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Experimental characterization of Gaussian quantum-communication channels
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We present a full experimental characterization of continuous-variable quantum-communication channels
established by shared entanglement together with local operations and classical communication. The resulting
teleportation channel was fully characterized by measuring all elements of the covariance matrix of the shared
two-mode squeezed Gaussian state. From the experimental data we determined the lower bound to the quantum
channel capacity, the teleportation fidelity of coherent states, and the logarithmic negativity and purity of the

shared state. Additionally, a positive secret key rate was obtained for two of the established channels.
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I. INTRODUCTION

Continuous-variable quantum-communication channels
have been the subject of both theoretical and experimental
research for the past few years [1-11]. Similarly to classical-
communication channels, quantum-communication channels
are characterized by a channel capacity. In contrast to
classical-communication channels, the capacity of quantum-
communication channels is distinguished by two different
quantities; namely, the classical capacity, which gives the
number of classical bits that can be faithfully transmitted per
use of the channel, and the quantum capacity, which speci-
fies how many quantum bits can be transmitted per use of the
channel [4,12]. One example of a quantum-communication
channel is a teleportation channel, which is established by a
shared entangled state with local operations and classical
communication between two distant parties [13,14]. Of all
the possible entangled states that could be used to establish
the quantum channel, Gaussian states are of particular inter-
est due to their well-understood theoretical structure and
ability to be easily generated experimentally [3,8]. Because
these states are characterized by a Gaussian Wigner function,
only the second moments collected in the state’s covariance
matrix (CM) are required in order to completely define the
state. Experimentally, this means that only a few tomogra-
phic measurements need to be conducted, significantly re-
ducing the effort to measure these states. To date, several
groups have conducted experiments only partially measuring
the CM [15-17].

This paper presents an experimental study of Gaussian
quantum-teleportation channels. The teleportation channels
are established by distributing two different classes of en-
tangled Gaussian states illustrated in Fig. 1 over a free-space
auxiliary channel to two parties, Alice and Bob, together
with local operations and classical communication. In our
experiment, every single parameter of the CMs is measured.
These channels are then characterized by evaluating the
lower bounds to the quantum-channel capacity, the telepor-
tation fidelities of coherent states, and the purities and loga-
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rithmic negativities of the shared entangled states. Addition-
ally, two different entanglement criteria are used—the
Simon-Peres-Horodecki criterion and an entanglement
witness—to verify that the measured state is in fact en-
tangled. This paper is divided into the following sections. In
Sec. II, we present an efficient experimental procedure for
measuring the entire CM using only five measurement set-
tings. The technical details of our experiment are described
in Sec. III. The experimental implementation of the measure-
ment of the entire covariance matrix is discussed in Sec. I'V.
The formal definition of a quantum channel as well as the
quantities that characterize them are presented in Sec. V. The
reconstructed CMs from the experimental data are presented
in Sec. VI, and finally Sec. VII contains a discussion of the
results.

II. EXPERIMENTAL MODUS OPERANDI

A. Preliminary considerations

In order to obtain complete knowledge of a two-mode
Gaussian entangled state, it is sufficient to measure its sym-
metric positive semidefinite ten-parameter covariance matrix
[16,17]. In its block form, the CM is given by

FIG. 1. (Color online) Classes of entanglement: This figure de-
picts three different classes of entanglement. V-class entanglement
(left) is formed by mixing a single-mode squeezed state with the
vacuum mode on a balanced beam splitter (BBS). M-class entangle-
ment (center) is formed by mixing two unevenly and oppositely
single-mode squeezed beams on a BBS, and S-class entanglement
(right) is formed by mixing two equally but oppositely single-mode
squeezed beams on a BBS.
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where A, B, and C are 2 X2 matrices which contain the
parameters describing Alice’s mode, Bob’s mode, and the
correlations between their modes, respectively. The CM con-
tains the second moments of a state’s quadratures, yj
=(Ar;Ar+ArAr), where r=(x,,pa,xg,ppg) is a vector of
quadrature operators and Ar;=r;—(r;). We use units such that
the covariance matrix of vacuum is equal to the identity ma-
trix. From 7 can be obtained information regarding entangle-
ment properties of the state (e.g., verification, quantification)
as well as the state’s purity. In the case of teleportation chan-
nels, the lower bound to the quantum-channel capacity and
the teleportation fidelity of coherent states can also be ob-
tained from the CM.

