�
1þ 3

K

r2

�
; (14)

where

K ¼ ðaE� LzÞ2; (15)

a is the black hole spin parameter, and E and Lz are,
respectively, the energy and the z-orbital angular momen-
tum per unit mass. Since we consider circular equatorial
geodesics, E and Lz are

E ¼ r2 � 2MBHrþ a
ffiffiffiffiffiffiffiffiffiffiffiffi
MBHr

p
r

ffiffiffiffi
P

p

Lz ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
MBHr

p ðr2 � 2a
ffiffiffiffiffiffiffiffiffiffiffiffi
MBHr

p þ a2Þ
r

ffiffiffiffi
P

p ;

(16)

where

P ¼ r2 � 3MBHrþ 2a
ffiffiffiffiffiffiffiffiffiffiffiffi
MBHr

p
: (17)

B. Numerical integration

We solve Eqs. (1)–(3), with the aid of Eqs. (7) and (9)
and of definitions (5) and (10)–(14), by adopting a multi-
dimensional Newton-Raphson scheme [21] in order to
determine the values of the axes of the ellipsoid for each
quasistationary orbit, identified by the orbital separation r.
We start by solving the TOV stellar structure equations

for a nonrotating spherical neutron star in equilibrium. We
then fix the black hole spin parameter a and the binary
mass ratio q and place the star at a distance r0 � RNS from
the black hole (we obviously make sure that the sequence
we obtain is independent of r0). Subsequently, we gradu-
ally reduce the orbital separation and solve Eqs. (1)–(3) at
each step and monitor the star axes until a critical separa-
tion rtide is reached, at which a quasiequilibrium configu-
ration is no longer possible. This critical distance
physically corresponds to the tidal disruption of the neu-
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tron star. It may be identified by exploiting the fact that the
Newton-Raphson algorithm cannot find any solution to the
system of equations, or by calculating numerically the
derivative @rnorm=@ða2=a1Þ, where

rnorm ¼ r

RNS

�
MNS

MBH

�
1=3

;

and keeping track of it since it tends to zero at tidal
disruption: both methods yield the same values of rtide. If
the tidal disruption is not encountered, the quasiequili-
brium ends when the neutron star surface crosses the black
hole horizon and hence the coalescence terminates with a
plunge.

The quantity rtide has to be compared with the value of
the radius of the innermost stable circular orbit rISCO,
which is determined by using the formulas derived in
[22] for a point mass in the gravitational field of a Kerr BH:

rISCO ¼ MBHf3þ Z2 � ½ð3� Z1Þð3þ Z1 þ 2Z2Þ�1=2g
Z1 ¼ 1þ ð1� a2=M2

BHÞ1=3
� ½ð1þ a=MBHÞ1=3 þ ð1� a=MBHÞ1=3�

Z2 ¼ ð3a2=M2
BH þ Z2

1Þ1=2; (18)

where the upper (lower) sign holds for co- (counter-)
rotating orbits. We remind the reader that if rtide > rISCO
the star is disrupted before the merger starts, and the
gravitational signal will exhibit a cutoff at a frequency
�GW tide.

III. DETERMINATION OF THE CUTOFF
FREQUENCY �GW tide

To compute �GW tide, we model the inspiral of the mixed
binary by means of a post-Newtonian (PN) approach and
truncate the inspiral when the orbital separation reaches
rtide; we then read off the orbital frequency at the tidal
disruption �orb tide: this is related to the GW frequency by
�GW tide ¼ 2�orb tide.

We follow a Hamiltonian approach. The conservative
part of the two-body Hamiltonian is known up to order
3PN, e.g., [23]; however, we shall truncate it at 2PN order
since we will use GW dissipation terms of order 2.5PN
[24]. The PN-expanded Hamiltonian for the relative mo-
tion of the BH-NS binary is

H Exp
orb ¼ H N þH PN þH 2PN þH SO þH SS; (19)

the single contributions being:

H N ¼ 1

2�

�
P2
r þ

P2
’

r2

�
�GN�MTot

r
(20)

H PN ¼ 3�� 1

8c2�3

�
P2
r þ

P2
’

r2

�
2 �GNMTot

2c2�r

�
�
ð3þ �Þ

�
P2
r þ

P2
’

r2

�
þ �P2

r

�
þG2

N�M2
Tot

2c2r2

(21)

