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The observation of massive black hole binaries with pulsar timing arrays (PTAs) is one of the goals of
gravitational-wave astronomy in the coming years. Massive ( = 108M,) and low-redshift ( < 1.5) sources
are expected to be individually resolved by upcoming PTAs, and our ability to use them as astrophysical
probes will depend on the accuracy with which their parameters can be measured. In this paper we
estimate the precision of such measurements using the Fisher-information-matrix formalism. For this
initial study we restrict ourselves to ‘“monochromatic’ sources, i.e. binaries whose frequency evolution is
negligible during the expected =~ 10 yr observation time, which represent the bulk of the observable
population based on current astrophysical predictions. In this approximation, the system is described by
seven parameters and we determine their expected statistical errors as a function of the number of pulsars
in the array, the array sky coverage, and the signal-to-noise ratio (SNR) of the signal. At fixed SNR
(regardless of the number of pulsars in the PTA), the gravitational-wave astronomy capability of a PTA is
achieved with = 20 pulsars; adding more pulsars (up to 1000) to the array reduces the source error box in
the sky AQ) by a factor = 5 and has negligible consequences on the statistical errors on the other
parameters, because the correlations among parameters are already removed to a large extent. If one folds
in the increase of coherent SNR proportional to the square root of the number of pulsars, AQ) improves as
1/SNR? and the other parameters as 1/SNR. For a fiducial PTA of 100 pulsars uniformly distributed in the
sky and a coherent SNR = 10, we find AQ = 40 deg?, a fractional error on the signal amplitude of =
30% (which constrains only very poorly the chirp mass—Iluminosity distance combination M3/3/D,),
and the source inclination and polarization angles are recovered at the =~ 0.3 rad level. The ongoing
Parkes PTA is particularly sensitive to systems located in the southern hemisphere, where at SNR = 10
the source position can be determined with AQ ~ 10 deg?, but has poorer (by an order of magnitude)
performance for sources in the northern hemisphere.
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I. INTRODUCTION

Pulsar timing arrays (PTAs), such as the Parkes PTA [1],
the European PTA [2], Nanograv [3], the international
pulsar timing array project [4], and in the future the
Square Kilometre Array (SKA) [5], provide a unique
means to study the population of massive black hole
(MBH) binary systems with masses above ~10’M, by
monitoring stable radio pulsars: in fact, gravitational waves
(GWs) generated by MBH binaries (MBHBs) affect the
propagation of electromagnetic signals and leave a distinct
signature on the time of arrival of the radio pulses [6-9].
MBH formation and evolution scenarios [10—13] predict
the existence of a large number of MBHBs. Whereas the
high redshift, low(er) mass systems will be targeted by the
planned laser interferometer space antenna (LISA [14])
[15-19], massive and lower redshift (z < 2) binaries radi-
ating in the (gravitational) frequency range
~107°-10"% Hz will be directly accessible to PTAs.
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These systems imprint a typical signature on the time of
arrival of radio pulses at a level of = 1-100 ns [20], which
is comparable with the timing stability of several pulsars
[21], with more expected to be discovered and monitored
in the future. PTAs therefore provide a direct observational
window onto the MBH binary population, and can contrib-
ute to address a number of astrophysical open issues, such
as the shape of the bright end of the MBH mass function,
the nature of the MBH-bulge relation at high masses, and
the dynamical evolution at subparsec scales of the most
massive binaries in the Universe (particularly relevant to
the so-called ““final parsec problem’ [22]).

Gravitational radiation from the cosmic population of
MBHBs produces two classes of signals in PTA data: (i) a
stochastic GW background generated by the incoherent
superposition of radiation from the whole MBHB popula-
tion [23-28] and (ii) individually resolvable, deterministic
signals produced by single sources that are sufficiently
massive and/or close so that the gravitational signal stands
above the root-mean-square (rms) level of the background
[20]. In [20] (SVYV, hereafter) we explored a comprehen-
sive range of MBH population models and found that,
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assuming a simple order-of-magnitude criterion to esti-
mate whether sources are resolvable above the background
level = 1-to-10 individual MBHBs could be observed by
future PTAs surveys. The observation of GWs from indi-
vidual systems would open a new avenue for a direct
census of the properties of MBHBs, offering invaluable
new information about galaxy formation scenarios. The
observation of systems at this stage along their merger
path would also provide key insights into the understand-
ing of the interaction between MBHBs and the stellar/
gaseous environment [29], and how these interactions af-
fect the black hole-bulge correlations during the merger
process. If an electromagnetic counterpart of a MBHB
identified with PTAs was to be found, such a system could
offer a unique laboratory for both accretion physics (on
small scales) and the interplay between black holes and
their host galaxies (on large scales).

The prospects of achieving these scientific goals raise
the question of what astrophysical information could be
extracted from PTA data and the need to quantify the
typical statistical errors that will affect the measurements,
their dependence on the total number and spatial distribu-
tion of pulsars in the array (which affects the surveys
observational strategies), and the consequences for multi-
band observations. In this paper we estimate the statistical
errors that affect the measurements of the source parame-
ters focusing on MBHBs with no spins, in circular orbits,
that are sufficiently far from coalescence so that gravita-
tional radiation can be approximated as producing a signal
with negligible frequency drift during the course of the
observation time, 7 = 10 yr (”monochromatic” signal).
This is the class of signals that in SVV we estimated to
produce the bulk of the observational sample. The exten-
sion to eccentric binaries and systems with observable
frequency derivative is deferred to a future work. GWs
from monochromatic circular binaries constituted by non-
spinning MBHs are described by seven independent pa-
rameters. We compute the expected statistical errors on the
source parameters by evaluating the variance-covariance
matrix—the inverse of the Fisher information matrix—of
the observable parameters. The diagonal elements of such
a matrix provide a robust lower limit to the statistical
uncertainties (the so-called Cramer-Rao bound [30,31]),
which in the limit of high signal-to-noise ratio (SNR) tend
to the actual statistical errors. Depending on the actual
structure of the signal likelihood function and the SNR
this could underestimate the actual errors; see e.g. [32-34]
for a discussion in the context of GW observations.
Nonetheless, this analysis serves as an important bench-
mark and can then be refined by carrying out actual analy-
ses on mock data sets and by estimating the full set of
(marginalized) posterior density functions of the parame-
ters. The main results of the paper can be summarized as
follows:

(1) At least three (not coaligned) pulsars in the PTA are

necessary to fully resolve the source parameters.
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(i1) The statistical errors on the source parameters, at
fixed SNR, decrease as the number of pulsars in the
array increases. The typical accuracy greatly im-
proves by adding pulsars up to = 20; for larger
arrays, the actual gain becomes progressively
smaller because the pulsars “fill the sky” and the
effectiveness of further triangulation saturates. In
particular, for a fiducial case of an array of 100 pul-
sars randomly and uniformly distributed in the sky
with optimal coherent SNR = 10—which may be
appropriate for the SKA—we find a typical GW
source error box in the sky =~ 40 deg” and a frac-
tional amplitude error of = 30%. The inclination and
polarization angles can be determined within an
error of ~0.3 rad, and the (constant) frequency is
determined to subfrequency resolution bin accuracy.
These results are independent of the source
gravitational-wave frequency.

(iii) When an anisotropic distribution of pulsars is con-
sidered, the typical source sky location accuracy
improves linearly with the array sky coverage. The
statistical errors on all the other parameters are es-
sentially insensitive to the PTA sky coverage, as long
as it covers more than ~1 sr.

(iv) The ongoing Parkes PTA aims at monitoring 20
pulsars with a 100 ns timing noise; the targeted
pulsars are mainly located in the southern sky. A
GW source in that part of the sky could be localized
down to a precision of =< 10 deg> at SNR = 10,
whereas in the northern hemisphere, the lack of
monitored pulsars limits the error box to =
200 deg®. The median of the Parkes PTA angular
resolution is = 130 (SNR/10)~? deg?.

The paper is organized as follows. In Sec. II we describe
the GW signal relevant to PTA and we introduce the
quantities that come into play in the parameter estimation
problem. A review of the Fisher information matrix tech-
nique and its application to the PTA case are provided in
Sec. III. Section IV is devoted to the detailed presentation
of the results, and in Sec. V we summarize the main
findings of this study and point to future work. Unless
otherwise specified, throughout the paper we use geometric
units G = ¢ = 1.