For applications such as monitoring of quantum-
communication channels, it is highly desirable to develop
techniques such that the reconstruction of a state’s CM can
be accomplished with the fewest possible measurements. To
this end, the structure of the matrix itself can be exploited
such that only two measurement settings yield six of the ten
independent parameters (simultaneous measurement of the
amplitude quadrature of one mode and the phase quadrature
of the other mode). Besides these more technical consider-
ations regarding an efficient experimental procedure for the
detection and quantification of entangled Gaussian states,
there are a number of fundamental issues that must be ad-
dressed. These have been elaborated upon by van Enk et al.
[18], who gave five criteria that should be met when con-
ducting an entanglement experiment. The heart of the criteria
is not to assume too much as to the form, symmetry, or
repeatability of the entanglement source for each copy that it
produces. The effect of not satisfying these criteria is to in-
crease the risk of overestimating or underestimating the
amount of entanglement present in the generated state. Any
entanglement verification protocol should satisfy these five
criteria. The choice of a verification protocol will ultimately
depend on the rype of entanglement generated (or thought to
have been generated) in an experiment.

The establishment of a quantum-communication channel,
such as a teleportation channel, requires the distribution of
what van Enk et al. have referred to as a priori entanglement
[18]. This type of entanglement is obtained when a source
generates many copies of a bipartite state p,p, such that an
entanglement verification protocol can be conducted on a
subensemble of them, using the rest to perform a quantum-
information theoretic protocol. A possible verification proto-
col for a priori entanglement is to perform full tomography
on the state. This can be achieved using linear optics and
homodyne detection [19,20]. This allows for not only a
qualitative statement as to whether the state is separable or
entangled but also a quantitative statement as to how much.
Full tomography is expensive, however, especially when its
implementation is solely to obtain information about the
channel. As such, it is desirable to develop verification pro-
tocols that can be conducted using only partial tomographic
measurements while still satisfying the van Enk e al. crite-
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ria. We now present such a partial tomographic protocol
(PTP).

B. Description of the partial tomographic protocol

The partial tomographic protocol developed to character-
ize our teleportation channels can be stated as follows.

(1) Alice and Bob simultaneously measure their amplitude
and phase quadratures, respectively, while comparing their
results by means of classical communication.

(2) Alice and Bob simultaneously measure their phase and
amplitude quadratures, respectively, while comparing their
results by means of classical communication.

(3) Alice and Bob measure their amplitude quadratures.

(4) Alice and Bob measure their phase quadratures.

(5) Alice and Bob simultaneously measure a linear com-
bination of their amplitude and phase quadratures, respec-
tively.

The fact that every parameter of the CM is measured pre-
vents one from making an assumption as to the symmetry of
the state being measured. Although measuring only the sec-
ond moments of the state does not give information as to
whether the state is Gaussian or not, something which in the
strictest sense of the van Enk et al. criteria should not be
assumed, an entanglement criterion, such as the Simon crite-
rion, is a sufficient criterion for both Gaussian and non-
Gaussian states. Furthermore, quantities such as the secret
key rate [21,22] or the lower bound to the quantum-channel
capacity [8], while indirectly indicating the presence of en-
tanglement, obtain their lower bounds for Gaussian states. As
such, one can at worst only underestimate these quantities by
measuring just the second moments and assuming that the
state is Gaussian.

