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Abstract
We investigate a formulation of continuum 4D gravity in terms of a constrained
BF theory, in the spirit of the Plebanski formulation, but involving only linear
constraints, of the type used recently in the spin foam approach to quantum
gravity. We identify both the continuum version of the linear simplicity
constraints used in the quantum discrete context and a linear version of the
quadratic volume constraints that are necessary to complete the reduction from
the topological theory to gravity. We also illustrate and discuss the discrete
counterpart of the same continuum linear constraints. Moreover, we show
under which additional conditions the discrete volume constraints follow from
the simplicity constraints, thus playing the role of secondary constraints.

PACS numbers: 04.20.Fy, 04.60.Pp

1. Introduction

The equations of general relativity can be derived from several different action principles
[1], leading to equivalent classical theories (in the case of pure gravity, at least). Among
them we can mention, in addition to the Einstein–Hilbert action [2], the Palatini first-order
formulation and its modification proposed by Holst [3]. This last one is of special interest
because it is the classical, covariant starting point for the canonical quantization leading to
loop quantum gravity [4, 5]. Even if not the only possible useful one [6], a particularly
popular action in covariant approaches to quantizing gravity [7], like the spin foam [8] and
group field theory approach [9], is the formulation as a constrained BF (or Plebanski [10, 11])
theory. Here one starts from topological BF theory [12] in four spacetime dimensions, and
adds suitable constraints on the two-form B variables of the theory such that, on solutions of
these constraints, the action reduces to the Palatini or Holst action for general relativity. We
will summarize the idea behind this formulation in the following. In the original Plebanski
formulation, the constraints on the B variables are quadratic, and so are the discrete constraints
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that are then implemented in the spin foam models based on a simplicial discretization. On
the other hand, the most recent developments in the spin foam and group field theory approach
to quantum gravity are based on a linear set of discrete constraints, which can be shown to be
slightly stronger, in the restrictions they impose on the original BF configurations, than some
of the original discrete quadratic constraints. Once more, we will detail this construction in
the following.

In this note we investigate whether a formulation in terms of linear constraints is also
possible in the classical continuum theory, and what it implies. We will see that the replacement
of diagonal and cross-simplicity constraints with linear constraints at the continuum level is
relatively straightforward, after one has introduced new variables nA forming a basis of three-
forms at each point. One then needs additional constraints corresponding to the volume
constraints. We will see that one can also linearize these constraints. We then give a discrete
version of these linear volume constraints, which bears a striking resemblance to the so-called
edge simplicity constraints of [13]. We note that only certain linear combinations of the
volume constraints one would naively write down are necessary to constrain the bivectors
�AB(�) sufficiently. Similar to the quadratic case, we will also see that when linear diagonal
and off-diagonal constraints hold everywhere in a 4-simplex, and one also imposes closure
constraints on both bivectors �AB(�) and normals nA( ) referring to the tetrahedra of the
4-simplex, the sufficient set of linear combinations of the linear volume constraints follow.
This additional four-dimensional closure constraint on the normal vectors has, to the best of our
knowledge, not been considered or implemented as an additional condition in the spin foam
literature yet, although it does appear in some first-order formulation of the Regge calculus
[14], and it also plays a role in the discrete analysis of [15].

2. Gravity as constrained BF theory: continuum and discrete results

Let us briefly review what is known at the classical continuum and discrete level, concerning
the Plebanski formulation of classical gravity. We limit our considerations to the covariant,
Lagrangian context, and to a very small subset of the available results, those which have been
already of direct relevance for quantum gravity model building, especially in the spin foam
context. For recent results in the canonical Hamiltonian setting, both continuum and discrete,
see [13, 16–18].

Consider first the Einstein–Hilbert–Palatini–Holst [2, 3] Lagrangian (without
cosmological constant)3

S = 1

8πG

∫
R×R

(
1

2
εABCDEA ∧ EB ∧ RCD[ω] +

1

γ
EA ∧ EB ∧ RAB[ω]

)
, (2.1)

where spacetime is assumed to be of the form R×R so that a (3+1)-splitting can be performed,
ωAB is a G-connection one-form (the gauge group G is SO(3, 1) or SO(4), or an appropriate
cover), RAB its curvature and EA is an R

4-valued one-form representing an orthonormal frame.
The term involving γ , known as the Holst term, is not relevant classically; its variation vanishes
if torsion is zero (but see [19]). It is, however, of fundamental importance in loop quantum
gravity (LQG), and more generally for any canonical formulation of gravity, as it modifies the
symplectic structure of the theory.

If one introduces a g-valued two-form,

BAB = 1

8πG

(
1

2
εAB

CDEC ∧ ED +
1

γ
EA ∧ EB

)
, (2.2)

3 We follow the usual conventions: capital Latin indices are internal indices, small Latin indices are coordinate
indices. For an abstract collection of indices, we use small Greek letters.
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then action (2.1) becomes

S =
∫

BAB ∧ RAB[ω] + λαCα[B], (2.3)

i.e. it takes the form of a topological BF theory with additional constraints Cα which
enforce that BAB is indeed of the form (2.2) and that are enforced by means of Lagrange
multipliers λα .

As said, BF theory without constraints is topological. Its equations of motion imply that
ωAB is flat and the covariant exterior derivative of BAB vanishes. Having no local degrees of
freedom, the quantization of such a theory is therefore rather simple and quite well understood.
Inspired by this classical formulation, the main issue when trying to construct a quantum
theory related to quantum gravity, in four dimensions4, is then the correct implementation of
appropriate constraints that lead to (2.2) for some set of one-forms EA, either at the level of
quantum states or in a path integral formulation. Indeed, the bulk of the work in the spin foam
approach [8, 21–24] (as well as in the group field theory formalism [9, 25, 26]), in recent
years, has been devoted to this task. These constraints are also the subject of this note.