II. THE SIGNAL

Observations of GWs using PTAs exploit the regularity
of the time of arrival of radio pulses from pulsars.
Gravitational radiation affects the arrival time of the elec-
tromagnetic signal by perturbing the null geodesics of
photons traveling from a pulsar to the Earth. This was
realized over 30 years ago [6-9], and the number and
timing stability of radio pulsars known today and expected
to be monitored with future surveys [1-3,5] make ensem-
bles of pulsars—PTAs—*“cosmic detectors” of gravita-
tional radiation in the frequency range ~10~°-10"° Hz.
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Here we review the signal produced by a GW source in
PTA observations. Let us consider a GW metric perturba-
tion &, (1) in the transverse and traceless gauge described
by the two independent (and time-dependent) polarization
amplitudes %, (r) and hy(r) that carry the information
about the GW source. Let us also indicate with € the
unit vector that identifies the direction of GW propagation
(conversely, the direction to the GW source position in the
sky is —fl). The metric perturbation can therefore be
written as

hap(t, Q) = e, (VR (1, Q) + e, (DMhy (1, Q), (1)

where eﬁh(fl) (A = +, X) are the polarization tensors that
are uniquely defined once one specifies the wave principal
axes described by the unit vectors 7z and 71 as

(2a)
(2b)

e;—b(Q) = rAnanA’lb - ﬁaﬁb:
%, (Q) = sy, + Ay,

Let us now consider a pulsar emitting radio pulses with a
frequency v,. Radio waves propagate along the direction
described by the unit vector p, and in the background 4,
the frequency of the pulse is affected. For an observer at
Earth [or at the Solar System barycenter (SSB)], the fre-
quency is shifted according to the characteristic two-pulse
function [6]
v(t) — vo pe pP

~ 1 pep ~
Q)= =_ — Ahg,(t; Q). 3
@)= B (D). @)

Here »(r) is the received frequency (say, at the Solar
System barycenter), and

Ahah(t) = hab(tp’ Q) - hub(t’ Q) (4)

is the difference between the metric perturbation at the
pulsar—with spacetime coordinates (t,, X,)—and at the
receiver—with spacetime coordinates (¢, X). The quantity
that is actually observed is the time-residual r(r), which is
simply the time integral of Eq. (3),

1) = f Larz(r, Q). 5)
0
We can rewrite Eq. (3) in the form
2(t, ) = Y FAQ) ARy (1 ), (6)
A

where

A(D)) — 1 ﬁaﬁb A (O
P = 5 el @) )
is the “antenna beam pattern,” see Egs. (1), (2a), and (2b);
here we use the Einstein summation convention for re-
peated indices. Using the definitions (2a) and (2b) for the
wave polarization tensors, it is simple to show that the
antenna beam patterns depend on the three direction co-
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sines 71 - p, /i - p, and ) - p:

Fr(Q) =~ . , 8
= a; (82)
A (e p)@-p)

FX(Q) = — 202 7 8b
=="""5 (8)

Let us now consider a reference frame (x, y, z) fixed to
the Solar System barycenter. The source location in the sky
is defined by the usual polar angles (6, ¢). The unit vectors
that define the wave principal axes are given by
[cf. Egs. (B4) and (B5) in Appendix B of [35]; here we
adopt the same convention used in high-frequency laser
interferometric observations]

m = (sing cosyy — siny cosep cosf)
— (cos¢ cosyy + sini singy cosf)P + (sinys sind)Z,
(%a)
il = (— sing siny — cosyr cose cosh)x
+ (cos¢ singy — cosis singy cosf)P + (cosy sinh)z,
(%9b)

where %, , and Z are the unit vectors along the axis of the
reference frame, x, y, and z, respectively. The angle i is
the wave polarization angle, defined as the angle counter-
clockwise about the direction of propagation from the line
of nodes to the axis described by m. The wave propagates

in the direction Q = 7 X 7, which is explicitly given by

O = —(sinf cos¢)X — (sinf sing)y — coshz.  (10)

Analogously, the unit vector
D o = (sinf, cosg )% + (sinf, sing )9 + cosh,z (11)

identifies the position in the sky of the ath pulsar using the
polar angles (6,, ¢,).

We will now derive the expression of the PTA signal,
Eq. (3), produced by a circular, nonprecessing binary
system of MBHs emitting almost monochromatic radia-
tion, i.e with negligible frequency drift during the obser-
vation time, 7 = 10 yr. The results are presented in
Sec. I B. In the next section, we first justify the astrophys-
ical assumptions.

A. Astrophysical assumptions

Let us justify (and discuss the limitations of) the as-
sumptions that we have made on the nature of the sources
that lead us to consider circular, nonprecessing binary
systems generating quasimonochromatic radiation, before
providing the result in Eq. (31). We derive general expres-
sions for the phase evolution displacement introduced by
the frequency drift and by the eccentricity induced perias-
tron precession, and the change in the orbital angular
momentum direction caused by the spin-orbit coupling
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induced precession. The size of each of these effects is then
evaluated by considering a realistic (within our current
astrophysical understanding) selected population of resolv-
able MBHBs taken from SVV. Throughout the paper we
will consider binary systems with masses m; and m,
(my = my), and chirp mass M = m?/sm;/s/(ml +
m,)'/5, emitting a GW frequency f. We also define M =
my, + m,, 4 = mym,/m, and g = m,/m,, the total mass,
the reduced mass, and the mass ratio, respectively. Our
notation is such that all the quantities are the observed
(redshifted) ones, such that e.g. the intrinsic (rest-frame)
mass of the primary MBH is m;, = m;/(1 + z) and the
rest-frame GW frequency is f, = f(1 + z). We normalize
all the results to

v —_M M
1M, 55 1085M,”
f T
=_71 T = ——
30 = 50 nkt 010 yr

which are the typical values for individually resolvable
sources found in SVV, and the typical observation time
span.

1. Gravitational-wave frequency evolution

A binary with the properties defined above evolves due
to radiation reaction through an adiabatic in-spiral phase,
with GW frequency f(t) changing at a rate (at the leading
Newtonian order)

df _ 96
a5

The in-spiral phase terminates at the last stable orbit (LSO)
that for a Schwarzschild black hole in circular orbit corre-
sponds to the frequency

fLSO =44 X 1076M971 Hz. (13)

7Tfs/sj\,ls/sfl 1/3 (12)

The observational window of PTAs is set at low frequency
by the overall duration of the monitoring of pulsars 7 =
10 yr, and at high frequency by the cadence of the obser-
vation, = 1 week: the PTA observational window is there-
fore in the range ~10~°~107° Hz. In SVV we explored the
physical properties of MBHBs that are likely to be ob-
served in this frequency range: PTAs will resolve binaries
with m;, = 108M, and in the frequency range =~
1078-10"7 Hz. In this mass-frequency region, PTAs will
observe the in-spiral portion of the coalescence of a binary
system and one can ignore post-Newtonian corrections to
the amplitude and phase evolution, as the velocity of the
binary is

v = (mfM)*3,
= 1.73 X 1072M3f21°. (14)

Stated in different terms, the systems will be far from
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plunge, as the time to coalescence for a binary radiating
at frequency f is (at the leading Newtonian quadrupole
order and for a circular orbit system)

feos = 4 X 103 M2 F 8 yr. (15)

As a consequence the frequency evolution during the ob-
servation time is going to be small and can be neglected. In
fact, it is simple to estimate the total frequency shift of
radiation over the observation period

Af = JT = 0.05 M3 fl13T, nH, (16)

which is negligible with respect to the frequency resolution
bin = 3T;,' nHz; correspondingly, the additional phase
contribution,

AD = 7fT? = 0.04 M2 FIPTY rad, (17

is much smaller than 1 rad. Equations (16) and (17) clearly
show that it is more than legitimate in this initial study to
ignore any frequency derivative, and treat gravitational
radiation as monochromatic over the observational period.

2. Spin effects

We now justify our assumption of neglecting the spins in
the modeling of the waveform. From an astrophysical point
of view, very little precise information about the spin of
MBHs can be extracted directly from observations.
However, several theoretical arguments support the exis-
tence of a population of rapidly spinning MBHs. If coher-
ent accretion from a thin disk [36] is the dominant growth
mechanism, then MBH spin-up is inevitable [37]; jet pro-
duction in active galactic nuclei is best explained by the
presence of rapidly spinning MBHs [38]. In the hierarch-
ical formation context, though MBHB mergers tend to spin
down the remnant [39], detailed growth models that take
into account both mergers and accretion lead to popula-
tions of rapidly spinning MBHs [40,41]. Spins have two
main effects on the gravitational waveforms emitted during
the in-spiral: (i) they affect the phase evolution [42], and
(i1) they cause the orbital plane to precess through spin-
orbit and spin-spin coupling [43,44]. The effect of the spins
on the phase evolution is completely negligible for the
astrophysical systems observable by PTAs: the additional
phase contribution enters at the lowest order at the
post"3-Newtonian order, that is proportional to v?, and
we have already shown that v <K 1; see Eq. (14).
Precession would provide a characteristic imprint on the
signal through amplitude and phase modulations produced
by the orbital plane precession, and as a consequence the
time-dependent polarization of the waves as observed by a
PTA. It is fairly simple to quantify the change of the
orientation of the orbital angular momentum unit vector
L during a typical observation. The rate of change of the
precession angle is at the leading order:
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da, (2+%)L+S
dt

= (2+52)—~ (18)
1

a

where L = y/au”M is the magnitude of the orbital angular
momentum and § is the total intrinsic spin of the black
holes. As long as u/M > v/c, we have that L >> S. This
is always the case for resolvable MBHBs; we find indeed
that these systems are in general characterized by ¢ = 0.1
(therefore w/M = 0.1), while from Eq. (14) we know that
in general v/c ~ 0.01. In this case, from Eq. (18) one
obtains

3
Aa, = 2775/3(1 + 4—”’2)MM*1/3fS/3T
m

3
~ 0. 8(1 + %)(A)MZB BT rad,  (19)
1

which is independent of S. The effect is maximum for
equal mass binaries, m; = m,, w/M = 0.25; in this case
Aa, =~ 0.3 rad. It is therefore clear that in general spins
will not play an important role, and we will neglect their
effect in the modeling of signals at the PTA output. It is
however interesting to notice that for a 10°M, binary
system observed for 10 yr at = 10”7 Hz, which is consis-
tent with astrophysical expectations (see SVV) the orien-
tation of the orbital angular momentum would change by
Aa, =~ 1 rad. The square kilometer array has therefore a
concrete chance of detecting this signature and to provide
direct insights onto MBH spins.