III. EXPERIMENTAL SETUP

In our experiment, we generate the two-mode entangled
states by mixing on a balanced beam splitter two squeezed
vacuum beams produced by our optical parametric amplifiers
(OPAs). The laser source used in our experiment was a
continuous-wave nonplanar neodymium-doped yttrium alu-
minum garnet (Nd:YAG) ring laser with 300 mW of output
power at 1064 nm and 800 mW at 532 nm. The latter was
used to pump the OPAs to produce two amplitude-squeezed
light beams with an approximate power of 0.06 mW at
1064 nm. Both OPAs were constructed from type-I noncriti-
cally phase-matched MgO: LiNbOj crystals inside hemilithic
cavities. Each cavity was formed by a high-reflection-
(HR-)coated crystal surface with a reflectivity of r>0.999
and a metal-spacer-mounted out-coupling mirror with a re-
flectivity of r=0.957. The intracavity crystal surface was
antireflection-coated for both the fundamental (1064 nm, r
<0.05%) and the second harmonic (532 nm, r<0.5%). The
out-coupling mirror had a reflectivity of »=0.15+0.02 for
532 nm. The OPAs were seeded through the HR surface with
a coherent laser beam of 15 mW power and pumped through
the out-coupling mirror with various intensities, the lowest
being 75 mW, corresponding to a parametric gain of 5. The
length of both OPA cavities as well as the phase of the sec-
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FIG. 2. (Color online) Experimental setup: The squeezed states
are generated by the two optical parametric amplifiers (OPAs) and
mixed at the entangling beam splitter (Ent-BS). The different
classes of entanglement are generated by adjusting the parametric
gain setting of the OPAs. The entanglement is then distributed over
a free-space channel to the two homodyne detectors Alice and Bob.

ond harmonic were controlled using radio-frequency modu-
lation or demodulation techniques. The error signals were
derived from the seed fields reflected from the OPA cavities.
A maximum value of 4.0 dB of nonclassical noise suppres-
sion was directly observed using homodyne detection. The
shot noise level was defined by mixing the local oscillator
with the vacuum mode on a balanced beam splitter and mea-
suring fluctuations of vacuum. The electronic dark noise of
the homodyne detectors was approximately 13 dB below the
shot noise level, making dark noise correction of the ob-
served squeezing superfluous. The visibility on both homo-
dyne detectors was 7,;,=0.965, and the quantum efficiency
of the photodetectors is estimated to be 7quanum="0.93, yield-
ing a total detection efficiency of 7=0.87. The phase locks
on both the entangling beam splitter and homodyne beam
splitters are estimated to be within 3° of the desired values.
The photocurrents produced from the homodyne detectors
were first demodulated at a frequency of 7 MHz and low-
pass filtered with a corner frequency of 30 kHz. They were
sampled with a National Instruments sampling card with
maximum sampling rate of 1 megasample per second. By
independently changing the parametric gain of each amplifier
we can generate all three types of entanglement as illustrated
in Fig. 1. A diagram of the full experiment is provided in Fig.
2.

IV. EXPERIMENTAL IMPLEMENTATION OF PTP

Our partial tomographic protocol was implemented using
a custom-built data-acquisition system whose software com-
ponent was developed using LABVIEW and whose hardware
component was realized by balanced homodyne detection
with external addition and subtraction boxes. The homodyne
detectors were designed such that there were multiple out-
puts of both the dc and ac signals generated by each detector.
The ac-subtracted signals from both homodyne detectors
were fed simultaneously into the LABVIEW program, where
both the variances of the respective electronic channels as
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well as the covariance of the two electronic channels were
calculated in real time. This corresponds to the classical-
communication component of our protocol. Additional infor-
mation as to which quadratures produced a given covariance
was obtained by recording, in real time, the dc-subtracted
signal from one scanned homodyne detector. This was
achieved by locking, e.g., Alice’s homodyne detector to one
quadrature and scanning the phase between the local oscilla-
tor and signal beam of Bob’s homodyne detector. With this
setup, one measurement—e.g., measuring the amplitude
quadratures simultaneously—delivered three of the ten re-
quired CM parameters.