H 2PN ¼ 1� 5�þ 5�2

16c4�5

�
P2
r þ

P2
’

r2

�
3 þGNMTot

8c4�3r

�
�
ð5� 20�� 3�2Þ

�
P2
r þ

P2
’

r2

�
2 � 2�2P2

r

�
�
P2
r þ

P2
’

r2

�
� 3�2P4

r

�
þG2

NM
2
Tot

2c4�r2

�
�
ð5þ 8�Þ

�
P2
r þ

P2
’

r2

�
þ 3�P2

r

�
�G3

Nð1þ 3�Þ�M3
Tot

4c4r3
(22)

H SO ¼ GN

c2r3
L 	

�
2þ 3MNS

2MBH

�
JBH (23)

H SS ¼ GN

c2r3
½3ðJBH 	 nÞðJBH 	 nÞ � ðJBH 	 JBHÞ�MNS

MBH

(24)

where GN is the gravitational constant, c is the speed of
light, MTot ¼ MBH þMNS is the total mass of the system,
� ¼ MBHMNS=MTot is its reduced mass, � ¼ �=MTot is
the symmetric mass ratio, Pr and P’ are the conjugate

variables of the orbital separation r and the orbit angle
coordinate’,L ¼ r� P is the orbital angular momentum,
and JBH is the spin angular momentum of the black hole.
The vectors L and JBH are both perpendicular to the orbit
plane; the magnitude of the latter is equal to aMBH and
such a vector is not evolved as a dynamic variable in order
to follow the spirit of the affine model, according to which
the presence of the NS does not influence the BH. The spin-

orbit (SO) and spin-spin (SS) contributions toH Exp
orb there-

fore reduce to

H SO ¼ GN

c2r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
r þ

P2
’

r2

s �
2þ 3MNS

2MBH

�
JBH (25)

and

H SS ¼ 2GN

c2r3
MNS

MBH

J2BH: (26)

The dynamics described by this Hamiltonian is supplied
with GW dissipation by means of the 2.5PN nonconserva-
tive terms

fr ¼ � 8G2
N

15c5�r2

�
2P2

r þ
6P2

’

r2

�
(27)
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f’ ¼ � 8G2
N

3c5
PrP’

�r4
(28)

Fr ¼ � 8G2
N

3c5
Pr

r4

�
P2
’

�r
�GN�M

3
Tot

5

�
(29)

F’ ¼ � 8G2
N

5c5
P’

�r3

�
2GN�

2M3
Tot

r
þ 2P2

’

r2
� P2

r

�
(30)

to be included in the Hamilton equations of motion as

dr

dt
¼ @H

@Pr

þ fr (31)

d’

dt
¼ @H

@P’

þ f’ (32)

dPr

dt
¼ � @H

@r
þ Fr (33)

dP’

dt
¼ � @H

@’
þ F’: (34)

Within this Hamiltonian approach, once the binary orbit
is evolved until r ¼ rtide, the GW cutoff frequency due to
the NS tidal disruption �GW tide is given by

�GW tide � 2�orb tide ¼
P’

��r2
jrtide : (35)

IV. EQUATIONS OF STATE

The equation of state of matter at densities larger than
the saturation density of nuclear matter, �0 ¼ 2:67 	
1014 g=cm3, is uncertain. At these densities, which are
typical of a neutron star core, neutrons can no longer be
considered as noninteracting particles, and different ways
of modeling their interactions lead to a different composi-
tion, which may include heavy baryons, quarks, etc. All
available EOSs of strongly interacting matter have been
obtained within models based on the theoretical knowledge
of the underlying dynamics and constrained, as much as
possible, by empirical data. Modern EOSs are derived
within two main, different approaches: nonrelativistic nu-
clear many-body theory and relativistic mean field theory.
As representative of nuclear many-body theory we choose
two EOSs named APR2 and BBS1. For APR2 matter
consists of neutrons, protons, electrons, and muons
ðn; p; e; �Þ in weak equilibrium. The Hamiltonian includes
two- and three-nucleon interaction terms; the two-nucleon
term is the Argonne v18 potential [25], the three-nucleon
term is the Urbana IX potential [26]. The many-body
Schrödinger equation is solved using a variational ap-
proach [27,28]. The calculations include relativistic cor-
rections to the two-nucleon potential, arising from the

boost to a frame in which the total momentum of the
interacting pair is nonvanishing. These corrections are
necessary to use phenomenological potentials, describing
interactions between nucleons in their center of mass
frame, in a locally inertial frame associated with the star.
The maximum mass for this EOS is Mmax ¼ 2:20M�.
The matter composition of BBS1 is the same as in the