To simplify the following calculations, we introduce another two-form field �AB ,

�AB ≡ 1

1 − sγ 2

(
BAB − γ

2
εAB

CDBCD

)
, (2.4)

where s is the spacetime signature, s = −1 for G = SO(3, 1) and s = +1 for G = SO(4)

(and we assume γ 2 �= s)5. This is a linear redefinition which simplifies the constraint (2.2)

�AB = 1

8πγG
EA ∧ EB, (2.5)

but leads to more terms in the action. The translation of all calculations from one set of
variables to the other is usually straightforward.

The traditional way to enforce restriction (2.5), the one matching the original classical
Plebanski formulation of gravity, was to add quadratic simplicity constraints6 to the action
[27, 28]

εABCD�AB
ab �CD

cd = V εabcd , (2.6)

where V can be expressed in terms of �AB by contracting (2.6) with εabcd , to give
V = s

24εabcdεABCD�AB
ab �CD

cd . This is itself a reformulation of the original Plebanski constraint,
which would read

εabcd�AB
ab �CD

cd = V εABCD (2.7)

and is equivalent to the first under the assumption that V �= 0 everywhere. The version (2.6)
has the advantage of permitting a much simpler discretization and thus a more straightforward
implementation within the spin foam formalism. Under the same assumption V �= 0, there
are the following four classes of solutions to (2.6):

either �AB = ±eA ∧ eB or �AB = ± 1
2εAB

CDeC ∧ eD (2.8)

for some set of one-forms eA (the factor 8πγG can obviously be introduced by rescaling). One
would like to select only the first class of solutions �AB = +eA ∧ eB , which, when substituted
in the BF action, gives the Holst action (2.1). Classically, this is not a severe problem.

4 Note that, in three spacetime dimensions, gravity in first-order form coincides, classically, with 3D BF theory, and
that in higher dimensions a similar formulation of gravity as constrained BF theory can be given [20].
5 For uniformity of the discussion, we shall in the following talk about ‘time’ and use the label 0 even when the
gauge group is SO(4) and the signature Riemannian.
6 ‘Simplicity’ because a two-form that can be written as a wedge product of one-forms is called simple.
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As shown in [27], non-degenerate initial data of a solution of the form �AB = +eA ∧ eB

generically remain within the same branch of solutions. The situation in the quantum theory,
where one necessarily has contributions from all branches, is less clear.

More troublesome, if V = 0, the field �AB does not permit a straightforward geometric
interpretation at all. Since in the region of the phase space where V = 0, the theory is
less constrained, and hence has more degrees of freedom, these non-geometric configurations
should be expected to be dominating in a path integral [27], unless measure factors are such
that this is avoided.

Spin foam models are usually defined in a piecewise flat context, and spin foam amplitudes
are defined for given simplicial complexes [8]. Therefore, one is interested in identifying a
discrete version of the above constraints that could be imposed at the level of each complex.
The version (2.7) of the simplicity constraints admits only a rather involved discrete counterpart
[28] and, upon quantization, leads to the Reisenberger model [28, 29], which has so far received
only limited attention.

The discrete analogue of the constraints (2.6) led instead [27, 28] to the construction of
the Barrett–Crane model [30], in the case in which the Immirzi parameter is excluded from
the original action (γ → ∞). The construction is initially limited to a single 4-simplex,
the convex hull of five points in R

4 (R1,3, in the Lorentzian case) with the topology of a
4-ball, whose boundary is triangulated by the five tetrahedra identified by the five independent
subsets of four such points, while subsets of three points identify the four triangles belonging
to each of these five tetrahedra, each of the triangles being shared by a pair of tetrahedra.
One then associates a Lie algebra element (bivector) �AB

� ∈ so(4) 	 ∧2
R

4 (similarly in
the Lorentzian case) to each triangle � in a given triangulation by integrating the two-form
�AB over �. The task is then to constrain appropriately these Lie algebra variables (or their
quantum counterpart) following the continuum treatment.

It is useful to split the set of continuum equations (2.6) into two sets. Out of the 21
equations (2.6), one first identifies and imposes those 18 which have zero on the right-hand
side (the ‘diagonal’ and ‘off-diagonal’ simplicity constraints)

εABCD�AB
ab �CD

ab = εABCD�AB
ab �CD

ac = 0 ∀ a, b, c. (2.9)

This corresponds to the case if one or two of the indices of the two fields � coincide. At
the discrete level, this translates into two triangles on which the same fields are discretized
which either coincide or at least share a single edge, and thus belong to the same tetrahedron.
Thus, all bivectors �AB

� are required to satisfy

εABCD�AB
� �CD

� = 0 (diagonal simplicity constraint)

and

εABCD�AB
� �CD

�′ = 0 for all �,�′ sharing an edge (cross-simplicity constraint).

These two sets of equations can be imposed at the level of each tetrahedron in the 4-simplex.
The remaining three equations (the ‘volume’ constraints) are equivalent to the requirement

that

εABCD�AB
01 �CD

23 = εABCD�AB
02 �CD

13 = εABCD�AB
01 �CD

23 ∝ V (�) (2.10)

and can be imposed at the discrete level as the requirement that, for each 4-simplex,

εABCD�AB
� �CD

�′ = V for all �,�′ not sharing an edge (volume constraints), (2.11)

where V is defined by the above equation, and is interpreted, on the solutions of the constraints,
as the volume of the 4-simplex.
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An additional condition on the bivectors is usually considered, namely the ‘closure’
constraint, which states that the sum of four bivectors corresponding to the faces of one
tetrahedron is zero:∑

�⊂
�AB

� = 0 . (2.12)

This constraint can be understood in two ways. One can either view it as the condition that the
triangles described by the variables �AB

� close to form a tetrahedron [31], or as a consequence
of the equations of motion. In a topologically trivial region such as the interior of a tetrahedron,
a flat connection can be set to zero by a gauge transformation. Then using Stokes’ theorem,
the integral over the equation d�AB = 0 can be written as

∫
�AB = 0, which is the closure

constraint. The canonical counterpart of this condition is then the Gauss constraint, which
generates local gauge (rotation) transformations and is to be imposed on the quantum states
of the theory.