There are two main features of our implementation that
are noteworthy. First, it allows the manual setting of the mea-
surement basis. The basis information can be obtained by
looking at the covariance of the two electronic channels. A
zero covariance indicates the measurement of two orthogonal
quadratures for a symmetric state. Although both the verifi-
cation and quantification of entanglement are basis indepen-
dent, the form of the CM is not. For the case of an optimally
entangled Einstein-Podolsky-Rosen (EPR) state, one would
expect nonzero parameters for half the elements of the CM in
an orthogonal measurement basis. While the choice of a ba-
sis is arbitrary, it must be consistent. Failure to measure ev-
ery parameter of the CM in the same basis is tantamount to
random experimental error. Failure to measure some of the
parameters in the same basis is systematic error, as it adds a
constant offset to only some of the parameters. The result of
these error sources, especially systematic error, is to give a
false estimate of quantities of interest such as the logarithmic
negativity [23], or to reconstruct a nonphysical state.

Second, systematic error can be reduced. As a result of the
real-time evaluation of the covariance between the homo-
dyne detector outputs and the dc-subtracted signal from a
scanned homodyne detector, one can determine which
quadratures are correlated, anticorrelated, and not correlated.
This information helps to reduce the systematic error, be-
cause it provides a means by which to adjust the phase angle
between the optical local oscillator and signal beam indepen-
dent of any dc offsets on the error signal. This contributes to
the overall consistency of the entanglement detection.

V. THEORETICAL DESCRIPTION OF
QUANTUM-COMMUNICATION CHANNELS

In order to more deeply understand the equivalence be-
tween a shared entangled state and an established quantum-
communication channel, such as for a teleportation channel,
it is necessary to understand the theoretical structure of
quantum-communication channels. It is also within this
framework that these channels obtain their physical meaning.
To this end, this section will review the necessary theoretical
concepts in order to understand the experimental results of
Sec. VL.

A quantum channel is a trace-preserving completely posi-
tive map 7 that transforms quantum states according to
p—T(p) [7]. They can be understood to originate as the
result of a unitary interaction U of a state p with the envi-
ronment described by another Hilbert space H which is in a
state pg,
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T(p)=Trg Ulp ® pp)U", ()

where Trp denotes the partial trace with respect to Hp
[3,7,24]. An important subclass of these channels are the
Gaussian channels, which are characterized by a Gaussian
unitary U, determined by a quadratic bosonic Hamiltonian,
and a Gaussian state pg [3]. At the level of covariance ma-
trices, which offer a complete description of Gaussian states
and would be measured in all practical applications of
continuous-variable quantum-information protocols, the ac-
tion of a channel is given by

y>XTyX+Y. (3)

The condition to ensure that the transformation is completely
positive is given by

Y+iQ-iXTQx =0, (4)

o=(7 0]

is the symplectic form with

(5 o)

The formula Eq. (4) represents the necessary and sufficient
condition for complete positivity of the Gaussian map given
by Eq. (3); see, e.g., Refs. [25-29]. It is possible to interpret
this condition as the generalized Heisenberg inequality. Ac-
cording to the Jamiolkowski isomorphism [29], every com-
pletely positive map is isomorphic to a positive semidefinite
operator on the tensor product of Hilbert spaces of input and
output states. In the case of Gaussian CP maps this operator
becomes an infinitely squeezed Gaussian state characterized
by matrices X and Y. The generalized Heisenberg inequality
for the covariance matrix of this state is equivalent to Eq.
(4); cf. Ref. [25].