APR2 model. The EOS is obtained using a slightly differ-
ent Hamiltonian, including the Argonne v18 two-nucleon
potential and the Urbana VII three-nucleon potential [29].
The ground state energy is calculated using G-matrix
perturbation theory [30]. The maximum mass is Mmax ¼
2:01M�.
As representative of the relativistic mean field theory

approach, we choose the EOSs named BGN1H1, GNH3,
and BPAL.
The Balberg-Gal (BGN1H1) EOS [31] describes matter

consisting of neutrons, protons, electrons, muons, and
hyperons (�, �, and �) in equilibrium. The effective
potential parameters are tuned in order to reproduce the
properties of nuclei and hypernuclei according to high
energy experiments. This EOS is a generalization of the
Lattimer-Swesty EOS [32], which does not include hyper-
ons. The maximum mass is Mmax ¼ 1:63M�.
The Glendenning (GNH3) EOS [33] considers n, p, e,�

up to a certain density �H ’ 2�0; beyond this point, addi-
tional baryon states (such as the � and the hyperons �, �,
�) and the mesons �, �, �, !, K, K
 are introduced.
Below the hadronization density �H the EOS is very stiff
but causal; the appearance of hyperons strongly softens the
EOS because they are more massive than nucleons and
when they start to fill their Fermi sea they are slow and
replace the highest energy nucleons. The maximummass is
Mmax ¼ 1:96M�.
The three EOSs BPAL12, BPAL22, and BPAL32, are

derived using a density dependent nucleon-nucleon effec-
tive interaction (as for Skyrme nuclear interactions) [34].
Matter is composed of n, p, e, � in weak equilibrium, no
hyperons are present and the EOS parameters are fixed to
reproduce the saturation properties of nuclear matter.
BPAL12 is particularly soft, with a nuclear incompressi-
bility k ¼ 120 MeV. Since the empirical value commonly
accepted ranges within k 2 ð220–270Þ MeV, it is clear that
BPAL12 has to be considered as an EOS soft extreme, but
still compatible with astrophysical observations, since the
maximum mass it predicts is Mmax ¼ 1:45M�. BPAL22
and BPAL32 are two different versions of the BPAL EOS,
corresponding to more realistic values of k: k ¼ 180 MeV
for BPAL22, with a maximum mass Mmax ¼ 1:72M�, and
k ¼ 240 MeV for BPAL32, with a maximum mass
Mmax ¼ 1:93M�. At a density of about one half of the
nuclear saturation density we match the EOS of the core
with a crust, which is composed of three layers; the inner
layer is the Douchin-Haensel (SLy4) crust [35,36]; for
108 < �< 1011 g=cm3 and for � < 108 g=cm3, we use,
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respectively, the Haensel-Pichon (HP94) EOS [37], and the
Baym-Pethick-Sutherland (BPS) EOS [38].

In Fig. 1 we show the mass-radius diagram for the
selected EOSs. They clearly exhibit very different behav-
iors. To some extent, BPAL12 and GNH3 can be consid-
ered, respectively, as soft and hard extremes. APR2 has a
wide mass interval where the radius is almost insensitive to
mass variations; BGN1H1 also shows this feature, albeit
for a more restricted mass interval, whereas the BPAL and
GNH3 EOSs do not. BGN1H1, on the other hand, has a
sudden softening which does not characterize the other
three equations of state; this softening is due to the appear-
ance of hyperons in the core of the neutron star above a
critical central density.

V. ERROR BAR ON RNS AND ON �GW tide

Let us suppose that in a BH-NS coalescence the neutron
star is disrupted before reaching the ISCO, and that the
gravitational wave interferometers detect the emitted sig-
nal which, as discussed in previous sections, has the form
of a chirp truncated at the frequency �GW tide. With a
suitable data analysis, the values of the symmetric mass
ratio � ¼ MBHMNS=ðMBH þMNSÞ2 and of the chirp mass