The same picture appears in three spacetime dimensions, where there are no simplicity
constraints and one directly deals with a su(2) connection one-form ωA and an su(2)-valued
one-form eA. Here the equation deA = 0 is integrated over a (spacetime) triangle to give a
closure constraint. The vectors (using su(2) 	 R

3) associated with the edges of the triangle
add up to zero, and thus have a consistent geometric interpretation as edge vectors in R

3. In
this sense, an n-form with vanishing exterior derivative and appropriate internal indices can
be given a geometric interpretation as describing n-simplices closing up to form an (n + 1)-
simplex. We shall encounter another instance of this statement later on.

The closure constraint, being linear in the �’s and local in each tetrahedron, is obviously
easier to impose at the discrete level, and in the quantum theory, than the volume constraints.
Thus, it is a useful fact that it can indeed be imposed instead of them. More precisely, it can be
shown [23] that the volume constraints in each 4-simplex are implied if one has enforced the
diagonal and cross-diagonal simplicity constraints, plus the closure conditions everywhere,
i.e. in all the tetrahedra of the 4-simplex (in general, i.e. for non-degenerate 4-simplices,
involving tetrahedra belonging to different ‘time slices’). From a canonical perspective, this
observation is usually phrased as an interpretation of the volume constraints as ‘secondary
constraints’ required to guarantee conservation of the other constraints (including the Gauss
(closure) constraint) under time evolution.

After a period of investigations, several potentially worrying issues have been put forward
regarding the Barrett–Crane model [32–34] (for a more recent analysis of the geometry of
the Barrett–Crane model, see [26]) and have given impetus to the development of alternative
spin foam models [21, 22, 24]. These models are known to have nice semiclassical properties
[35], and, importantly, generalize the spin foam setting to include the Immirzi parameter at
the quantum level (for an early attempt, see [36]), and thanks to this allow for a more direct
contact with the canonical loop quantum gravity. Their study is still somewhat preliminary,
but the above properties make them promising candidates for a quantum theory related to
gravity. One of the central features of the new models is the replacement of the quadratic
simplicity constraints (2.9) by linear constraints of the form

nA( )�AB(�) = 0 ∀� ⊂ , (2.13)

where nA is the normal associated with the tetrahedron and � is any of the faces of .
It can be shown that these are lightly stronger than the discrete diagonal and off-diagonal

quadratic simplicity constraints, and remove some of the discrete ambiguity in the solution
for �AB : out of the classes of solutions (2.8), one can restrict to (the discrete version of)
�AB = ±eA ∧ eB only. For a geometric analysis of these conditions in the discrete setting,

5
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see [15, 21, 24, 37], and for a proof that the same discrete conditions can also lead to the
Barrett–Crane model, see [26].

3. Linear constraints for BF-Plebanski theory

The purpose of this paper, as anticipated, is to investigate whether a formulation in terms of
linear constraints is also possible in the classical continuum theory, and what it implies.

Let us work backwards, at first. Assume that the two-form field �AB is of the form
�AB = eA ∧ eB , and that the ‘frame field’ eA is non-degenerate, i.e. that the matrix

(
eA
a

)
is

invertible. It follows that

ec
A�AB

ab = δc
ae

B
b − δc

be
B
a . (3.1)

In order to make a connection to the discrete setting it is more convenient to work
with exterior powers of the cotangent bundle only (n-forms can be integrated over n-
dimensional submanifolds). Hence, we multiply (3.1) by εcdef and insert the relation
εcdef ec

A = (
det ea

A

)
εADEF eD

d eE
e eF

f , which is true for invertible matrices, obtaining

εADEF eD
d eE

e eF
f �AB

ab = (
det eA

a

) (
εadef eB

b − εbdef eB
a

)
. (3.2)

One can define the three-form nAdef ≡ nA[def ] ≡ εADEF eD
d eE

e eF
f , so that (3.2) take the form

nAdef �AB
ab = (

det eA
a

) (
εadef eB

b − εbdef eB
a

)
. (3.3)

nAdef can be interpreted as a 3D volume form for the submanifold parametrized by (xd, xe, xf )

embedded in 4D spacetime, whose internal index gives the normal to this submanifold. If eA

are a basis of one-forms at each spacetime point, then nA are a basis of three-forms at each
spacetime point, and so one can choose to work either with one or the other set of variables.
Clearly eA can be reconstructed from nA:

1
6εcdef nAdef = s

(
det eA

a

)
ec
A = s

3

√
det

(
1
6εbdef nBdef

)
ec
A. (3.4)

This means that the set of variables nA(x) define a co-tetrad frame at any point of the spacetime
manifold (for the discrete analogue of the above, see [15]).

3.1. Linearized diagonal and off-diagonal constraints

So far we have just rewritten the equation we want to obtain for �AB . Let us now consider the
implications of imposing (3.3) as constraints, where we restrict to those with zero right-hand
side, i.e. those for which {a, b} ⊂ {d, e, f }. These are half of the equations (3.3). This will
identify the continuum analogue of the linear simplicity constraints.