3. Eccentricity of the binary

Let us finally consider the assumption of circular orbits,
and the possible effects of neglecting eccentricity in the
analysis. The presence of a residual eccentricity at orbital
separations corresponding to the PTA observational win-
dow has two consequences on the observed signal: (i) the
power of radiation is not confined to the harmonic at twice
the orbital frequency but is spread on the (in principle
infinite) set of harmonics at integer multiples of the inverse
of the orbital period, and (ii) the source periapse precesses
in the plane of the orbit at a rate

dy (mfM)*/>
a -y

~3.9X 107°(1 — &) 'MY3 P rads™'  (20)

which introduces additional modulations in phase and (as a
consequence) amplitude in the signal recorded at the Earth.
In Eq. (20) y(z) is the angle of the periapse measured with
respect to a fixed frame attached to the source. We now
briefly consider the two effects in turn. The presence of
eccentricity “splits” each polarization amplitude % (r)
and h.(r) into harmonics according to [see e.g. Egs. (5—
6) in Ref. [45] and references therein):
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hE(f) = A{—(l + cos?o)u, (e) cosl:g ®(1) + 2y(t):|
— (1 + cos®t)v,(e) cos[g d(r) — 27(1‘)]

+ sin2ow, (e) cos[g cb(z)]}, Q1)

R4(1) = 24 cou{u,,(e) sin[f ®(1) + 27(t):|

T v, (e) sm([2 () — 2y(r)])} 22)

where
(1) = 27 [ "Fhar, (23)

is the GW phase and f(¢) the instantaneous GW frequency
corresponding to twice the inverse of the orbital period.

The source inclination angle ¢ is defined as cost =

—f)“ia, where L is the unit vector that describes the
orientation of the source orbital plane, and the amplitude
coefficients u,(e), v,(e), and w,(e) are linear combina-
tions of the Bessel functions of the first kind J,(ne),
J,+1(ne), and J,+,(ne). For an astrophysically plausible
range of eccentricities e < 0.3—see Fig. 1 and the dis-
cussion below—/u,,(¢)| > |v,,(e)|, |w,(e)| and most of the
power will still be confined into the n = 2 harmonic at
twice the orbital frequency; see e.g. Fig. 3 of Ref. [46]. On
the other hand, the change of the periapse position even for
low eccentricity values may introduce significant phase
shifts over coherent observations lasting several years. In
fact the phase of the recorded signal is shifted by an addi-
tional contribution 2(z). This means that the actual fre-
quency of the observed signal recorded at the instrument
corresponds to f(r) + /7 and differs by a measurable
amount from f(r). Nonetheless, one can still model the
radiation observed at the PTA output as monochromatic, as
long as the periapse precession term /7 introduces a
phase shift A®,, quadratic in time that is < 1 rad, which
is equivalent to the condition that we have imposed on the
change of the phase produced by the frequency shift in-
duced by radiation reaction; see Egs. (16) and (17). From
Eq. (20) and (12), this condition yields

d272 967133 2/3 W5/3 £13/372
~2X107%(1 — e2) IMIP M2 BT rad

(24)

We therefore see that the effect of the eccentricity will be in
general negligible.
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FIG. 1. Testing the circular monochromatic nonspinning bi-

nary approximation. Upper left panel: distribution of the phase
displacement A® introduced by the frequency drift of the
binaries. Upper right panel: change in the orbital angular mo-
mentum direction A, introduced by the spin-orbit coupling.
Lower left panel: eccentricity distribution of the systems. Lower
right panel: distribution of phase displacement A®.,, induced by
relativistic periastron precession due to nonzero eccentricity of
the binaries. The distributions are constructed considering all the
resolvable MBHBs with residuals >1 ns (solid lines), 10 ns
(long-dashed lines), and 100 ns (short-dashed lines), found in
1000 Monte Carlo realizations of the Tu-SA models described in
SVYV, and they are normalized so that their integrals are unity.

4. Tests on a massive black hole population

We can quantify more rigorously whether the assump-
tion of the monochromatic signal at the PTA output is
justified, by evaluating the distributions of A®, Ae,,, and
A®,, on an astrophysically motivated population of resolv-
able MBHBs. We consider the Tu-SA MBHB population
model discussed in SVV (see Sec. 2.2 of SVV for a detailed
description) and we explore the orbital evolution, including
a possible nonzero eccentricity of the observable systems.
The binaries are assumed to be in circular orbit at the
moment of pairing and are self-consistently evolved taking
into account stellar scattering and GW emission [47]. We
generate 1000 Monte Carlo realizations of the entire popu-
lation of GW signals in the PTA band and we collect the
individually resolvable sources generating coherent timing
residuals greater than 1, 10, and 100 ns, respectively, over
10 yr. In Fig. 1 we plot the distributions relevant to this
analysis. We see from the two upper panels, that in general,
treating the system as monochromatic with negligible spin
effects is a good approximation. If we consider a 1 ns
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threshold (solid lines), the phase displacement A® intro-
duced by the frequency drift and the orbital angular mo-
mentum direction change A, due two spin-orbit coupling
are always <1 rad, and in ~80% of the cases are <0.1 rad.
The lower left panel of Fig. 1 shows the eccentricity
distribution of the same sample of individually resolvable
sources. Almost all the sources are characterized by e <
0.1 with a long tail extending down to e < 1073 in the PTA
band. The typical periastron precession—induced addi-
tional phase 2yT—can be larger than 1 rad. However,
this additional contribution grows linearly with time, and,
as discussed before, will result in a measured frequency
which differs from the intrinsic one by a small amount
v/ = 1 nHz. The “nonmonocromatic” phase contribu-
tion A®, that changes quadratically with time and is
described by Eq. (24) is instead plotted in the lower right
panel of Fig. 1. Values of A®,, are typically of the order
1073, completely negligible in the context of our analysis.
Note that, as a general trend, increasing the threshold in the
source-induced timing residuals to 10 and 100 ns, all the
effects tend to be suppressed. This is because resolvable
sources generating larger residuals are usually found at
lower frequencies, and all the effects have a steep depen-
dence on frequency; see Eqs. (17), (19), and (24). This
means that none of the effects considered above should be
an issue for ongoing PTA campaigns, which aim to reach a
total sensitivity of = 30 ns, but may possibly play a role in
recovering sources at the level of a few ns, which is
relevant for the planned SKA. Needless to say that a
residual eccentricity at the time of pairing may result in
larger values of e than those shown in Fig. 1 [47], causing a
significant scatter of the signal power among several differ-
ent harmonics; however, the presence of gas may lead to
circularization before they reach a frequency =~ 107° Hz
(see, e.g., [48]). Unfortunately, little is known about the
eccentricity of subparsec massive binaries, and here we
tackle the case of circular systems, deferring the study of
precessing eccentric binaries to future work.

B. Timing residuals

We have shown that the assumption of a circular, mono-
chromatic, nonprecessing binary is astrophysically reason-
able, surely for this initial exploratory study. We now
specify the signal observed at the output, Eq. (5), in this
approximation. The two independent polarization ampli-
tudes generated by a binary system, Egs. (21) and (22), can
be written as

h(t) = Agwa(t) cosd(z), (25a)
hy (1) = Agwb (1) sin®(z), (25b)
where
.7\’15/3
Aaw(f) = 2=~ [mf ()} (26)
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is the GW amplitude, D the luminosity distance to the GW
source, ®(7) is the GW phase given by Eq. (23), and f(r) is
the instantaneous GW frequency (twice the inverse of the
orbital period). The two functions

a(t) = 1 + cos?y,
b(1) = —2cost

(27a)
(27b)

depend on the source inclination angle ¢, defined in the
previous section.

As described in Sec. II, Egs. (4) and (5), the response
function of each individual pulsar « consists of two terms,
namely, the perturbation registered at the Earth at the time ¢
of data collection [h,,(1, Q)], and the perturbation regis-
tered at the pulsar at a time 7 — 7, [h,,(t — 7,, )], where

T, s the light-travel time from the pulsar to the Earth given
by

A L ~
To=L,(1+Q-p,)=11X10" "2 (1+Q"-p,)s,
1 kpc

(28)

where L, is the distance to the pulsar. We can therefore
formally write the observed timing residuals, Eq. (5) for
each pulsar « as

re() = rD @) + rP ), (29)

where P and E label the “pulsar” and ‘““Earth” contribu-
tion, respectively. During the time 7, the frequency of the
source—although monochromatic over the time of obser-
vation 7" of several years—changes by

d d
Af, = f —fdt~—f7'a ~ 15M2 A7, | nHz,
7, dt dt

(30)

where 7, is the pulsar-Earth light-travel time normalized
to a distance of 1 kpc. The frequency shift Af, depends
both on the parameters of the source (emission frequency
and chirp mass) and the properties of the pulsar (distance
and sky location with respect to the source). We can
quantify this effect over an astrophysically plausible sam-
ple of GW sources by considering the population shown in
Fig. 1. Let us consider the same set of resolvable sources as
above, and assume detection with a PTA of 100 pulsars
randomly distributed in the sky, but all at a distance of
1 kpc. For each source we consider all the Af, related to
each pulsar and we plot the results in Fig. 2. The distribu-
tion has a peak around ~5 X 10~8 Hz, which is ~10 times
larger than the typical frequency resolution bin for an
observing time 7 = 10 yr. This means that the signal
associated with each pulsar generates at the PTA output
two monochromatic terms at two distinct frequencies. All
the “Earth terms” corresponding to each individual pulsar
share the same frequency and phase. They can therefore be
coherently summed among the array, building up a distinct
monochromatic peak which is not going to be affected by
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1.4