M ¼ �3=5ðMBH þMNSÞ can be extracted from the data
with a certain error. These errors have been evaluated for
nonspinning compact binary sources, including up to
3.5PN terms in [39,40]. For instance, they are displayed
in Fig. 12 of [40], which shows the one-sigma fractional
errors in M and � for nonspinning binary black hole
sources as a function of the total mass of the system.
These errors reduce when the dynamical evolution of spins
is included, so that they may be regarded as upper limits.
Since a similar analysis has not been performed in the BH-
NS case, in what follows we shall adopt these errors as
appropriate also for mixed binaries. In the following we
shall consider neutron stars whose mass is in the range 1.2–
1.6 solar masses and mass ratios from 3 to 15, therefore the

total mass will range within �5–26M�. In this region the
fractional error on M is smaller than �10�3 and of the
order of �1–3� 10�2 for �. These data refer to advanced
LIGO assuming the source at a fixed distance of 300 Mpc.
Since in our case the mass parameters of the binary are

the neutron star mass and the mass ratio, we express M
and � as

� ¼ q

ð1þ qÞ2 ; M ¼ MNSq
3=5

ð1þ qÞ1=5 : (36)

By propagating the errors we find the following expres-
sions for the one-sigma fractional errors in the neutron star
mass and in the mass ratio:

�q

q
¼ qþ 1

q� 1

��

�
(37)

�MNS

MNS

¼ �M
M

þ 2qþ 3

5ðq� 1Þ
��

�
: (38)

The absolute error on MNS and q for the binaries we
consider are given in Table I. We shall now discuss how
the errors which affect the estimate of the binary parame-
ters influence the evaluation of the neutron star radius and
of �GW tide. Since we do not know the error on the black
hole angular momentum, in what follows we shall assume
that, with an accurate post-detection data analysis, a=MBH

could be measured with a 10% accuracy. As an example,
let us suppose that the neutron star mass and the mass ratio
measured from a detected signal are, say, 1:4M� and 5,
respectively, plus or minus the corresponding error which
can be found in Table I. In Fig. 2 we plot the neutron star
radius versus �GW tide, evaluated as explained in Sec. III, for
any possible combination of the following data:

MNS ¼ ð1:4� 0:02ÞM�;
a

MBH

¼ 0:5� 0:05;

q ¼ 5� 0:15;

(39)

and for a given EOS, for instance BPAL12.
The data are spread in a region which can be identified

by a vertical and a horizontal error bar, indicated as a red
cross in the figure: the vertical error corresponds to the
maximum and minimum values of the neutron star mass.
The horizontal error is identified by the points (MNS �
�MNS, qþ�q, amin) and (MNS þ �MNS, q��q, amax).
In the following figures, where we will show the graphs of
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FIG. 1 (color online). The neutron star mass is plotted versus
the stellar radius for the EOSs used in this paper.

TABLE I. Absolute errors on the neutron star mass and on the
mass ratio. �q is independent of the neutron star mass. MNS is
expressed in solar mass units.

ðMNS ¼ 1:2M�Þ ðMNS ¼ 1:4M�Þ ðMNS ¼ 1:6M�Þ
q �q �MNS �MNS �MNS

3 0.12 0.02 0.03 0.03

5 0.15 0.017 0.02 0.02

10 0.24 0.013 0.015 0.018

15 0.34 0.012 0.015 0.017
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RNS versus �GW tide for different values of the binary pa-
rameters and for different EOSs, we shall plot directly the
cross, determined as in Fig. 2.

VI. RESULTS

The results of our calculations are summarized in the
Figs. 3–9.

In Fig. 3 we plot the NS radius, RNS, versus the cutoff
frequency, �GW tide, for a black hole with angular momen-
tum a=MBH ¼ 0:9� 0:09, and for a neutron star with mass
MNS ¼ 1:4M� � �MNS in Fig. 3(a), andMNS ¼ 1:2M� �
�MNS in Fig. 3(b). The data are plotted for different values
of the mass ratio q��q (we omit writing ‘‘��q’’ in the
figures) and for the considered EOSs. The values of �MNS

and �q are given in Table I. For each value of q, the
continuous black lines are parabolic fits of the data corre-
sponding to each EOS. Figure 3 shows that, for a given
EOS, as q increases �GW tide decreases. Moreover, for q ¼
15 the data corresponding to the EOSs BBS1, BPAL22,
APR2, BPAL12 are missing. This behavior is easily under-
stood if we plot the radius at which disruption occurs, rtide,
versus �GW tide for different values of q. For instance, in
Fig. 4 this plot is done for MNS ¼ 1:4M� and a=MBH ¼
0:9 for the EOSs BGN1H1 and BPAL12. For comparison,
we also plot the value of rISCO, given by Eqs. (18), versus
the frequency �GW ISCO of the gravitational signal emitted
when a point mass of mass M ¼ MNS, orbiting around a
Kerr black hole of mass MBH ¼ qM and angular momen-
tum a=MBH ¼ 0:9, reaches rISCO. For the BGN1H1 star
(top curve) we see that rtide is larger than rISCO for all
values of q; thus the GW signal emitted by these systems
will exhibit a frequency cutoff at �GW tide. Moreover, as q
increases the value of rtide increases, i.e., the star is dis-
rupted at larger distances from the black hole. As a con-