Claim 1. For a basis nA of three-forms, the general solution to

nAdef �AB
ab = 0 ∀{a, b} ⊂ {d, e, f } (3.5)

is

�AB
ab = Gabe

[A
a e

B]
b , (3.6)

where eA
a is defined in terms of nAdef as in (3.4), and assumed to be non-degenerate, and

Gab = Gba and Gaa = 0. Obviously, as the variables � and the tetrad field eA, the
‘coefficients’ Gab are spacetime dependent.

Proof. First note that we can rewrite (3.5) as

εADEF eD
d eE

e eF
f �AB

ab = 0 (3.7)

with eA
a defined by (3.4). Then eA

a by assumption defines a basis in the cotangent space, so
that

6
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�AB
ab = G

gh

abe
A
g eB

h (3.8)

for some coefficients G
gh

ab with G
gh

ab ≡ G
[gh]
[ab] . Substituting this into (3.7), we get

0
!= εADEF eA

g eD
d eE

e eF
f G

gh

abe
B
h = εgdef det

(
eA
a

)
eB
h G

gh

ab, (3.9)

and since det
(
eA
a

) �= 0 and eB
h form a basis of (the internal) R

4, this implies that

εgdef G
gh

ab = 0 ∀{a, b} ⊂ {d, e, f }. (3.10)

It follows that G
gh

ab = 0 unless {g, h} = {a, b} and so G
gh

ab ≡ δ
[g
a δ

h]
b Gab. �

By a linear redefinition eA
a = λaẽ

A
a one might try to set some of the Gab to a given value

(usually ±1, but one might prefer ± 1
8πγG

), but it is clear that one needs two conditions on the
Gab for this to be possible.

In the discrete context, one sets nA( ) = (1, 0, 0, 0) for each by a gauge
transformation7. One could use some of the gauge freedom here to restrict the form of nA. This
amounts to finding a convenient parametrization for the coset space GL(4)/SO(3, 1). Let us
make the (usual) assumption that the normal to hypersurfaces {t = constant} is indeed timelike.
Then one can use the boost part of SO(3, 1) to set nA123 = (C, 0, 0, 0). The remaining SO(3)

subgroup can then be used to make the (3 × 3) matrix nI0de, where I ∈ {1, 2, 3}, upper
diagonal, so that one has the form

nAdef ∼

⎛
⎜⎜⎝

∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 ∗

⎞
⎟⎟⎠ . (3.11)

Clearly, when this form of nAdef is assumed, integrating the three-form nA over a region where
t is constant gives a vector in R

4 that only has a time component. Its magnitude specifies the
three-dimensional volume of such a region.

3.2. Linearized volume constraints

As in the quadratic case, further constraints, in addition to the linear simplicity constraints
(3.5), are needed to complete the identification �AB = ±EA ∧ EB .

First of all, one can show the following.

Claim 2. Under the assumption that all Gab are non-zero, the necessary and sufficient
conditions for the existence of a linear redefinition EA

a = λae
A
a , such that either �AB =

cEA ∧ EB or �AB = −cEA ∧ EB , where c is a given positive number, are

G12G03 = G01G23 = G13G02( �= 0). (3.12)

Proof. Set c = 1; the extension to arbitrary c amounts to a further rescaling by
√

c. Then
the required redefinition is possible if and only if there exist λ0, . . . , λ3, such that either
Gab = λaλb for all a �= b or Gab = −λaλb for all a �= b. Clearly (3.12) are necessary. They
are also sufficient. Take

λ1 =
√∣∣∣∣G12G13

G23

∣∣∣∣, λ2 = sgn

(
G12G13

G23

)
G12

λ1
, λ3 = sgn

(
G12G13

G23

)
G13

λ1
, (3.13)

7 This presumably involves an implicit assumption, namely that there is a non-degenerate normal to each tetrahedron,
as well.

7
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which solves the equations for G12,G13 and G23 with sgn
(

G12G13
G23

)
specifying the overall sign.

The remaining three equations for G01,G02 and G03 are then solved by the two relations (3.12)
and

λ0 = sgn

(
G12G13

G23

)
G01

λ1
. (3.14)

�

The assumption Gab �= 0 is necessary. One solution to (3.12) is G12 = G23 = G13 = 0
with the other Gab non-zero, which cannot be expressed as Gab = ±λaλb. Further constraints,
in addition to the linear simplicity constraints (3.5), are needed to complete the identification
�AB = ±EA ∧ EB . One possibility is to use the quadratic volume constraints (3.12). Take
the three volume constraints (2.10),

εABCD�AB
01 �CD

23 = εABCD�AB
02 �CD

13 = εABCD�AB
01 �CD

23 , (3.15)

and substitute the solution �AB
ab = Gabe

[A
a e

B]
b of (3.5). This precisely gives (3.12). The

non-degeneracy assumption needed for (3.12) is then the usual one, namely V �= 0 in (2.6).
This shows that imposing the linear version of the diagonal and off-diagonal simplicity

constraints (3.5) together with the quadratic volume constraints (2.10) and a non-degeneracy
assumption on �AB implies that

�AB = ±cEA ∧ EB (3.16)

for some set of one-forms EA, where c > 0 can be chosen at will. Thus, linearizing the
diagonal and off-diagonal simplicity constraints means that two of the four types of solutions
for �AB are removed, but on the other hand one needs to introduce a basis of three-forms nA

at each spacetime point, which is put in as an additional variable. One also still has to assume
V �= 0.

There is also generically no evolution of initial data with V �= 0 into a degenerate �AB

with V = 0 and a non-geometric interpretation (this is part of the discussion of [27]). The
geometry of the spacetime manifold is specified by EA and not by eA which is only used to
determine normals in the constraints.