1.2

0.8

dN/dlog(Af,)

0.6

0.4

10-8
Af, [Hz]

FIG. 2. Normalized distribution of A f, (see text) for the same
sample of MBHBs considered in Fig. 1, assuming observations
with 100 isotropically distributed pulsars in the sky at a distance
of 1 kpc. The vertical dotted line marks the width of the array’s
frequency resolution bin Af, = 1/T (=~ 3 X 107° Hz for T =
10 yr).

the pulsar terms (also known as “‘self-noise’’) which usu-
ally happen to be at much lower frequencies. The contri-
bution to the Earth term from each individual pulsar can be
written as

B = R[aF} (sin®(z) — sin®)

— bF}(cos®(t) — cos®P,)], (31)
with
_ Aow
- 2@f 52)

and ®(7) given by Eq. (23). The Earth timing residuals are
therefore described by a 7-dimensional vector encoding all
(and only) the parameters of the source:

X={R 6, ¢, 1 f, Dy

Conversely, each individual pulsar term is characterized by
a different amplitude, frequency, and phase, that crucially
depend also on the poorly constrained distance L, to the
pulsar. In order to take advantage of the coherent summa-
tion of the pulsar terms to further increase the signal-to-
noise ratio without introducing additional unknown pa-
rameters over which one needs to search, the distance to
the pulsar has to be known to a precision that is better than
a fraction of the GW wavelength. For typical values of the
problem, this consideration leads to

(33)
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f
10 nHz

8L, ~ 0.1( ) 1(1 +Q-p)pe.  (34)
Given that 8L, /L, is equal to the fractional error on the
pulsar parallax, the required astrometric precision in the
parallax measurement is ~0.1(L, /1 kpc)~! uarcs, which
is likely beyond the capabilities of present and planned
instruments for high precision astrometry. Alternatively,
the distance to the pulsar can be extracted from the Doppler
modulation of the timing residuals induced by the Earth’s
orbit. However, this technique requires a timing precision
of ~1 ns for each pulsar to achieve a distance determina-
tion to better than 1 pc for a fiducial pulsar distance of
1 kpc. If the distances to the pulsars are not determined to
the required level of precision, one needs to introduce an
additional parameter for each pulsar in the PTA. As a
consequence, this turns a 7-parameter reconstruction prob-
lem into a 7 + M parameter problem. More details about
the PTA response to GWs are given in the Appendix. In this
paper, we decided to consider simply the Earth term, which
is completely specified by the 7-parameter vector (33). If a
trustful determination of pulsar distances is available, one
could take advantage on the coherent summation of the
pulsar terms in determining the source parameters. This is
an issue that deserves further investigation and will be
considered in a future paper.

III. PARAMETER ESTIMATION

In this section we briefly review the basic theory and key
equations regarding the estimate of the statistical errors
that affect the measurements of the source parameters. For
a comprehensive discussion of this topic we refer the
reader to [30].

The whole data set collected using a PTA consisting of
M pulsars can be schematically represented as a vector

o dyt, (35)

where the data from the monitoring of each pulsar (o =
1,..., M) are given by

do(1) = ng(1) + ro(s; A). (36)

(_1) == {dl’ dz,..

In the previous equation r,(; A), given by Eq. (31), is the
GW contribution to the timing residuals of the ath pulsar
(the signal)—to simplify notation we have dropped (and
will do so from now on) the index E, but it should be
understood as we have stressed in the previous section that
we will consider only the Earth term in the analysis—and
n,(t) is the noise that affects the observations. For this
analysis we make the usual (simplifying) assumption that
n, is a zero-mean Gaussian and stationary random process
characterized by the one-sided power spectral density
S, (f). For a detailed discussion of the possible presence
of non-Gaussian components in the residuals of currently
timed pulsars, we refer the reader to Ref. [49] and refer-
ences therein.
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The inference process in which we are interested in this
paper is how well one can infer the actual value of the
unknown parameter vector X, Eq. (33), based on the data 3,
Eq. (35), and any prior information on X available before
the experiment. Within the Bayesian framework, see e.g.
[50], one is therefore interested in deriving the posterior
probability density function p(A|d) of the unknown pa-
rameter vector given the data set and the prior information.
Bayes’s theorem yields

>3 (X)p(dlh)
p(Xld) = Z2PE (37)
p(d)
where p(d|A) is the likelihood function, p(A) is the prior
probability density of A, and p(d) is the marginal like-
lihood or evidence. In the neighborhood of the maximum-

likelihood estimate value X the likelihood function can be
approximated as a multivariate Gaussian distribution,

p(Ald) o p(X)exp[—1T,,AN,AN,] (38)

where AA, = A, — A, and the matrix ', is the Fisher
information matrix; here the indices a, b = 1, ..., 7 label
the components of X. Note that we have used Einstein’s
summation convention (and we do not distinguish between
covariant and contravariant indices). In the limit of large

SNR, X tends to X, and the inverse of the Fisher informa-
tion matrix provides a lower limit to the error covariance of
unbiased estimators of A, the so-called Cramer-Rao bound

[31]. The variance-covariance matrix is simply the inverse
of the Fisher information matrix, and its elements are

oo =T e (39a)
F—l
Cap = ( )ab’ (39b)
oio;

where —1 < c,, = +1 (V a, b) are the correlation coef-
ficients. We can therefore interpret o2 as a way to quantify
the expected uncertainties on the measurements of the
source parameters. We refer the reader to [34] and refer-
ences therein for an in-depth discussion of the interpreta-
tion of the inverse of the Fisher information matrix in the
context of assessing the prospect of the estimation of the
source parameters for GW observations. Here it suffices to
point out that MBHBs will likely be observed at the
detection threshold (see SVV), and the results presented
in Sec. IV should indeed be regarded as lower limits to the
statistical errors that one can expect to obtain in real
observations; see e.g. [32-34].

One of the parameters that is of particular interest is the
source sky location, and we will discuss in the next section
the ability of PTA to define an error box in the sky.
Following Ref. [51], we define the PTA angular resolution,
or source error box as
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AQ = 277\/(sin9A0Aq’>)2 — (sinfc??)?; (40)

with this definition, the probability for a source to lay
outside the solid angle AQ) is e 2%0/A2 [57],

We turn now to the actual computation of the Fisher
information matrix I',;,. First of all we note that in obser-
vations of multiple pulsars in the array, one can safely
consider the data from different pulsars as independent,

and the likelihood function of d is therefore
. - 1
P10 = [Tp(,lB) = exp| ~3TwdrA4, | @D

where the Fisher information matrix that characterizes the
Jjoint observations in the equation above is simply given by

Tup = 2 T4 (42)

F(a‘;) is the Fisher information matrix relevant to the obser-
vation with the ath pulsar, and is simply related to the
derivatives of the GW signal with respect to the unknown
parameters integrated over the observation:

F(a) _ (ara(t; )-\)) ara(t; )-‘)))
ab I, ar, /)

(43)

where the inner product between two functions x(¢) and
y(7) is defined as

=2 [N gy
2 T
=5 fo XDy, (44b)
and
) = [f:x(r)e*”fff (45)

is the Fourier transform of a generic function x(¢). The
second equality, Eq. (44b), is correct only in the case in
which the noise spectral density is approximately constant
(with value S;) across the frequency region that provides
support for the two functions %(f) and ¥(f). Equation (44b)
is appropriate to compute the scalar product for the obser-
vation of gravitational radiation from MBHBs whose fre-
quency evolution is negligible during the observation time,
which is astrophysically justified as we have shown in
Sec. L.

In terms of the inner product (-|-)—Eqs. (44a) and (44b)
—the optimal SNR at which a signal can be observed using

« pulsars is
SNR 2 = (r,|r,), (46)

and the total coherent SNR produced by timing an array of
M pulsars is
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M
SNR2 = " SNRZ.

a=1

(47)

IV. RESULTS

In this section we present and discuss the results of our
analysis aimed at determining the uncertainties surround-
ing the estimates of the GW source parameters. We focus,
in particular, on the sky localization of a MBHB, which is
of particular interest for possible identification of electro-
magnetic counterparts, including the host galaxy and/or
galactic nucleus in which the MBHB resides. For the case
of binaries in circular orbit and whose gravitational radia-
tion does not produce a measurable frequency drift, the
mass and distance are degenerate, and cannot be individu-
ally measured: one can only measure the combination
M5/3 /D . This prevents measurements of MBHB masses,
which would be of great interest. On the other hand, the
orientation of the orbital angular momentum—through
measurements of the inclination angle ¢ and the polariza-
tion angle $—can be determined (although only with
modest accuracy, as we will show below), which may be
useful in determining the geometry of the system, if a
counterpart is detected.