The usual quantum-information protocols, e.g., teleporta-
tion and quantum memory, can all be considered as quantum
channels [8]. In this paper, we consider a special subclass of
teleportation channels established by means of a shared en-
tangled state together with local operations and classical
communication. An important characteristic of teleportation
channels, as well as quantum channels in general, is their
capacity to transmit quantum information, quantified in units
of qubits. To this end the quantum capacity [3,30-32] of an
arbitrary channel T is given by

where

(1) = lim ~ sup J(p. T*"), 5)
n—o N p
Jp.T) = S(T(0) - S(T ® id) (). ©)

where ¢ is a purification of p and J is known as the coherent
information. The coherent information was first introduced
by Schumacher and Nielsen in connection with error correc-
tion [33]. With regard to its operational interpretation, the
coherent information quantifies the amount of information
the environment has obtained about the state transversing it.
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Another information theoretic quantity related to the coher-
ent information is the quantum conditional entropy [34-36]
defined by

S(B|A) = S(pag) — S(pa), (7)

where S(p,z) and S(p,) stand for the von Neumann entropies
of the total state p,p and the part of the total state held by
Alice, p,, respectively. The conditional entropy quantifies the
amount of quantum information Bob must send to Alice such
that she can recreate the total state p,p, given her prior
knowledge of it, as quantified by S(p,). As such, the condi-
tional entropy quantifies Alice’s ignorance of the total state.
The coherent information Eq. (6) depends on both the chan-
nel T as well as on the input state p to the channel. In order
to evaluate the quantum capacity of an arbitrary channel 7,
the coherent information must be maximized over all pos-
sible input states and regularized over many uses of the chan-
nel. For teleportation channels, where T would correspond to
a shared entangled state with CM ; however, a lower bound
to the quantum capacity can be obtained by first applying a
distillation protocol to the state in order to obtain k maxi-
mally entangled pairs of quantum bits (ebits). The teleporta-
tion protocol could then be conducted using these ebits. It
was shown by Wolf er al. [8] that the number of ebits that
can be obtained from a given state with CM vy can be
bounded from below by the right-hand side of

O(T) = S(ya) = S(v) = Oy, (8)

which in turn gives a lower bound to the quantum-channel
capacity. Here S(7y) denotes the von Neumann entropy of a
Gaussian state with CM v. The development of entanglement
distillation protocols is an active area of current research. A
major step toward implementation of entanglement distilla-
tion for continuous variables [37,38] has been made by the
demonstration of squeezed-state purification [39,40] and sub-
traction of single photons from squeezed states [41-43]. As
shown in [44], the protocol demonstrated in [39] is quite
general and can be extended in a straightforward manner to
an iterative purification protocol as well as to entanglement
distillation in the presence of non-Gaussian decoherence.

In addition to the quantum capacity, there are a number of
other quantities that will contribute to the characterization of
our teleportation channels. To begin with, the state condition,
defined by

y+iQ) =0, 9)

where () is again the two-mode symplectic form, determines
whether the reconstructed CM corresponds to a physical state
[45]. We define N as the minimum eigenvalue of y+i{) and
the inequality (9) holds if and only if A= 0. In order to verify
that the channel has been established using entanglement, the
Simon-Peres-Horodecki (Simon) criterion [45] can be used
and can be formulated as

Ya4+iQ =0, (10)

where yA=AyA is the CM of a state partially transposed
with respect to Alice’s mode, and A=diag(1,-1,1,1) corre-
sponds to a local time-reversal operation on Alice’s phase
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TABLE I. Channel characteristics for each class of entanglement used to establish a teleportation channel.
They are the state condition X, the Simon criterion A74, the optimal entanglement witness W, the logarithmic
negativity E,, the lower bound to the quantum channel capacity, Q,, the teleportation fidelity of coherent

states, F, the purity u, and the secret key rate K.

V class S class
Characteristic Gain 5 Gain 10 Gain 5 Gain 10
N 0.033+0.004 0.034+0.003 0.063+0.003 0.175+0.005
Na —-0.317+0.004 —-0.349+0.003 —-0.600+0.001 -0.566+0.004
w —-0.341+0.004 —-0.383+0.003 —-0.599+0.001 -0.566+0.004
Ey 0.602+0.003 0.700+0.004 1.342+0.005 1.331+0.009
o1 —-0.071+0.003 -0.059+0.004 0.387+0.005 0.100+£0.009
F 0.586+0.003 0.597+0.003 0.701+0.003 0.695+0.005
% 0.648+0.002 0.563+0.001 0.608+0.002 0.301+0.002
K 0.323+0.005 0.120+0.006

quadrature only. As before, we define A4 as the minimum
eigenvalue of y4+iQ). If \T4<0, then the state is entangled.
In addition to the Simon criterion, an optimal entanglement
witness ¥V was determined by solving the corresponding
semidefinite program [46]. The amount of entanglement was
quantified using the logarithmic negativity [23], defined by

