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In a recent work, we presented the first application of the Poisson-Wiseman-Anderson
method of ‘matched expansions’ to compute the self-force acting on a point particle mov-
ing in a curved spacetime. The method employs two expansions for the Green function
which are respectively valid in the ‘quasilocal’ and ‘distant past’ regimes, and which may
be matched together within the normal neighbourhood. In this article, we introduce the
method of matched expansions and discuss transport equation methods for the calcu-
lation of the Green function in the quasilocal region. These methods allow the Green
function to be evaluated throughout the normal neighborhood and are also relevant to

a broad range of problems from radiation reaction to quantum field theory in curved
spacetime and quantum gravity.
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1. Matched Expansion Approach to the Self-Force

A charged particle moving in a curved background spacetime will not exactly follow

a geodesic of that spacetime. Within the framework of perturbation theory, the par-

ticle is seen at linear order to exert a force on itself, a self-force, which is responsible

for the particle moving away from geodesic motion.

A formal expression for this self-force has been derived1–4 in terms of some easily

calculated local terms and a tail integral over the entire past-history of the particle.

For the case of a scalar charge, this tail term is given by

q2
∫ τ−

−∞

∇µGret(z(τ), z(τ
′))dτ ′, (1)

where the world-line of the particle is given by z(τ), q is the charge and Gret(x, x
′)

is the retarded Green function. For electromagnetic and gravitational charges, the

tail term involves a similar integral of the Green function along the past worldline.

The greatest difficulty in computing (1) arises from the computation of the

Green function for points arbitrarily separated. For x′ → x, the Green function

has a troublesome δ-divergence behavior, while for x and x′ separated by large

distances, certain analytic expressions for the Green function are not valid. Within

the matched expansion approach,5 these difficulties are avoided by splitting the

integral (1) in two parts at a matching point and tackling each part independently.

We have given an example calculation of the distant past contribution for the Nariai

spacetime.6 We focus here on the contribution from the recent past, the quasilocal

contribution.
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Provided the quasilocal region is sufficiently small (within a normal neighbor-

hood), the retarded Green function is given by the Hadamard form,

Gret(x, x
′) = θ−(x, x

′) {U(x, x′)δ (σ(x, x′))− V (x, x′)θ (−σ(x, x′))} , (2)

where U(x, x′) and V (x, x′) are regular, geometrical bitensors, δ is the Dirac-delta,

θ− is the step function and ensures causality and σ(x, x′) is the Synge world-

function. Noting that σ 6= 0 for all points in the normal neighborhood contribution

to (1), it is clear that only V (x, x′) will contribute to the quasilocal part of (1).

2. Coordinate Expansion of the Green Function

The bitensor V (x, x′) may be written as an expansion in the coordinate separation

of x and x′. For static, spherically symmetric spacetimes, this takes the form

V (x, x′) =

∞∑
i,j,k=0

vijk(x)(t − t′)2i(cos(γ)− 1)j(r − r′)k (3)

with γ being the angular separation of the points. The coefficients vijk(x) are calcu-

lated using methods which rely on the symmetry of the spacetime.7 We developed a

Mathematica code capable of calculating these coefficients to very high order (up to

(∆xα)50) and applied the theory of Padé approximants to improve convergence and

extend the domain of validity of the series.8 This allowed us to accurately calculate

(Fig. 1) the Green throughout and up to the edge of the normal neighborhood,

beyond which the Hadamard form can no longer be assumed to hold.

Fig. 1. (Colour online) Left: The retarded Green function for points separated along the time
direction in the Nariai spacetime. The regular Taylor series (blue dashed line) diverges before
the edge of the normal neighborhood, which is at t − t′ = 6.5. The Padé resummed series (solid
red line) remains valid and closely matches the exact value (black dots) up to the edge of the
normal neighborhood. Right: V (x, x′) for a massless, scalar field along the light-cone of a point

at r = 10M in Schwarzschild Spacetime.

3. Covariant Methods for Calculating the Green Function

Covariant methods for calculating the Green function of the wave operator and the

corresponding heat kernel, are central to a broad range of problems from radia-
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tion reaction to quantum field theory in curved spacetime and quantum gravity.

Traditionally, most attention has focused on the diagonal value of the heat kernel

KA
A(x, x; s), corresponding to the coincidence limit x′ → x of the Green function.

By contrast, for the quasilocal contribution to the matched expansion self-force, we

seek expansions valid for x and x′ as far apart as geometrical methods permit.

An extremely elegant, non-recursive approach to the calculation of the Green

function has been given by Avramidi,9 but as his motivation was to study the

effective action in quantum gravity he was primarily interested in the coincidence

limit. We presented10 Avramidi’s approach in the language of transport equations

and showed that it is ideal for numerical and symbolic computation. In so doing we

built on the work of Décanini and Folacci11 who wrote many of the equations we

presented and implemented them explicitly by hand. However, calculations by hand

are quite impractical for the very high order expansions we would like for self-force

calculations. Instead, we used the transport equations as the basis for Mathematica

code for algebraic calculations12 and C code for numerical calculations.13

Using our numerical code, we calculated V (x, x′) on the past light-cone of a

point x in the Schwarzschild spacetime. With V (x, x′) a solution of the homogeneous

wave equation, �V (x, x′) = 0, this light-cone data could serve as initial data for

a characteristic evolution of V (x, x′) within the light-cone. For points within the

normal neighborhood of x, there would be no caustics – a frequent cause of difficulty

in characteristic evolution codes. Nevertheless, the allure of evolving past caustics

and beyond the normal neighborhood is appealing. It may reveal new insight into

the relation between the Hadamard form and the structure of the Green function

outside the normal neighborhood.
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