Alternatively, one might also prefer to use a linear version of the volume constraints.
Consider the original equation (3.3)

nAdef �AB
ab = (

det eA
a

) (
εadef eB

b − εbdef eB
a

)
, (3.17)

which was equivalent to �AB = eA∧eB for an invertible frame field. So far we only considered
one half of these equations, namely those with {a, b} ⊂ {d, e, f }. The other half have the
form

nAbef �AB
ab = (

det eA
a

)
εabef eB

b (3.18)

with εabef �= 0. One way to read these equations is as the requirement on the left-hand side to
be totally antisymmetric in (a, e, f ):

nAbef �AB
ab = nAbf a�

AB
eb = nAbae�

AB
f b . (3.19)

We could again try to turn the argument around and impose (3.19) as constraints on a
g-valued two-form �AB together with the linear simplicity constraints (3.5). Substituting the
solution �AB

ab = Gabe
[A
a e

B]
b of the linear simplicity constraints into (3.19) gives (after dividing

by a non-zero factor 1
2 det(eA

a ))

εabef Gabe
B
b = εebf aGebe

B
b = εf baeGf be

B
b . (3.20)

8
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For εabef �= 0 this would imply that Gab = Geb = Gf b. By Claim 2, imposing (3.19) for one
fixed b, say b = 0, is generically not sufficient. If we know that G01 = G02 = G03 �= 0, we
still have the condition

G12 = G13 = G23, (3.21)

so that one would need more conditions of the form (3.19). These will then imply that all Gab

are equal, Gab = c′ for some c′ that could be positive, negative or zero. One can absorb |c′|
by an overall redefinition, so that one has

�AB = ±cEA ∧ EB, (3.22)

for any chosen c, as before. Note that here it is possible, if c′ = 0 at a point, that all EA are
zero this point and so �AB = 0 as well. While this is a very degenerate geometry, it is still a
geometry.

While the conditions (3.19), imposed for all values of b, are therefore sufficient to complete
the identification of the two-form field �AB as ±cEA ∧ EB , note that (3.19) is a massively
redundant set of constraints: In order to obtain at most five relations on the coefficents Gab

(two relations (3.12) if all Gab are nonzero), we are imposing eight vector equations! We
have not exploited the fact that (3.20) is a multiple of one of the vectors eB

b , which are by
assumption linearly independent. We could add several of the equations (3.19) for different
b, instead of considering all equations for different b separately. Let us try to impose∑

b

∑
{a,f }�∈{b,e}

nAbef �AB
ab = 0, e ∈ {0, 1, 2, 3} fixed. (3.23)

Again substituting the solution �AB
ab = Gabe

[A
a e

B]
b of the linear simplicity constraints into

(3.23), we obtain

1

2
det

(
eA
a

)∑
b

∑
{a,f }�∈{b,e}

εabef Gabe
B
b = 0, e fixed, (3.24)

which implies, by linear independence of the eB
b , that indeed Gab = Gf b for all e �∈ {a, b, f }. It

is then sufficient to impose the constraint (3.23) for three different choices of e, say e = 0, 1, 2,
so that we only need three vector equations instead of eight.

By absorbing the constant Gab = c′ (all Gab are equal), we rescale all eA by the same factor
to obtain the variables EA that will have the physical interpretation of frame fields encoding
the metric geometry of spacetime. While in the case of quadratic volume constraints the
one-forms eA, or alternatively the three-forms nA, only specified the normals to submanifolds
{xa = constant}, for linear volume constraints they can be directly interpreted, up to a
position-dependent normalization, as specifying an orthonormal basis in the cotangent space.

Note that this implies that one can assume a convenient normalization for the one-forms
eA. Instead of just assuming non-degeneracy det

(
eA
a

) �= 0, one could fix det
(
eA
a

) = 1. This
is no restriction of the physical content of the theory as the eA, for both linear and quadratic
volume constraints, only have a geometric interpretation after rescaling. One could then
interpret eA

a as a map into SL(4, R). For linear volume constraints, the relation between the
normalized one-forms eA and the variables EA that are interpreted as frame fields is a single
function on spacetime which may be viewed as a ‘gauge’ in the sense of Weyl [38].

In contrast to the case of the quadratic volume constraint, no non-degeneracy assumption
on the two-form �AB is needed to enforce simplicity. One might get �AB = 0 in some region
as a solution to the constraints, in which case the action for this region will be zero. This is
analogous to a metric with a vanishing determinant in general relativity and, in contrast to the
requirement V �= 0 outlined above, not an additional issue. Note, however, that one still has

9
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to assume that the tetrad field eA and, equivalently, the co-tetrad field nA are non-degenerate, in
order for the simplicity and volume constraints to imply (3.16). Failing this, one gets solutions
of the constraints that admit no proper geometric interpretation.

In the end, writing the action for BF theory in terms of �AB ,

S =
∫

BAB ∧ RAB =
∫

�AB ∧ RAB +
γ

2
εAB

CD�CD ∧ RAB, (3.25)

we substitute (3.16) into this action, which gives (setting c = 1
8πγG

)

S = 1

8πG

∫
R×R

σ(x)

(
1

2
εABCDEA ∧ EB ∧ RCD +

1

γ
EA ∧ EB ∧ RAB

)
. (3.26)

One is left with a field σ(x) that can take the values ±1, but in the classical theory one may
again argue that if σ = 1 everywhere on an initial hypersurface, there will be no evolution into
σ = −1. What we obtain is first-order general relativity where one uses (det e) = ±| det e|
instead of | det e| as a volume element in the action. If σ is continuous as classical fields
usually are assumed to be, this differs from the action with | det e| by an overall sign at most.

To summarize, we have identified both a linear version of the quadratic simplicity
constraints and a linear version of the (quadratic) volume constraints in the continuum,
which can be used to reduce topological BF theory to 4D gravity in the continuum. We
have also found that both linear versions are slightly stronger (i.e. more restrictive) than
the corresponding quadratic constraints, so that the resulting constrained theory is likely to
be closer to gravity at the quantum level than the one in which quadratic constraints are
implemented. We now discuss the discrete counterpart of the constraints found above.