EN: ]0g2||pTA » (1 ])

where the basis 2 sets the units to bits. The teleportation
fidelity for coherent states [25] is given by

2
Fe=—r—, (12)
Vdet E

where the matrix E reads
E=2D+RAR"+RC+C'R"+B, (13)
and the matrices A, B, C, and CT are obtained from the CM

given by Eq. (1) with
R (1 0 ) (14)
"\ -1/

The purity of the state is defined by u=Tr[p3,] and for
Gaussian states we have

1
Vdet y

u (15)

Finally, we evaluate the achievable secret key rate for an
entangled-state-based quantum key distribution protocol
where Alice and Bob both measure a certain quadrature us-
ing local homodyne detection on their parts of the shared
two-mode state. From the knowledge of the covariance ma-
trix vy, a lower bound on the achievable secret key rate can be
calculated by assuming that the state is Gaussian and using
the formula

K=IAB_X(A:E)' (16)

Here, 1,5 is the classical mutual information between Alice’s
and Bob’s measured data and y(A:E) denotes the Holevo

bound between Alice and an eavesdropper Eve [21,22]. This
latter quantity can be expressed as x(A:E)=S(psz)—S(pj).
where p% is a normalized density matrix of Bob’s mode con-
ditional on Alice’s measurement outcome a. Note that, for
Gaussian states and homodyne detection, S(pj) does not de-
pend on the measurement outcome a, which justifies the use
of the above expression.

VI. EXPERIMENTAL RESULTS

The partial tomographic protocol presented in Sec. II B
was used to characterize teleportation channels established
by two different classes of distributed bipartite entanglement.
Data acquisition was performed using a LABVIEW program.
One million data points were recorded per measurement set-
ting. The data were then divided into ten separate data blocks
each with 100 000 points. Covariance matrices were gener-
ated from each of the ten and averaged, yielding an average
CM. For each CM, the channel characteristics were calcu-
lated and averaged. The standard error was then calculated
for the 95% confidence interval. With respect to the CMs,
this ranged from +0.001 to +0.01. The first class, to be
known as V-class entanglement, was formed by mixing a
single-mode squeezed vacuum state with the vacuum mode
on a balanced beam splitter. According to the formalism pre-
sented by Wolf er al. [47], this represents the optimal entan-
gling scheme for these input states. This experiment was
conducted for parametric gain settings of 5 and 10. The re-
constructed V-class covariance matrix (CM) for the paramet-
ric gain 5 setting is given by

0.751 -0.146 0.307 -0.000
-0.146 3.175 -0.000 -2.129
0.307 -0.000 0.706 -0.102

-0.000 -2.129 -0.102 3.181

The channel characteristics are presented in Table I. They
include in order of appearance: the state condition Eq. (9),
the Simon criterion Eq. (10), an optimal witness; the loga-
rithmic negativity Eq. (11), the lower bound to the quantum
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channel capacity Eq. (8), the teleportation fidelity of coher-
ent states Eq. (12), and the purity of the entangled state Eq.
(15). The state condition demonstrates that the reconstructed
CM is a true CM, i.e., that the CM corresponds to a physical
state. This serves as an indicator if the measurement has been
conducted correctly. Both the Simon criterion and the en-
tanglement witness serve as a check if the state is separable
or entangled. The advantage of using an entanglement wit-
ness is that it corresponds to the optimized measuring device
that can be reconstructed from the measured data [46]. As a
result of this optimization, measuring a witness may involve
even fewer measurement settings in order to optimally detect
the entanglement of the state.
The V-class parametric gain 10 CM reads