The uncertainties on the source parameters depend on a
number of factors, including the actual MBHB parameters,
the SNR, the total number of pulsars and their location in
the sky with respect to the GW source. It is therefore
impossible to provide a single figure of merit that quanti-
fies how well PTAs will be able to do GW astronomy. One
can however derive some general trends and scalings, in
particular, how the results depend on the number of pulsars
and their distribution in the sky, which we call the sky
coverage of the array; this is of particular importance to
design observational campaigns, and to explore tradeoffs
in the observation strategy. In the following sections, by
means of extensive Monte Carlo simulations, we study the
parameter estimation accuracy as a function of the number
of pulsars in the array, the total SNR of the signal, and on
the array sky coverage. All our major findings are summa-
rized in Table L.

A. General behavior

Before considering the details of the results we discuss
conceptually the process by which the source parameters
can be measured. Our discussion is based on the assump-
tion that the processing of the data is done through a
coherent analysis. The frequency of the signal is trivially
measured, as this is the key parameter that needs to be
matched in order for a template to remain in phase with the
signal throughout the observation period. Furthermore, the
amplitude of the GW signal determines the actual SNR,
and is measured in a straightforward way. The amplitude
R, or equivalently Agw, see Egs. (26) and (32), provides a
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TABLE I. Typical uncertainties in the measurement of the GW source parameters as a function of the total number of pulsars in the
array M and their sky coverage AQpr, (the portion of the sky over which the pulsars are uniformly distributed). For each PTA
configuration we consider 2.5 X 10*~1.6 X 10° (depending on the number of pulsars in the array) GW sources with random
parameters. The GW source location is drawn uniformly in the sky, and the other parameters are drawn uniformly over the full
range of ¢, ¢, and cost, f, is fixed at 5 X 1078 Hz. In every Monte Carlo realization, the optimal SNR is equal to 10. The table
reports the median of the statistical errors AA—where A is a generic source parameter—and the 25th and 75th percentile of the
distributions obtained from the Monte Carlo samplings. Note that the errors AR/R, At, Ay, Af, and Ad, all scale as SNR™!, and the
error A{) scales as SNR™2.

M AQpry (sr) AQ (deg?) AR/R A¢ (rad) Ay (rad) Af/(1071° Hz) A®, (rad)
3 4 285813182 2.00743¢ 1.2973:%2 245708 1.78; 946 3.02715%
4 4 8041452 0.767 19 0.55+172 0.89+220 1787041 1.2973%8
5 4o 4955308 0.541054 0.43%032 0.65%219 1787938 0.98%¢27
10 4o 1935137 0.361037 0.30%0% 0.42+1%2 1787938 0.71+391
20 4o 99.17632 0.3149:1 0.2770:83 0.357)3% 1787922 0.65735¢
50 4 55.83%3% 0.3070% 0.25%0%0 0.31512¢ 1787517 0.60%23%
100 4 41.3+1%4 0.2904% 0.25%0.71 0.31+}2 178501 0.607543
200 47 32.8713 0.29104% 0.247073 0.29+121 1784013 0.591339
500 47 26.77%3 0.29104% 0.247073 0.29+121 1781008 0.597339
1000 4 232187 0.29104% 0.241073 0.29+ 112 1.7810:08 0.59*53¢
100 021 36757304 1.02707¢ 0.471543 0.59*3% 1.78+0:38 L0756
100 0.84 9027633 0.51754¢ 0.2975%8 0.347 018 1.78103] 0.68"%%
100 1.84 403735 0.38704 0.25+0:5 0.315)3 178517 0.607333
100 77 2277318 0.33794¢ 0.257571 0.317)38 1787512 0.607233
100 27 65.671362 0.29754% 0.257571 0.317):3 178013 0.59733)
100 4 41.37184 0.29104% 0.25%571 0.30% 023 1.78%013 0.607%4

constraint on the chirp mass and distance combination
M5/3 /D; . However, in the case of monochromatic sig-
nals, these two parameters of great astrophysical interest
cannot be measured independently. If the frequency de-
rivative f were also observable—this case is not considered
in this paper, as it likely pertains only to a small fraction of
detectable binaries, see Sec. II and Fig. 2—then one would
be able to measure independently both the luminosity
distance and chirp mass. In fact, from the measurement
of f o M3 f11/3 that can be evaluated from the phase
evolution of timing residuals, one can measure the chirp
mass, which in turn, from the observation of the amplitude,
would yield an estimate of the luminosity distance." The
remaining parameters, those that determine the geometry
of the binary—the source location in the sky, and the
orientation of the orbital plane—and the initial phase ¢,
can be determined only if the PTA array contains at least
three (not coaligned) pulsars. The source location in the
sky is simply reconstructed through geometrical triangu-
lation, because the PTA signal for each pulsar encodes the
source coordinates in the sky in the relative amplitude of

"We note that a direct measurement of the chirp mass would be
possible if one could detect both the Earth and pulsar terms,
provided that the distance to the pulsar was known. In this case
one has the GW frequency at Earth, the GW frequency at the
pulsar, and the Earth-pulsar light-travel time, which in turns
provides a direct measure of f, and as a consequence of the chirp
mass.

the sine and cosine term of the response or, equivalently,
the overall phase and amplitude of the sinusoidal PTA
output signal; see Eqs. (5)—(7) and (31). For the reader
familiar with GW observations with LISA, we highlight a
fundamental difference between LISA and PTAs in the
determination of the source position in the sky. With
LISA, the error box decreases as the signal frequency
increases (everything else being equal), because the source
location in the sky is reconstructed (primarily) through the
location-dependent Doppler effect produced by the motion
of the instrument during the observation, which is propor-
tional to the signal frequency. This is not the case for PTAs,
where the error box is independent of the GW frequency. It
depends however on the number of pulsars in the array—as
the number of pulsars increases, one has to select with
increasingly higher precision the actual value of the angu-
lar parameters, in order to ensure that the same GW signal
fits correctly the timing residuals of all the pulsars—and
the location of the pulsars in the sky.

We first consider how the parameter estimation depends
on the total number of pulsars M at fixed SNR. We consider
a GW source with random parameters and we evaluate the
inverse of the Fisher information matrix as we progres-
sively add pulsars to the array. The pulsars are added
randomly from a uniform distribution in the sky and the
noise has the same spectral density for each pulsar. We also
keep the total coherent SNR fixed, at the value SNR = 10.
It is clear that in a real observation the SNR actually
increases approximately as \/M , and therefore depends
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on the number of pulsars in the array. However, by normal-
izing our results to a constant total SNR, we are able to
disentangle the change in the uncertainty on parameter
estimation that depends on the number of pulsars from
the change due simply to the SNR. The results are shown
in Fig. 3. The main effect of adding pulsars in the PTA is to
improve the power of triangulation and to reduce the
correlation between the source parameters. At least three
pulsars in the array are needed to formally resolve all the
parameters; however, given the strong correlation, in par-
ticular, among R, ¢, and ¢ (which will be discussed later in
more detail) a SNR ~ 100 is needed to locate the source in
the sky with an accuracy < 50 deg? in this case. It is clear
that the need to maintain phase coherency between the
timing residuals from several pulsars leads to a steep (by
orders of magnitude) increase in accuracy from M = 3 to
M = 20 (note that the current Parkes PTA counts 20
pulsars). Adding more pulsars to the array reduces the
uncertainty location region in the sky A{} by a factor of
~ 5 going from 20 to 1000 pulsars, but has almost no
impact on the determination of the other parameters (the
bottom panels of Fig. 3 show that AR/R is essentially
constant for M = 20).

Now that we have explored the effect of the number of
pulsars alone (at fixed SNR) on the parameter errors, we
can consider the case in which we also let the SNR change.

104

108

102

AQ [deg?]

10

AR/R
o
o

©
—

0.05

10 102 108 1 10 102 10% 104
number of pulsars (M)

Lol T

FIG. 3. The statistical errors that affect the determination of
the source location AQ), see Eq. (40) (upper panels) and the
signal amplitude R (lower panels) for four randomly selected
sources (corresponding to the different line styles). We increase
the number of pulsars in the array fixing a total SNR = 10, and
we plot the results as a function of the number of pulsars M. In
the left panels we consider selected edge-on (¢ = 7/2) sources,
while in the right panel we plot sources with intermediate
inclination of ¢ = /4.
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We repeat the analysis described above, but now the SNR
is not kept fixed and we let it vary self-consistently as
pulsars are added to the array. The results plotted as a
function of the total coherent SNR are shown in Fig. 4.
Once more, we concentrate, in particular, on the measure-
ment of the amplitude R and the error box in the sky A€).
For M > 1, the error box in the sky and the amplitude
measurements scale as expected according to A() «
SNR2 and AR/R « SNR™! (and so do all the other
parameters not shown here). However, for SNR =< 10 the
uncertainties depart quite dramatically from the scaling
above simply due to the fact that with only a handful of
pulsars in the array the strong correlations among the
parameters degrade the measurements. We stress that the
results shown here are independent of the GW frequency;
we directly checked this property by performing several
tests, in which the source’s frequency is drawn randomly in
the range 10~3-10"7 Hz.