3.3. Discrete linear constraints and their relations

The discrete analogue of (3.5) is just the linear constraint used in [21, 24], as desired:

nA( )�AB(�) = 0 ∀� ⊂ . (3.27)

One also could write down a discrete version of (3.19), obtained in the natural way,
demanding that within the same 4-simplex

nA( )�AB(�′) = nA(
′
)�AB(�′′) (3.28)

whenever �′ �⊂ and �′′ �⊂ ′
and the edge | shared by �′ and is the same as that shared

by
′
and �′′. In the following we adopt the notation of [23], where the tetrahedra in a given

4-simplex are labelled by A, B, C, D, E, so that triangles are represented by AB, AC, etc.,
and edges by combinations ABC, ABD, etc. The orientation of the triangles and tetrahedra in
(3.28) is then fixed by the signs of the permutations of the letters,

nA( A)�AB(�BC) = −nA( B)�AB(�AC) = nA( C)�AB(�AB), etc. (3.29)

In analogy to the continuum case, it will be sufficient to impose, instead of the full
set of conditions (3.29), certain linear combinations of (3.29) to complete the geometric
interpretation of the bivectors �AB(�). The discrete analogue of the three continuum equations
(3.23), where the index e was kept fixed, is to pick one of the tetrahedra and add those six
equations out of (3.29) which involve triangles belonging to this tetrahedron. Starting with A,
we impose the constraint∑

{i,j}��A

nA( i)�
AB(�Aj) = 0, (3.30)

and the equivalent conditions for the tetrahedra B to E, thereby needing to satisfy only five
instead of 20 volume constraints.

10
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The above discrete formulation of the linearized volume constraints resembles strongly
the edge simplicity constraints studied, in a canonical setting, in [13], and it imposes indeed
the same restriction on the discrete data. However, it does not match exactly any of the various
expressions given for these edge simplicity constraints in [13]. The correspondence between
the two, therefore, deserves to be studied in more detail, given also that edge simplicity
constraints have been shown to be crucial for the kinematical phase space of BF theory (and
of loop gravity) to reduce to that of discrete gravity, in accordance with what we find here in
a covariant setting.

In spin foam models such as [21, 24], as we mentioned earlier, only the diagonal and
off-diagonal simplicity constraints, but no quadratic volume constraints (2.10) are imposed.
This is because in the discrete setting, one can use the closure constraint (2.12), imposed in
all the tetrahedra in a 4-simplex, to relate the (quadratic) simplicity constraints to the volume
constraints, so that if the former are imposed everywhere the latter follows. Since the quadratic
simplicity constraints follow from the linear ones, as can be easily checked, this argument is
still valid if one uses linear simplicity constraints.

One might hope that the sufficient set of linear volume constraints (3.30) would also
follow from the linear simplicity constraints and the closure constraints. This is almost the
case, but not quite. In fact, one more constraint should be added to simplicity and closure
imposed in the five tetrahedra in the 4-simplex. This is a ‘4D closure’ constraint of the form

nA( A) + nA( B) + nA( C) + nA( D) + nA( E) = 0, (3.31)

where
i

are the (appropriately oriented) tetrahedra of a given 4-simplex.
Just as for the usual closure constraint (2.12), there are two ways to understand why

such a constraint must be imposed. Recall that if one demands the triangles described by
discrete variables �AB

� close to form a tetrahedron, they have to satisfy (2.12). Alternatively,

one can start with the continuum field equation ∇(ω)
[a �AB

bc] = 0, where ∇(ω) is the covariant
derivative for the connection ωAB , set the (flat) connection to zero by a gauge transformation,
and integrate this over an infinitesimal 3-ball (whose triangulation is a tetrahedron).

The new constraint (3.31) seems to be the analogous statement that tetrahedra close up to
form a 4-simplex. By Hodge duality ∧1

R
4 	 ∧3

R
4 and any internal covector nA( ) can be

mapped to a three-form; unlike for two-forms, any three-form can be written as e1 ∧ e2 ∧ e3

for some eα . Demanding that the tetrahedra described by these three-forms form a closed
surface is then (3.31). Thus, the simplicial geometric reasoning also goes through for this
new constraint. In terms of the equations of motion of the theory, on the other hand, the only
argument for the need of this constraint is as follows. If ∇(ω)

[a �AB
bc] = 0 and we assume that

�AB = ±eA∧eB , then it follows that ∇(ω)
[a nA

bcd] = 0 as well. Integrating this equation (with the
connection again set to zero) over a 4-ball (which can be thought of as our 4-simplex) whose
boundary is a 3-sphere, triangulated by tetrahedra then leads to (3.31). We then however have
to assume simplicity of �AB . A more direct derivation of (3.31) from the equations of motion
would be desirable.

The role of this constraint, anyway, is the following. Consider the closure constraint

�AB(�AB) + �AB(�AC) + �AB(�AD) + �AB(�AE) = 0. (3.32)

Contracting with nA( B) gives, using the linear simplicity constraint nA( B)�AB(�AB) = 0,

nA( B)�AB(�AC) + nA( B)�AB(�AD) + nA( B)�AB(�AE) = 0. (3.33)

Alternatively, one may start with the 4d closure constraint and contract with �AB(�AB) to get,
again using the linear simplicity constraints,

nA( C)�AB(�AB) + nA( D)�AB(�AB) + nA( E)�AB(�AB) = 0. (3.34)

11
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In total one obtains 20 + 10 = 30 equations of this kind that can be used to express some of the
combinations nA( )�AB(�) in terms of others. Substituting the resulting expressions into the
five discrete volume constraints (3.30) one finds that the equations (3.30) indeed follow from
the relations (3.33) and (3.34). We have seen in the continuum that the summed constraints
(3.23) are sufficient to identify �AB = ±EA ∧EB , and hence we find that in the discrete case
the situation is analogous to the case of quadratic constraints in that a sufficient set of volume
constraints can be viewed as secondary.