0.686 —0.054 0.326 0.003
-0.054 4.625 0.001 -3.584

0.326  0.001 0.678 -0.031 [’

0.003 -3.584 -0.031 4.681

with the corresponding channel characteristics also given in
Table I. In both cases, the lower bound to the channel capac-
ity is negative. The teleportation fidelities F, both being
greater than 1/2, indicate the presence of entanglement. The
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FIG. 3. (Color online) Error analysis: These
plots depict the error on the logarithmic negativ-
ity for systematic phase offsets on the quadratures
(a), and on their linear combination (b). It is seen

0.001 that the linear combination parameters are more
robust to experimental systematic error than the
Y individual quadratures and their dependencies.

-0.001
-0.002
-0.003
-0.004
-0.005

-0.006

negative values for the Simon criterion and entanglement
witness clearly show that the measured state was entangled.

The second class of entanglement generated, to be known
as S-class entanglement, was established by mixing two
equally but oppositely squeezed beams on a balanced beam
splitter. For ideal pure squeezed states, this would yield the
two-mode squeezed vacuum state. The reconstructed S-class
CMs for the parametric gain 5 and 10 settings read

2.359 0.132 1.885 0.028
0.132 2205 0.008 -1.883
1.885 0.008 2.266 0.372
0.028 —1.883 0.372 2.427
and
4200 -0.090 3.773 -0.033
—-0.090 4.462 0035 -4.216
3773  0.035 4228 -0.208 |’
—-0.033 —-4216 -0.208 4.842

respectively. The corresponding channel characteristics are
listed in the third and fourth columns of Table I, respectively.
Comparing the two logarithmic negativities of the V-class

012323-6



EXPERIMENTAL CHARACTERIZATION OF GAUSSIAN...

1.2 1
0.8 1 09
0.4
0.8
QL 0 F
[qubits] 07
.04 |
08} 0.6
q0 Lk L L L L L L L 0.5
0 02 04 06 038 1 12 14 16
Ex
[Bits]

FIG. 4. (Color online) S-class entanglement: This plot depicts
the dependence of the lower bound to the quantum-channel capac-
ity, Q;, on the purity of the entangled state, where curve A is for
m=1, curve B for ©=0.5, and curve C for u=0.2, and the amount
of entanglement. Interesting for the application of a state-merging
protocol or to obtain a positive secret key rate is the point at which
Q; becomes positive. It is seen that, as the purity of the state de-
creases, more entanglement is required for it to become positive.
Curve D is the fidelity for each case.

and S-class entangled states, it is seen that the introduction of
another squeezed beam increases the amount of entangle-
ment for the same gain setting by roughly a factor of 2. The
lower bound to the quantum capacity also now shows a posi-
tive value for each S-class state. The sign of Q; is dependent
on both the purity of the state and the amount of entangle-
ment, a relationship that will be explored more fully in Sec.
VIIL. The fidelities are both greater than 0.5, indicating the
presence of entanglement. The fidelity of the gain 5 S-class
state, F=0.701, breaks the 2/3 no-cloning limit, which is
experimentally significant [48,49]. The difference of purities
can be understood when we consider that, for V-class en-
tanglement, the vacuum mode introduces only a fixed
amount of noise, whereas, for S-class entanglement, the extra
noise introduced into the entangled state in the form of anti-
squeezing is not fundamentally bounded.

As a final result, a positive secret key rate was obtained
from both S-class states. With a resolution bandwidth of
50 kHz, 16.1 kbit/s of a secure key could be extracted using
the channel established by the parametric gain 5 setting. This
shows that the S-class entangled states can be used for
continuous-variable quantum cryptography. Additionally,
drawing on the recent results of Horodecki ef al. [35,36], the
positive Q;’s indicate that state merging can be achieved
using only local operations and classical communication.