sequence �GW tide is a decreasing function of q, as shown in
Fig. 3 for all EOSs.
A similar behavior is shown by the EOS BPAL12

(middle curve) up to q ¼ 10. At that point the curve rtide
versus �GW tide crosses the bottom curve rISCO versus
�GW ISCO, and for larger q rtide becomes smaller than
rISCO; this means that, for q > 10, the BPAL12 star would
be disrupted after reaching the ISCO and the emitted signal
would not exhibit a frequency cutoff. For this reason the
part of curve between the points corresponding to q ¼ 10
and q ¼ 15 is indicated as a dashed line. Going back to
Fig. 3, the above discussion clarifies why for q ¼ 15 the
data for the EOSs BBS1, BPAL22, APR2, and BPAL12 are
missing: the star merges with the black hole without being
disrupted, and there is no frequency cutoff in the emitted
GW signal.
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FIG. 2 (color online). The NS radius is plotted versus �GW tide

for any possible combination of the following data: MNS ¼
1:4� 0:02M�, a=MBH ¼ 0:5� 0:05, q ¼ 5� 0:15, and for
the EOS BPAL12. The horizontal and vertical spread of the
data identify the error bars (red cross).
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FIG. 3 (color online). RNS is plotted versus �GW tide, for a black
hole with angular momentum a=MBH ¼ 0:9� 0:09 and a neu-
tron star with mass MNS ¼ 1:4M� � �MNS (upper panel) and
MNS ¼ 1:2M� ��MNS (lower panel). The data are plotted for
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considered in Sec. IV. The values of �MNS and �q are given in
Table I. Black continuous lines are the parabolic fits of the data
corresponding to each EOS at fixed q.
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In Fig. 3 we also notice that the vertical errors are always
much smaller than the horizontal ones, except for the EOS
BPAL12, whenMNS ¼ 1:4M� ��MNS. The reason is that
the vertical error is due to the error on the neutron star
mass, which we recall is of the order of a few percent; the
curves corresponding to the different EOSs in the mass-
radius diagram of Fig. 1 show that, for MNS ¼ 1:4M� or
MNS ¼ 1:2M�, the stellar radius does not change signifi-
cantly for such a small change in MNS. However, MNS ¼
1:4M� is close to the maximum mass of the BPAL12 EOS,
and in its neighborhood the mass-radius curve is almost
flat. For this EOS even a small change in the mass corre-
sponds to a significant change in the radius.

Figure 3(b) shows that, when MNS ¼ 1:2M� � �MNS,
for the pairs of EOSs (BBS1,BPAL22) and (APR2,
BPAL12) the data nearly coincide. The reason is that, as
shown in Fig. 1, forMNS ¼ 1:2M� the stars corresponding
to these pairs of EOSs have nearly the same radius. For the
same reason the values of �GW tide for BGN1H1 and
BPAL32 are very close.

In Fig. 5 the same quantities of Fig. 3 are plotted for a
larger mass,MNS ¼ 1:6M� � �MNS. The data for the EOS
BPAL12 are missing because the maximum mass allowed
by this EOS is Mmax ¼ 1:45M�. A comparison with
Fig. 3(a) shows that, for MNS ¼ 1:6M�, the data for the
EOS BGN1H1 move at the bottom of the figure, i.e., for
these masses the NS radius is smaller than that given by the
other EOSs, as can also be seen from Fig. 1; moreover, the
vertical error bars are larger, because for this EOS MNS ¼
1:6M� is very close to the maximum mass, where the
mass-radius curve is nearly flat (see Fig. 1).