The source inclination ¢ angle is strongly correlated with
the signal amplitude R, and the polarization angle i is
correlated to both ¢ and ®,. The results are indeed affected
by the actual value of the source inclination. The left panels
in Figs. 3 and 4 refer to four different edge-on sources (i.e.
v = /2 and the radiation is linearly polarized). In this
case, the parameters have the least correlation, and
AR/R = SNR™!. The right panels in Figs. 3 and 4 refer
to sources with an “intermediate” inclination ¢ = 77/4;
here degeneracies start to play a significant role and cause a
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FIG. 4. Same as Fig. 3, but here, as we add pulsars to the PTA,
we consistently take into account the effect on the total coherent
SNR, and accordingly we plot the results as a function of the
SNR. In the left panels we plot selected edge-on (v = 77/2)
sources, while in the right panel we consider selected sources
with intermediate inclination of ¢« = 7/4. The thin dot-dashed
lines in the upper panels follow the scaling A} « SNR™2.
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factor of = 3 degradation in AR/R estimation (still scaling
as SNR™1). Note, however, that the sky position accuracy
is independent on ¢ (upper panels in Figs. 3 and 4), because
the sky coordinates 6 and ¢ are only weakly correlated to
the other source parameters. We further explore this point
by considering the behavior of the correlation coefficients
(c® and ¢?¥®0) as a function of ¢. Figure 5 shows the
correlation coefficients and statistical errors in the source’s
parameters for a sample of 1000 individual sources using a
PTA with M = 100 and total SNR = 10 as a function of ¢.
For a face-on source (¢ = 0, 7), both polarizations equally
contribute to the signal, and any polarization angle ¢ can
be perfectly “reproduced” by tuning the source phase @,
i.e. the two parameters are completely degenerate and
cannot be determined. Moving toward edge-on sources
progressively changes the relative contribution of the two
polarizations, breaking the degeneracy with the phase.
Figure 6 shows statistical error distributions for the differ-
ent parameters over a sample of 25 000 sources divided in
three different ¢ bins. The degradation in the determination
of R, ¢, and ¢ moving toward face-on sources is clear.
Conversely, both 8 and ¢ do not have any strongly depen-
dent correlation with the other parameters, and the estima-

CRL
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A [rad]
A%, [rad]
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IVE}
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FIG. 5. The effect of the source orbital inclination ¢ on the
estimate of the signal parameters. Upper panels: The correlation
coefficients c®* (left) and ¢¥®o (right) as a function of +. Middle
and bottom panels: the statistical errors in the measurement of
amplitude R, polarization angle ¢, inclination angle and initial
phase @, for a fixed PTA coherent SNR = 10, making clear the
connection between inclination, correlation (degeneracy), and
parameter estimation. Each asterisk on the plots is a randomly
generated source.
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FIG. 6. The distributions of the statistical errors of the source
parameter measurements using a sample of 25000 randomly
distributed sources (see text for more details), divided in three
different inclination intervals: ¢ € [0, 7/6]U[5/67, 7] (dotted
lines), ¢ € [7/6, w/3]U[2/37, 5/67r] (dashed lines), and ¢ €
[7/3,2/37] (solid lines). In each panel, the sum of the distri-
bution’s integrals performed over the three ¢ bins is unity.

tion of () is then independent of the source inclination
(lower right panel in Fig. 6).

B. Isotropic distribution of pulsars

In this section we study the parameter estimation for a
PTA whose pulsars are isotropically distributed in the sky
and investigate how the results depend on the number M of
pulsars in the array and the SNR. Current PTAs have
pulsars that are far from being isotropically located on
the celestial sphere—the anisotropic distribution of pulsars
is discussed in the next section—but the isotropic case is
useful to develop an understanding of the key factors that
impact the PTA performances for astronomy. It can also be
considered representative of future PTAs, such as SKA,
where many stable pulsars are expected to be discovered
all over the sky.

We begin by fixing the total coherent SNR at which the
GW signal is observed, and we set SNR = 10, regardless
of the number of pulsars in the array, and explore the
dependence of the results on the number of pulsars M in
the range 3-1000. We then consider a fiducial “SKA
configuration” by fixing the total number of pulsars to
M = 100, and we explore how the results depend on the
SNR for values 5 = SNR = 100. Throughout this analysis
we assume that the timing noise is exactly the same for
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each pulsar and that the observations of each neutron star
cover the same time span. The relative contribution of each
of the pulsars in the PTA to the SNR is therefore solely
dictated by the geometry of the system pulsar—Earth—
source that is the specific value of the beam patter function
F™*(0, ¢, ). In total we consider 14 M-SNR combina-
tions, and for each of them we generate
2.5 X 10*-1.6 X 10° (depending on the total number of
pulsars in the array) random sources in the sky. Each
source is determined by the seven parameters described
by Eq. (33), which, in all the Monte Carlo simulations
presented from now on, are chosen as follows. The angles 6
and ¢ are randomly sampled from a uniform distribution in
the sky; @, and ¢ are drawn from a uniform distribution
over their relevant intervals, [0,27] and [0, 7] respec-
tively; ¢ is sampled according to a probability distribution
p(t) = sint/2 in the interval [0, 7] and the frequency is
fixed at f = 5 X 10~8 Hz. Finally the amplitude R is set in
such a way to normalize the signal to the preselected value
of the SNR. For each source we generate M pulsars ran-
domly located in the sky and we calculate the Fisher
information matrix and its inverse as detailed in Sec. III.
We also performed trial runs considering f = 10”7 Hz and
f = 1073 Hz (not shown here) to further cross-check that
the results do not depend on the actual GW frequency.

Figure 7 shows the median statistical errors as a function
of M and SNR for all the six relevant source’s parameters
[6 and ¢ are combined into the single quantity AL},
according to Eq. (40)]. Let us focus on the M dependence
at a fixed SNR = 10. The crucial astrophysical quantity is
the sky location accuracy, which ranges from = 3000 deg”
for M = 3—approximately 10% of the whole sky—to =
20 deg? for M = 1000. A PTA of 100 pulsars would be
able to locate a MBHB within a typical error box of =
40 deg’. The statistical errors for the other parameters are
very weakly dependent on M for M = 20. The fractional
error in the source amplitude is typically = 30%, which
unfortunately prevents one from constraining an astro-
physically meaningful “slice” in the M — D; plane.
The frequency of the source, which in this case was chosen
tobe f = 5 X 1078 Hz, is determined at a ~0.1 nHz level.
Errors in the inclination and polarization angles are typi-
cally = 0.3 rad, which may provide useful information
about the orientation of the binary orbital plane.

All the results have the expected scaling with respect to
the SNR, i.e. AQ = 1/SNR?, and for all the other parame-
ters shown in Fig. 7 the uncertainties scale as 1/SNR. A
typical source with a SNR = 100 (which our current as-
trophysical understanding suggests to be fairly unlikely,
see SVV) would be located in the sky within an error box
1 deg? for M = 10, which would likely enable the identi-
fication of any potential electromagnetic counterpart.

Distributions (normalized to unity) of A{) are shown in
Fig. 8. The lower panel shows dependence on SNR (at a
fixed number of pulsars in the PTA, here set to 100), whose
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FIG. 7. Median expected statistical error on the source pa-
rameters. Each point (asterisk or square) is obtained by averag-
ing over a large Monte Carlo sample of MBHBs (it ranges from
2.5 X 10* when considering 1000 pulsars to 1.6 X 10° when
using 3 pulsars). In each panel, solid lines (squares) represent
the median statistical error as a function of the total coherent
SNR, assuming 100 randomly distributed pulsars in the sky; the
thick dashed lines (asterisks) represent the median statistical
error as a function of the number of pulsars M for a fixed total
SNR = 10. In this latter case, thin dashed lines label the 25th
and the 75th percentiles of the error distributions.
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FIG. 8. Distributions normalized to unity of the size of the
error box in the sky assuming an isotropic random distribution of
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pulsars considered is M = 3, 5, 20, 100, and 1000, and we fixed
a total SNR = 10 in all cases. Lower panel: from right to left we
consider SNR = 5, 10, 20, 50, and 100, and we fixed M = 100.
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effect is to shift the distributions to smaller values of AQ) as
the SNR increases, without modifying the shape of the
distribution. The upper panel shows the effectiveness of
triangulation; by increasing the number of pulsars at fixed
coherent SNR, not only the peak of the distribution shifts
toward smaller values of A}, but the whole distribution
becomes progressively narrower. If they yield the same
SNR, PTAs containing a larger number of pulsars (suffi-
ciently evenly distributed in the sky) with higher intrinsic
noise are more powerful than PTAs containing fewer pul-
sars with very good timing stability, as they allow a more
accurate parameter reconstruction (in particular for sky
position) and they minimize the chance of GW sources to
be located in “blind spots” in the sky (see the next
section).

C. Anisotropic distribution of pulsars

The sky distribution of the pulsars in a PTA is not
necessarily isotropic. This is in fact the case for present
PTAs, and it is likely to remain the norm rather than the
exception, until SKA comes online. It is therefore useful—
as it also sheds new light on the ability of reconstructing
the source parameters based on the crucial location of the
pulsars of the array with respect to a GW source—to
explore the dependency of the results on what we call the
“PTA sky coverage” AQpra, i.e. the minimum solid angle
in the sky enclosing the whole population of the pulsars in
the array. We consider as a study case a ““polar” distribu-
tion of 100 pulsars; the location in the sky of each pulsar is
drawn from a uniform distribution in ¢ and cosf with
parameters in the range ¢ € [0,27] and 6 € [0, 0.4 ],
respectively. We then generate a random population of
GW sources in the sky and proceed exactly as we have
described in the previous section. We consider six different
values of AQprs, progressively increasing the sky cover-
age. We choose 0,,,« = 7/12, 7w/6, 7w/4, /3, 7w/2, and
corresponding to AQprs = 0.21, 0.84, 1.84, 7, 27, and
44r sr. As we are interested in investigating the geometry
effects, we fix in each case the total optimal SNR to 10. We
dedicate the next section to consider specifically the case of
the 20 pulsars that are currently part of the Parkes PTA.