To see more clearly what happens in both our construction and in the case of
quadratic constraints analyzed in [23], note that in our linear case one could use the 3d
and 4d closure constraints to express the variables nA( E) and �AB(�AE),�AB(�BE),

�AB(�CE),�AB(�DE) in terms of the others. Taking the linear simplicity constraints into
account, one is then left with twelve independent combinations nA( )�AB(�), just as in the
continuum. In the continuum, we saw that one can impose the three additional constraints
(3.23) on the twelve contractions nAbef �AB

ab to complete the identification �AB = ±EA ∧EB .
In the discrete case, one has the following three additional conditions coming from linear
cross-simplicity constraints:

0 = nA( E)�AB(�AE) = nA( B)�AB(�AC) + nA( B)�AB(�AD) + nA( C)�AB(�AB)

+ nA( C)�AB(�AB) + nA( D)�AB(�AB) + nA( D)�AB(�AC) (3.35)

and similar ones coming from nA( E)�AB(�BE) = 0 and nA( E)�AB(�CE) = 0. These
are precisely the analogue of the continuum constraints (3.23).

Similarly, in the case of quadratic simplicity constraints, one can use 3d closure to
eliminate �AB(�AE),�AB(�BE),�AB(�CE),�AB(�DE). Then one observes that additional
quadratic cross-simplicity constraints give expressions such as

0 = εABCD�AB(�AE)�CD(�BE) = εABCD�AB(�AC)�CD(�BD)

+ εABCD�AB(�AD)�CD(�BC) (3.36)

which are equivalent to the desired (two) volume constraints.
All of this is an exercise in solving a system of linear equations for which there might

be a more simple and elegant description, but the upshot is as follows. The sufficient set of
linear volume constraints (3.30) does indeed follow from the linear simplicity constraints and
the closure constraints, once one also imposes a four-dimensional closure constraint on the
normals to tetrahedra that seems very natural in light of their geometric interpretation. Just
as in the formulation in terms of quadratic simplicity constraints [23], the volume constraints
can be viewed as secondary constraints that imply conservation of the simplicity constraints
in time, or put differently, the volume constraints follow if the simplicity constraints hold
everywhere. Once more this strengthens the relationship between the discrete linear volume
constraints we have identified and the edge simplicity constraints of [13].

4. Lagrangian and Hamiltonian formulation

Let us briefly outline the Lagrangian formulation of 4D gravity resulting from our linear
constraints added to BF theory. One adds the linear simplicity and volume constraints to the
action of BF theory using Lagrange multipliers:

S =
∫

d4x

(
1

4
εabcd�AB

ab RABcd [ω] +
γ

8
εabcdεABCD�AB

ab RCD
cd [ω] + �

abdef

B nAdef �AB
ab

)
, (4.1)

where the Lagrange multiplier field �
abdef

B satisfies �
abdef

B ≡ �
[ab][def ]
B , and

εaef �
abbef

B = 0 (no sum over b). (4.2)
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Indeed, varying with respect to �B then gives back the constraints

nAdef �AB
ab =

{
0, {a, b} ⊂ {d, e, f },

εaef f B
b , b = d

(
for some f B

b

)
.

(4.3)

Note that the second line corresponds to the set of constraints (3.19) and not to the summed
version (3.23), and that it is clearly sufficient for the geometric interpretation of �AB . The
field equation from varying with respect to the connection ω is the usual

∇(ω)
[a �AB

bc] = 0, (4.4)

where ∇ is the covariant derivative for the connection ωAB . The remaining equations involve
the Lagrange multipliers, as would be expected:
1

4
εabcdRABcd [ω] +

γ

8
εabcdεABCDRCD

cd [ω] + �
abdef

[B nA]def = 0, �
abdef

B �AB
ab = 0. (4.5)

We have seen that the constraints imply that �AB = ±EA ∧ EB , and when substituting this
back into the action one will recover general relativity, modulo the possible sign ambiguity
we have already discussed.

We leave a complete Hamiltonian analysis of this theory to future work. However, we
note a feature of the theory that follows directly from the use of linear constraints, and from
the introduction of the additional variables nA.

As in unconstrained BF theory the initial dynamical variables will be the spatial part of
the connection ωAB

k and its conjugate momentum P k
AB ≡ 1

2εijk�ABij . We also saw that the

equation of motion ∇(ω)
[a �AB

bc] = 0 is unaffected by the constraints. Hence, there will be Gauss
constraints of the form

GCD ≡ ∂iP
CDi + ωC

EiP
EDi + ωD

EiP
CEi (4.6)

on the canonical momenta. Their role is to generate G gauge transformations.
Looking at the action (4.1), one would already require that (4.6) should be modified

to generate gauge transformations on the normals nAdef; (4.1) is only invariant under gauge
transformations if the three-forms nAdef are transformed. The need for such a modification is
also seen if one computes Poisson brackets between the linear simplicity and Gauss constraints.
Define ‘smeared’ constraints

C[�] :=
∫

�
ij,def

B nAdef εijkP
ABk, G[
] :=

∫

CDGCD. (4.7)

One then finds that

{C[�],G[
]} = −
∫

δC[�]

δP GHm

δG[
]

δωGHm

= −
∫

�
ij,def

B nAdef εijm

[

ADP B

D
m − 
BDP A

D
m]