In Fig. 6 the same quantities of Fig. 3 are plotted for a
black hole with angular momentum a=MBH ¼ 0:5� 0:05.
Figure 6(a) refers to a neutron star with mass MNS ¼
1:4M� � �MNS, whereas in Fig. 6(b) MNS ¼ 1:2M� �
�MNS. The data for q ¼ 10 and 15 are missing because
no disruption occurs for the considered EOS: tidal disrup-
tion is favored by large values of the black hole angular
momentum.
If we compare this figure with Fig. 3 we see that, for a

given mass and EOS, the value of the cutoff frequency is
smaller if the black hole angular momentum decreases.
This means that the tidal disruption radius rtide increases as
a decreases. It should be noted that for a fixed value ofMNS

and of q rISCO also increases as a decreases; it increases
faster than rtide, therefore there exists a critical value of the
black hole angular momentum below which the star is not
disrupted before the ISCO. In a similar way, for fixed a,
MNS, and EOS, there exists a critical value of q above
which no disruption occurs. As an example, in Table II we
give the values of qmax and the corresponding �GW tide,
which is the minimum value of the cutoff frequency to
be expected, for the binaries considered in Figs. 3 and 6.
A direct comparison of the effect of the angular momen-

tum on �GW tide is displayed in Fig. 7 where the plot of RNS

versus �GW tide is done for MNS ¼ 1:4M� ��MNS, q ¼
3��q and for a=MBH ¼ 0:9� 10% and 0:5� 10%. We
see that the effect is small, but not negligible.
An interesting feature common to the Figs. 3, 5, and 6 is

that, for the considered EOSs, all data are well fitted by a
parabolic fit.
It should be noted that the fit proposed by Vallisneri in

Ref. [12], i.e.,

RNS

M1=3
NS M

2=3
BH

�
�
0:145ð~�MBHÞ�0:71 for ~�MBH&0:045

0:069ð~�MBHÞ�0:95 for ~�MBH*0:045
(40)

(where ~���GWtide) for MNS¼1:4M� and MBH¼
ð2:5–80ÞM�, predicts values of RNS and �GW tide largely
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different from those we find, as shown in Fig. 8. In par-
ticular we see that, for a given value of the NS mass, of the
radius (i.e., of the stellar compactness) and of the mass
ratio, the value of �GW tide evaluated in [12] is systemati-
cally smaller than the value we find. This happens for a
number of reasons. For instance, let us consider two binary
systems having a black hole of the same mass and a
neutron star with the same mass and compactness; in one
case the NS structure is computed using the equations of
Newtonian gravity and an n ¼ 1 polytropic EOS, in the
other case using the TOV equations and one of the EOSs
we consider in this paper. If we evaluate the value of rtide
for the first system using the affine approach in Newtonian
gravity as in [12], and for the second system using our
improved affine approach, we will always find
rtide Newtonian > rtide improved. As a consequence the value of

�GW tide evaluated by the Newtonian approach will be
smaller than that evaluated with our improved approach.
Furthermore, given the value of rtide, in [12] �GW tide is
calculated using the formula for a point mass moving on a
circular orbit in Kerr spacetime, while we compute this

quantity using the 2.5 post-Newtonian equations describ-
ing the orbital evolution of a binary system. This introdu-
ces a further difference which makes our �GW tide larger
than that evaluated with the geodesic approximation, and
the difference increases when we consider small values of
the mass ratio q, as shown in Fig. 8.
The parameters 	, 
, � of our parabolic fits

RNS ¼ 	þ 
�GW tide þ ��2
GW tide; (41)

TABLE II. The values of q above which no disruption occurs,
qmax, and the corresponding minimum value of �GW tide, �min, are
tabulated for the binaries considered in Figs. 3 and 6, i.e., for a
black hole with a=MBH ¼ 0:5, 0.9 and a neutron star with mass
M ¼ 1:2, 1:4M�.

a=MBH ¼ 0:5
ðMNS ¼ 1:2M�Þ ðMNS ¼ 1:4M�Þ

EOS qmax �min (Hz) qmax �min (Hz)

GNH3 9.4 780 7.5 840

BGN1H1 8.4 878 6.7 942

BPAL32 8.2 899 6.6 967

BBS1 7.6 966 6.1 1032

BPAL22 7.6 968 5.8 1084

APR2 6.9 1068 5.6 1128

BPAL12 6.6 1116 4.6 1375

a=MBH ¼ 0:9

GNH3 23.2 559 18.5 596

BGN1H1 20.6 628 16.5 667

BPAL32 20.1 642 15.9 690

BBS1 18.8 686 15.1 726

BPAL22 18.9 689 14.4 759

APR2 17.0 757 13.8 793

BPAL12 16.2 790 11.3 960
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where RNS is expressed in km and �GW tide in Hz, are given
in Table III.