VII. DISCUSSION

It is seen that nonzero entries appear in reconstructed
CMs where zero normally would have been expected. The
question remains: At what point do these nonzero entries
become significant? An analysis of the error incurred as a
result of either falsely measuring, or not measuring at all, the
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FIG. 5. (Color online) V-class (a) and M-class (b) entanglement:
These plots were created in a similar fashion as Fig. 4, but for the
V-class and M-class entanglement. As in the previous plot, curve A
corresponds to a pure state, u=1, curve B to u=0.5, and curve C to
wn=0.2. In both plots, the lower bound to the quantum-channel ca-
pacity, Q;, becomes positive before the S-class entanglement for the
same purity.

nonstandard entries has been conducted in [17] and a similar
analysis is presented here. In Fig. 3 is illustrated the percent
error on the logarithmic negativity in the presence of phase
offsets on the homodyne detectors. Two cases are numeri-
cally investigated. Figure 3(a) is the effect of phase offsets
on measuring the amplitude and phase quadratures. The ef-
fect of phase offsets on measurements of the linear combi-
nation of the quadratures, assuming the individual quadra-
tures have been properly measured, is illustrated in Fig. 3(b).
The simulation was conducted by generating a covariance
matrix corresponding to a pure nonoptimally entangled
S-class state, whose quadrature variances were dependent on
four independent parameters, namely, @ajice> Osob> Ealice> aNd
agop- The parameters ¢ and 6 correspond to the independent
phase offsets applied to Alice’s and Bob’s quadratures, re-
spectively. The parameters & and « correspond to the inde-
pendent phase offsets applied to Alice’s and Bob’s linear
combination of quadratures. In this way, the effect of incor-
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rectly measuring the quadratures on the value of the covari-
ance between them can be analyzed. In Fig. 3(a) the percent
error on the logarithmic negativity dependent on phase off-
sets on Alice’s and Bob’s quadratures is presented. It is seen
that, in the region of ¢, 6 €[-2,2], the percent error can be
as high as —2%, indicating that the amount of entanglement
is underestimated. As the phase offsets increase, so does the
error reaching as high as 14% overestimation and —6% un-
derestimation. The percent error dependent on phase offsets
on the linear combination terms is presented in Fig. 3(b). It is
seen that the error is significantly less for the same region as
in the quadrature case. This illustrates that the linear combi-
nation terms are far more robust to systematic error than the
quadrature terms and their dependencies.

The experimental results highlight a relationship between
the purity, logarithmic negativity, and the lower bound to the
quantum-channel capacity, Q;. This relationship is made ex-
plicit in the numerical results presented in Figs. 4 and 5. The
Q; for S-class entanglement is shown for three different pu-
rities in Fig. 4. It is seen that for pure states i.e., u=1, the
presence of entanglement ensures a positive Q;. As the pu-
rity of the state decreases, the zero crossing is shifted toward
higher levels of entanglement. The teleportation fidelity,
plotted on the second abscissa, is independent of the purity
of the state (assuming that the channel has been properly
homodyned). The purity dependence of the Q; can be further
investigated by looking at its behavior for two other classes
of entanglement. The Q; for V-class entanglement and for
M-class entanglement, formed by mixing two unequally and
oppositely squeezed beams on a balanced beam splitter, is
shown in Fig. 5. It is readily seen that the zero crossing for
less than pure states occurs at lower levels of entanglement
than for S-class entanglement. Indeed, the numerical results
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for M-class entanglement manifest optimal behavior for less
than pure states, being positive earlier than for S-class en-
tanglement for the same purity. Although all three entangled
states are bipartite Gaussian states, their utility is very much
dependent on their underlying construction.

VIII. CONCLUSION

In this work, we have presented an efficient method for
the characterization of Gaussian communication channels
with which the entire covariance matrix was measured. This
method was applied to two different classes of continuous-
variable entangled states which were used to establish a tele-
portation channel between distant parties. The lower bound
to the quantum-channel capacity as well as other character-
istics of the channel were evaluated from the reconstructed
covariance matrix. The relationship between the purity, en-
tanglement class, and quantum-channel capacity was ex-
plored numerically. Two of the established teleportation
channels delivered both a positive Q; as well as a positive
secret key rate.
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