= −C[
 · �] −
∫

�
ij,def

B 
ADnAdef εijmP B
D

m
, (4.8)

where (
 · �)
ij,def

D = 
D
B�

ij,def

B . The first term alone would imply that G[
] generates
gauge transformations, but the second term is an unwanted extra piece. For G to be a generator
of gauge transformations, it must be first class (i.e. commute with other constraints up to linear
combinations of constraints). We can remedy this by adding the variables nAabc to the phase
space, together with their conjugate momenta πAabc. This extension of the phase space is
analogous to the situation considered in [18, section 3] for a generalized quadratic constraint
formulation of Plebanski theory. Now we can define a new Gauss constraint

G′CD ≡ GCD − n
[C
abcπ

D]abc. (4.9)
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Then, computing the Poisson brackets of the new Gauss constraint with C[�], one finds

{C[�],G′[
]} = {C[�],G[
]} −
∫

�
ij,def

B 
C
AnCdef εijkP

ABk = −C[
 · �], (4.10)

as desired. We have however increased the number of phase space variables at each point
by 32.

A similar reformulation of the Gauss constraint, leading to a relaxation of the gauge
invariance properties of spin network states, has been already suggested by the Hamiltonian
analysis of the Plebanski theory [16], and it has been advocated in the loop quantum gravity
context in [39, 40] as well as the spin foam and group field theory context [25, 26, 41].

5. Summary and outlook

We have investigated a formulation of classical BF-Plebanski theory where the constraint
�AB = ±eA ∧ eB , needed to reproduce general relativity in four dimensions, starting from
topological BF theory, is imposed through constraints linear in the bivector field �AB . The
discrete counterpart of a part of these linear constraints (the ‘simplicity constraints’), in fact,
has proven very useful in the spin foam approach to quantum gravity [21, 22, 24].

The corresponding continuum constraints have been easily identified and can indeed be
used to replace the quadratic ‘diagonal’ and ‘off-diagonal’ parts of the simplicity constraints
appearing in the Plebanski formulation. As in the discrete case, one needed to introduce a
new set of variables nA which are assumed to form a basis of three-forms at each point of
spacetime, and are slightly stronger than the quadratic constraints: they eliminate two of the
four sectors of solutions that are present for quadratic constraints.

In the second part of the analysis we found that the quadratic volume constraints of the
Plebanski formulation, needed to complete the identification �AB = ±eA ∧ eB , can also be
replaced by linear constraints, which again are stronger than their quadratic analogues. They
do not require an additional non-degeneracy assumption on �AB . However, a non-degeneracy
assumption on the three-forms nA is still necessary, and only when this is imposed one can
hope to eliminate all ‘non-geometric’ degenerate configurations for �AB , which are feared
to dominate the quantum theory in the case of quadratic volume constraints. Also, while
for quadratic volume constraints the variables nA merely specify normals to submanifolds
{xa = constant} and hence can be independently rescaled arbitrarily at each point, for linear
volume constraints they directly specify, up to an overall rescaling, the frame field encoding
the metric geometry, i.e. an orthonormal basis in the cotangent space at each spacetime point.

We have then analysed the discrete (simplicial) translation of the linear constraints we
identified. In the context of spin foams, the quadratic volume constraints follow from imposing
the (quadratic) diagonal and off-diagonal simplicity constraints everywhere together with
closure constraints on the discrete variables �AB(�). We have shown a similar property
for the linear volume constraints. If (linear) diagonal and off-diagonal simplicity constraints
and closure constraints for both bivector variables �AB(�) and normals nA( ) are imposed
everywhere, a sufficient set of linear volume constraints follow. This means that ‘non-
geometric’ bivector configurations cannot appear if the additional closure constraint on the
normals holds, and the same normals are assumed to be non-degenerate.

We have not performed a complete Hamiltonian analysis of the resulting linear constrained
BF action for gravity, but only noted that the use of linear simplicity and volume constraints
immediately requires a modification of the usual Gauss constraint to generate a transformation
of the normal three-form variables nA alongside that of the �’s; a similar relaxation of the
Gauss constraint, which translates at the spin foam and discrete gravity level into a closure
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constraint for simplices, and in the canonical quantum gravity context into a generalization
of spin network states, has been suggested on more than one occasion in the literature
[26, 39–41], even if its proper implementation at the quantum level has not yet been developed.
On the classical level, therefore, a full Hamiltonian analysis of the constraints would be highly
desirable. This would involve adding momenta for the components �AB

0i , which are Lagrange
multipliers in unconstrained BF theory, as well as those for the normals nA we have introduced,
so that all variables can transform nontrivially under G gauge transformations generated by a
modified Gauss constraint, as shown.

Still at the classical level, but with obvious implications for the quantization, one aspect
of our construction that deserves further work is the relation between the discretized linear
volume constraints we have found and the edge simplicity constraints used in [13], in turn
related to the conditions on connection variables of [37]. As noted, the two sets of constraints
appear to be very similar, and their role in the classical theory is the same; in particular,
they remove (partly) the non-geometric configurations from the configuration space (or phase
space) of the theory and appear as ‘secondary’ in the sense specified above. So it is natural to
conjecture that one is simply a reformulation of the other. The implications for the quantum
theory are not only due to the dominant role that non-geometric configurations may play in
the quantum theory, if not removed, but also in the fact that one discrete formulation of these
constraints can actually be simpler to implement in a spin foam context than the other.

The possible use of our findings in the spin foam and group field theory context, and
more generally in any quantization based on the formulation of gravity as a constrained BF
theory, are in fact most interesting. In particular, it seems to be important to explore how a
closure constraint on normals could be implemented into existing spin foam models, given
that we found it to be necessary for the full imposition of the geometric constraints on the
variables of topological BF. A convenient setting to do so could be the GFT formulation of
[26], since there the simplicial geometry and the contact with classical actions is brought to the
forefront.
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