We shall now discuss how the results of this paper could
be used to estimate the radius of the star and to gain
information on the equation of state, using gravitational
wave detection. Let us assume that a gravitational wave
signal has been detected and exhibits a frequency cutoff at,
say, �GW tide ¼ 1200 Hz. A suitable data analysis on the
chirp part of the signal allows one to determine the neutron
star mass, the mass ratio, with the corresponding uncer-
tainty given in Table I, and the black hole angular momen-
tum with, say, an error of about 10%. Let us suppose that
their values areMNS ¼ 1:4M� ��MNS, q ¼ 5� �q, and
a=MBH ¼ 0:9� 0:09, with�MNS and�q given in Table I.
With this information, we compute the NS radius versus
�GW tide for the considered EOSs as explained in Sec. II B,
and plot the results in Fig. 9. The two continuous black
lines are the parabolic fits of the points which, for each
EOS, are at the extreme of the horizontal error bar. If we
draw a vertical line corresponding to the supposed detected
cutoff frequency, i.e., �GW tide ¼ 1200 Hz, we see that it
intercepts the two lines in two points, which identify a
region within which the stellar radius should fall. The data

shown in Fig. 9 tell us that we would determine the NS
radius with an error of 2.5%. The error would be smaller if
the detected value of �GW tide is smaller, and larger if it is
larger. For instance for �GW tide ¼ 1400 Hz it would be
3.3%, and 2.2% for �GW tide ¼ 1100 Hz.
Moreover, we would be able to exclude the EOSs which

fall outside the region framed by the horizontal dashed
lines, putting strict constraints on the equation of state
inside the neutron star.

VII. CONCLUDING REMARKS

In this paper we show that, by detecting a gravitational
wave signal emitted by a BH-NS coalescing binary which
exhibits a frequency cutoff due to the disruption of the star
before the ISCO, we may be able to determine the radius of
the star with quite a good accuracy, of the order of a few
percent, and to put strict constraints on the equation of state
of matter in the neutron star core.

TABLE III. The parameters 	, 
, � of our parabolic fits. 	 is in km, 
 in km=Hz, � in km=Hz2.

a=MBH ¼ 0:5
ðMNS ¼ 1:2M�Þ ðMNS ¼ 1:4M�Þ

q 	 
 � 	 
 �

3 34.7 �2:8� 10�2 8:1� 10�6 32.4 �2:3� 10�2 5:5� 10�6

5 38.5 �3:6� 10�2 11:9� 10�6 35.3 �2:9� 10�2 7:5� 10�6

a=MBH ¼ 0:9
3 33.2 �2:5� 10�2 6:9� 10�6 31.7 �2:1� 10�2 5:0� 10�6

5 37.1 �3:3� 10�2 10:2� 10�6 37.4 �3:2� 10�2 9:0 	 10�6

10 50.0 �6:7� 10�2 27:7� 10�6 56.3 �8:0� 10�2 34:5� 10�6

15 47.9 �7:1� 10�2 32:4� 10�6 189.8 �0:47 31:4� 10�5
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Our study does not intend to be exhaustive, since many
more equations of state may be considered in the analysis;
for instance we did not consider quark stars. There may
exist other branches in the plots shown in Figs. 3–7 corre-
sponding to more exotic EOSs.

However, from our study it emerges that the quantity
which mostly affects �GW tide is the stellar compactness;
therefore, we expect that in general the cutoff frequencies
lay on the parabolic fits which correspond to a given
neutron star mass, mass ratio, and black hole angular
momentum.

A further point which should be discussed is the follow-
ing. In our analysis we have assumed that the value of
�GW tide is known from the detection of a gravitational wave
signal, but of course this quantity also is affected by un-
certainties. For instance, we do not know how quickly the
amplitude of the chirp goes to zero at tidal disruption, and
therefore how sharp the step in the Fourier transform of the

gravitational signal hð�Þ at �GW tide is. To answer this
question, an accurate modeling of the BH-NS coalescence
process is certainly needed. Moreover, assuming a given
‘‘slope’’ in hð�Þ at tidal disruption, how large would the
experimental error in the determination of �GW tide be? We
plan to investigate this problem with a suitable data analy-
sis study on the data of Virgo.
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