The median statistic errors on the source parameters as a
function of the PTA sky coverage are shown in Fig. 9. As
one would expect, the errors decrease as the sky coverage
increases, even if the SNR is kept constant. This is due to
the fact that as the pulsars in the array more evenly popu-
late the sky, they place increasingly more stringent con-
straints on the relative phase differences among the same
GW signal measured at each pulsar, which depends on the
geometrical factors F . The most important effect is that
the sky position is pinned down with greater accuracy; at
the same time, correlations between the sky location pa-
rameters and other parameters, in particular amplitude and
inclination angle are reduced. A() scales linearly (at fixed
SNR) with AQpr,, but the others parameters do not expe-
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FIG. 9. Median statistical error in the source’s parameter esti-
mation as a function of the sky coverage of the pulsar distribu-
tion composing the array. Each triangle is obtained averaging
over a Monte Carlo generated sample of 1.6 X 10° sources. In
each panel, solid lines (triangles) represent the median error,
assuming M = 100 and a total SNR = 10 in the array; thin
dashed lines label the 25th and the 75th percentiles in the
statistical error distributions.

rience such a drastic improvement. The statistical uncer-

tainty on the amplitude improves as /AQpry for
AQpra =< 1 sr then saturates. All the other parameters
are much less sensitive to the sky coverage, showing only
a mild improvement (a factor < 2) with increasing AQpra
up to ~1 sr.

When one considers an anisotropic distribution of pul-
sars, the median values computed over a random uniform
distribution of GW sources in the sky do not carry however
the full set of information. In particular the error box in the
sky strongly depends on the actual source location. To
show and quantify this effect, we use the outputs of the
Monte Carlo runs to build sky maps of the median of A}
that we show in Fig. 10. When the pulsars are clustered in a
small AQpr,a, the properties of the signals coming from
that spot in the sky (and from the diametrically opposite
one) are more susceptible to small variations with the
propagation direction (due to the structure of the response
functions F* and F*); the sky location can then be deter-
mined with a much better accuracy, AQ ~ 2 deg’.
Conversely, triangulation is much less effective for sources
located at right angles with respect to the bulk of the
pulsars. For a polar AQpps = 0.21 sr, we find a typical
AQ = 5000 sr for equatorial sources; i.e., their sky loca-
tion is basically undetermined. Increasing the sky coverage
of the array obviously mitigates this effect, and in the limit
AQppp = 47 st (which correspond to an isotropic pulsar
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Sky maps of the median sky location accuracy for an anisotropic distribution of pulsars in the array. Contour

plots are generated by dividing the sky into 1600 (40 X 40) cells and considering all the randomly sampled sources falling within each
cell; SNR = 10 is considered. The pulsar distribution progressively fills the sky starting from the top left, eventually reaching an
isotropic distribution in the bottom right panel (in this case, no distinctive features are present in the sky map). In each panel, 100 black
dots label an indicative distribution of 100 pulsars used to generate the maps, to highlight the sky coverage. Labels on the contours
refer to the median sky location accuracy expressed in square degrees, and the color scale is given by the bars located on the right of

each map.

distribution), we find a smooth homogeneous sky map
without any recognizable feature (bottom right panel of
Fig. 10). In this case the sky location accuracy is indepen-
dent of the source sky position and, for M = 100 and
SNR = 10 we find AQ ~ 40 deg®. Figure 11 shows the
normalized distributions of the statistical errors corre-
sponding to the six sky maps shown in Fig. 10. It is
interesting to notice the bimodality of the distribution for
intermediate values of AQpy,, due to the fact that there is a
sharp transition between sensitive and nonsensitive areas in
the sky (this is particularly evident looking at the contours
in the bottom left panels of Fig. 10).

We also checked another anisotropic situation of poten-
tial interest: a distribution of pulsars clustered in the galac-
tic plane. We considered a distribution of pulsars covering
a ring in the sky with ¢, is randomly sampled in the

interval [0, 277] and latitude in the range [—7/12, 7/12]
around the equatorial plane, corresponding to a solid angle
of AQpra = 3.26 sr. Assuming a source SNR = 10, the
median statistical error in the source sky location is
~100 deg?, ranging from ~10 deg® in the equatorial
plane, to ~400 deg’ at the poles. Median errors on the
other parameters are basically the same as in the isotropic
case.

D. The Parkes pulsar timing array

We finally consider the case that is most relevant to
present observations: the potential capabilities of the
Parkes pulsar timing array. The goal of the survey is to
monitor 20 ms pulsars for 5 years with timing residuals =
100 ns [1]. This may be sufficient to enable the detection of
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FIG. 11. Normalized distributions of the statistical errors in
sky position accuracy corresponding to the six sky maps shown
in Fig. 10. Each distribution is generated using a random sub-
sample of 2.5 X 10* sources.

the stochastic background generated by the whole popula-
tion of MBHBs [28], but according to our current astro-
physical understanding (see SVV) it is unlikely to lead to
the detection of radiation from individual resolvable
MBHBs, although there is still a non-negligible chance
of detection. It is therefore interesting to investigate the
potential of such a survey.

In our analysis we fix the location of the pulsars in the
PTA to the coordinates of the 20 ms pulsars in the Parkes
PTA, obtained from [52]; however for this exploratory
analysis we set the noise spectral density of the timing
residuals to be the same for each pulsar, i.e. we do not take
into account the different timing stability of the pulsars. We
then generate a Monte Carlo sample of GW sources in the
sky with the usual procedure. We consider two different
approaches. First, we explore the parameter estimation
accuracy as a function of the GW source sky location for
selected fixed array coherent SNRs (5, 10, 20, 50, and 100).
Second, we fix the source chirp mass, frequency, and
distance (so that the sky and polarization averaged coher-
ent SNR is 10) and we explore the parameter estimation
accuracy as a function of the sky location. Sky maps of
statistical error in the sky location are shown in Fig. 12. In
the top panel we fix the SNR = 10, independently of the
source position in the sky; the median error in the sky
location accuracy is AQ ~ 130 deg?, but it ranges from
~10-400 deg® depending on the source’s sky location.
The median statistical errors that affect the determination
of all the other source parameters are very similar to those
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FIG. 12 (color online). Sky maps of the median sky location
accuracy for the Parkes PTA. Contour plots are generated as in
Fig. 10. Top panel: we fix the source SNR = 10 over the whole
sky; in this case the sky position accuracy depends only on the
different triangulation effectiveness as a function of the source
sky location. Bottom panel: we fix the source chirp mass and
distance to give a sky and polarization averaged SNR = 10, and
we consistently compute the mean SNR as a function of the sky
position. The sky map is the result of the combination of
triangulation efficiency and SNR as a function of the source
sky location. The color scale is given by the bars on the right,
with solid angles expressed in deg?.

for the isotropic pulsar distribution case when considering
M = 20, since the pulsar array covers almost half of the
sky; see Fig. 9. In the bottom panel, we show the results
when we fix the source parameters, and therefore, the total
SNR in the array does depend on the source sky location. In
the southern hemisphere, where almost all the pulsars are
concentrated, the SNR can be as high as 15, while in the
northern hemisphere it can easily go below 6. The general
shape of the sky map is mildly affected and shows an even
larger imbalance between the two hemispheres. In this
case, the median error is AQ ~ 160 deg”, ranging from
~3-900 deg?. It is fairly clear that adding a small ( < 10)
number of pulsars in the northern hemisphere to the pulsars
already part of the Parkes PTA would significantly improve
the uniformity of the array sensitivity and parameter esti-
mation capability, reducing the risk of potentially detect-
able GW sources ending up in a blind spot of the array.

V. CONCLUSIONS

In this paper we have studied the expected uncertainties
in the measurements of the parameters of a massive black
hole binary system by means of gravitational-wave obser-
vations with pulsar timing arrays. We have investigated
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how the results vary as a function of the signal-to-noise
ratio, the number of pulsars in the array, and their location
in the sky with respect to a gravitational-wave source. Our
analysis is focused on MBHBs in circular orbit with neg-
ligible frequency evolution during the observation time
(monochromatic sources), which we have shown to repre-
sent the majority of the observable sample, for sensible
models of subparsec MBHB eccentricity evolution. The
statistical errors are evaluated by computing the variance-
covariance matrix of the observable parameters, assuming
a coherent analysis of the Earth terms only produced by the
timing residuals of the pulsars in the array (see Sec. II B).

For a fiducial case of an array of 100 pulsars randomly
distributed in the sky, assuming a coherent total SNR =
10, we find a typical error box in the sky AQ = 40 deg?
and a fractional amplitude error of = 0.3. The latter places
only very weak constraints on the chirp mass-distance
combination M3/3/D, . At fixed SNR, the typical parame-
ter accuracy is a very steep function of the number of
pulsars in the PTA up to = 20. For PTAs containing
more pulsars, the actual gain becomes progressively
smaller because the pulsars fill the sky and the effective-
ness of further triangulation weakens. We also explored the
impact of having an anisotropic distribution of pulsars
finding that the typical source sky location accuracy im-
proves linearly with the array sky coverage. For the specific
case of the Parkes PTA where all the pulsars are located in
the southern sky, the sensitivity and sky localization are
significantly better (by an order of magnitude) in the south-
ern hemisphere, where the error box is < 10 deg? for a
total coherent SNR = 10. In the northern hemisphere, the
lack of monitored pulsars prevents a source location to be
in an uncertainty region < 200 deg”. The monitoring of a
handful of pulsars in the northern hemisphere would sig-
nificantly increase both the SNR and the parameter recov-
ery of GW sources, and the international PTA [4] will
provide such a capability in the short term future.

The main focus of our analysis is on the sky localization
because sufficiently small error boxes in the sky may allow
the identification of an electromagnetic counterpart to a
GW source. Even for error boxes of the order of tens to
hundreds of square degrees (much larger than e.g. the
typical LISA error boxes [53-55]), the typical sources
are expected to be massive (M = 103M,) and at low
redshift (z = 1.5), and therefore the number of associated
massive galaxies in the error box should be limited to a few
hundreds. Signs of a recent merger, like the presence of
tidal tails or irregularities in the galaxy luminosity profile,
may help in the identification of potential counterparts.
Furthermore, if nuclear activity is present, e.g. in the
form of some accretion mechanism, the number of candi-
date counterparts would shrink to a handful, and periodic
variability [56] could help in associating the correct galaxy
host. We are currently investigating the astrophysical sce-
narios and possible observational signatures, and we plan
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to come back to this important point in the future. The
advantage of a counterpart is obvious: the redshift mea-
surement would allow us, by assuming the standard con-
cordance cosmology, to measure the luminosity distance to
the GW source, which in turn would break the degeneracy
in the amplitude of the timing residuals R
M>33 /(D, f'/3) between the chirp mass and the distance,
providing therefore a direct measure of M.

The study presented in this paper deals with monochro-
matic signals. However, the detection of MBHBs which
exhibit a measurable frequency drift would give significant
payoffs, as it would allow one to break the degeneracy
between distance and chirp mass, and enable the direct
measurement of both parameters. Such systems may be
observable with the square kilometer array. In the future, it
is therefore important to extend the present analysis to
these more general signals. However, as the frequency
derivative has only modest correlations with the sky posi-
tion parameters, we expect that the results for the determi-
nation of the error box in the sky discussed in this paper
will still hold. A further extension to the work is to consider
MBHBs characterized by non-negligible eccentricity,
which is currently in progress. Another extension to our
present study is to consider both the Earth and pulsar terms
in the analysis of the data and the investigation of the
possible benefits of such a scheme, assuming that the
pulsar distance is not known to sufficient accuracy. This
also raises the issue of possible observation campaigns that
could yield an accurate (to better than 1 pc) determination
of the pulsar distances used in PTAs. In this case the use of
the pulsar term in the analysis would not require the
introduction of (many more) unknown parameters and
would have the great benefit of breaking the degeneracy
between chirp mass and distance.

The final word of caution goes to the interpretation of
the results that we have presented in the paper. The ap-
proach based on the computation of the Fisher information
matrix is powerful and straightforward, and is justified at
this stage to understand the broad capabilities of PTAs and
to explore the impact on astronomy of different observa-
tional strategies. However, the statistical errors that we
compute are strictly lower limits to the actual errors ob-
tained in a real analysis; the fact that at least until SKA
comes online, a detection of a MBHB will be at a
moderate-to-low SNR should induce caution in the way
in which the results presented here are interpreted.
Moreover, in our current investigation, we have not dealt
with a number of important effects that in real life play a
significant role, such as different calibrations of different
data sets, the change of systematic factors that affect the
noise, possible non-Gaussianity and nonstationarity of the
noise, etc. These (and other) important issues for the study
of MBHBs with PTAs should be addressed more thor-
oughly in the future by performing actual mock analyses
and developing suitable analysis algorithms.
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APPENDIX: THE PULSAR TIMING ARRAY
RESPONSE TO GRAVITATIONAL WAVES

In this Appendix we derive the PTA response to a GW
signal from a deterministic source characterized by a met-
ric perturbation

h(t, %) = [A+ (t, ) F(Q) — iAx (1, o) F* () ]e™ .
(AD)

The observed signal at the PTA output generated by the
fractional frequency shift comes from the contribution at
the “Earth” (or more precisely the SSB) and at the pulsar.
We therefore need to compute the metric perturbation at
(tssp, Xssp) and (7, X,). For simplicity (but without loss of
generality), let us make a choice of coordinates such that

tSSB =1 ')—Z'SSB :O, tp =t—7 )-Ep:)—C)p,
(A2)
where
r=L(1+Q-p) (A3)

is the time delay between the pulsar and the Earth terms,
given by the light-travel time. The relative frequency shift
at time ¢, Eq. (3), is therefore

2, Q) = [A. (1 — DFT(Q) — iAy(t — 7)FX(Q)]ei¢t—
—[AL (OF (@) — A (OF<(@Q))e40.  (Ad)

As one expects, the response to a GW is identically zero for
GWs propagating along the Earth-pulsar direction, when
Q== p. In fact, when GWs propagate in the direction
opposite to the radio signal, Q- p=1,wehave m - p =
A-p=0 and as a consequence F*(Q)) = F*(Q)=0.
This is due to the transverse nature of GWs and there is
no frequency shift of the electromagnetic wave. On the
other hand, when GWs propagate along the same direction
of the electromagnetic waves, () - p = —1 and F*(Q) =
cos(2¢) and F X(Q)) = sin(2 ) are nonzero, finite func-
tions of the polarization angle . In this case z(z, ) is still
zero because 7 =0 and the Earth and pulsar terms are
identical and cancel out. This is known as the surfing effect,
as the GWs surf with the electromagnetic waves.

We have shown in Sec. II that GWs emitted by MBHBs
and observable with PTA will be quasimonochromatic
signals slowly drifting in time. More specifically, for the
astrophysical population that one expects to detect (see
SVV), the frequency derivative satisfies (for the vast ma-
jority of the signals) the condition

fo

T<K—<VL.

A5
7o (AS)

The consequence of the inequality above is that the timing
residuals observed at the PTA output from any pulsar «
will consist of two quasimonochromatic signals at differ-
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ent, but essentially constant frequencies during the obser-
vation time f(r) and f(t — 7,), where we have explicitly
emphasized with 7, the fact that the pulsar term differs
from pulsar to pulsar, and will be sitting at a different
frequency determined by the source—Earth—pulsar relative

angle Q- Do and the poorly constrained pulsar distance
L. Given then the fact that the noise dominates the signal,
r, < n,, only adding the contributions to all the pulsars
will provide enough SNR, and one can therefore concen-
trate the analysis only on the Earth terms, all of which
depend only on the 7 parameters of the source, and ignore
the contribution from the pulsar terms. The latter in fact
depend on the M unknown parameters L,’s, which deter-
mine 7, and therefore phase, frequency, and amplitude of
the pulsar term. If L,’s were known—an uncertainty
smaller than 1 rad on the phase contribution requires the
distance to a pulsar to be known to better than
~ 0.1(f/10 nHz) " '(1 + Q- p)~! pc—one can coher-
ently lock all the phases of the pulsar terms increasing
the total SNR of the detection. This would also provide a
direct measurement of f, allowing to break the distance/
chirp mass degeneracy.

The pulsar term however may conjure to cancel the
Earth term for specific source—Earth—pulsar angles. To
have an order-of-magnitude estimate of this effect, let us
conservatively assume that the Earth and pulsar terms can
be fully resolved if their frequency separation is larger than
one frequency resolution bin of width 1/7 (we have ac-
tually shown in Sec. IV that the frequency can be resolved
with subfrequency resolution accuracy). Assuming (again
conservatively) a linear frequency shift due to radiation
reaction, this condition can be expressed as

1

f‘07>*.

T (A6)

Substituting Eq. (A3) in the previous expression, the pre-
vious condition can be expressed as
1

1+Q-p>——>—.
TfoL  foL

(A7)

The cancellation takes place when Q- p =1 and we can
therefore approximate 1 + ) - p as

1+Q-p=1+cos(m— 60) =166+ 0(56%), s0<1.
(A8B)

Using a typical pulsar distance of 1 kpc and a GW fre-
quency of 10 nHz we obtain

10 nHz\1/2/1 kpc\1/2
()
f(] L

This means that whenever the separation on the sky of a
GW source and a pulsar is larger than a few degrees, then
ignoring the contribution from the pulsar term does not
affect the analysis. With existing PTAs, this is surely a safe

50 = 3( (A9)
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assumption unless one encounters a very unlucky case.
Nonetheless, we keep this into account in the
Monte Carlo simulations whose results are reported in
Sec. IV. We choose 50 nHz for the source frequency.
Then, for every PTA array configuration, we place all the
pulsars either at 1 kpc or at 5 kpc (in Sec. IV we show
results for L, = 5 kpc, but the results for L, = 1 kpc are
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basically identical), while for the Parkes PTA we took each
individual pulsar distance from the ATNF catalog [52].
Finally, for each pulsar we compute the pulsar—Earth—
source angle and if the resulting value is smaller than the
one obtained from Eq. (A9) we discard that particular
pulsar contribution from the analysis; as 86 is very small,
the impact on the analysis is minimal.
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