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ABSTRACT

We construct evolutionary tracks for massive black hole binaries (MBHBs) embedded in a surrounding distribution
of stars. The dynamics of the binary is evolved by taking into account the erosion of the central stellar cusp bound
to the massive black holes, the scattering of unbound stars feeding the binary loss cone, and the emission of
gravitational waves (GWs). Stellar dynamics is treated in a hybrid fashion by coupling the results of numerical
three-body scattering experiments of bound and unbound stars to an analytical framework for the evolution of the
stellar density distribution and for the efficiency of the binary loss-cone refilling. Our main focus is on the behavior
of the binary eccentricity, in the attempt of addressing its importance in the merger process and its possible impact
for GW detection with the planned Laser Interferometer Space Antenna (LISA), and ongoing and forthcoming
pulsar timing array (PTA) campaigns. We produce a family of evolutionary tracks extensively sampling the relevant
parameters of the system which are the binary mass, mass ratio and initial eccentricity, the slope of the stellar
density distribution, its normalization and the efficiency of loss-cone refilling. We find that, in general, stellar
dynamics causes a dramatic increase of the MBHB eccentricity, especially for initially already mildly eccentric
and/or unequal mass binaries. This affects the overall system dynamics; high eccentricities enhance the efficiency
of GW emission, accelerating the final coalescence process. When applied to standard MBHB population models,
our results predict eccentricities in the ranges 10−3–0.2 and 0.03–0.3 for sources detectable by LISA and PTA,
respectively. Such figures may have a significant impact on the signal modeling, on source detection, and on the
development of parameter estimation algorithms.
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1. INTRODUCTION

It is now widely recognized that massive black holes (MBHs)
are fundamental building blocks in the process of galaxy
formation and evolution. MBHs are a ubiquitous components
of nearby galaxy nuclei (see, e.g., Magorrian et al. 1998), and
their masses tightly correlate with the properties of the host
(Haring & Rix 2004, and references therein). In popular ΛCDM
cosmologies, structure formation proceeds in a hierarchical
fashion (White & Rees 1978), through a sequence of merging
events. If MBHs are common in galaxy centers at all epochs,
as implied by the notion that galaxies harbor active nuclei for
a short period of their lifetime (Haehnelt & Rees 1993), then
a large number of massive black hole binaries (MBHBs) are
expected to form during cosmic history. The evolution of such
binaries was first sketched by Begelman et al. (1980), but after
thirty years, several details of the involved dynamical processes
are still unclear.

In stellar environments, the MBHB evolution proceeds via
super-elastic scattering of surrounding stars intersecting the
binary orbit (slingshot mechanism, Mikkola & Valtonen 1992),
and the fate of the system depends on the supply of stars available
for such interaction. On the other hand, if the system is gas
rich, torques exerted by a massive circumbinary disk have been
proven efficient in shrinking the binary down to ∼0.1 pc (Escala
et al. 2005; Dotti et al. 2007), which is the current resolution limit
of dedicated smoothed particle hydrodynamical simulations.
However, whether viscous angular momentum extraction is
efficient all the way down to coalescence is questionable (Lodato
et al. 2009).

In general, the vast majority of studies (mostly numerical)
devoted to the subject have focused on the shrinking of the
binary semimajor axis, because the relatively small number of
particles involved (N < 106) makes the eccentricity behavior
fairly noisy. However, eccentricity may play an important role
in the final coalescence, because at a given semimajor axis,
the coalescence timescale associated with gravitational wave
(GW) emission is much shorter for very eccentric binaries
(Peters & Mathews 1963). Moreover, having a trustworthy
model for the eccentricity evolution of the system may be of
crucial importance for the practical detection of MBHBs in the
forthcoming GW windows.

MBHBs are in fact expected to be the loudest sources
of gravitational radiation in the nHz–mHz frequency range
(Haehnelt 1994; Jaffe & Backer 2003; Wyithe & Loeb 2003;
Enoki et al. 2004; Sesana et al. 2004, 2005; Jenet et al.
2005; Rhook & Wyithe 2005; Sesana et al. 2008, 2009). The
space-borne observatory Laser Interferometer Space Antenna
(LISA, Danzmann et al. 1998) has been planned to cover the
range of frequencies from 10−4 Hz to 0.1 Hz. Moving to the
nanohertz frequency range, the Parkes Pulsar Timing Array
(Manchester 2008), the European Pulsar Timing Array (Janssen
et al. 2008), and the North American Nanohertz Observatory for
Gravitational Waves (Jenet et al. 2009) are already collecting
data and improving their sensitivity in the of 10−8–10−6 Hz
window, and in the next decade the planned Square Kilometer
Array (Lazio 2009) will provide a major leap in sensitivity.

Besides the technical progresses in the instrumentation, the
source signal modeling and the development of appropriate
data analysis techniques for recovering the sources from the
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data stream are crucial for the success of the GW astronomy
challenge. So far, most of the attention has been focused on
circular MBHBs. This seems to be justified, because GW
emission is very efficient in dampening the binary eccentricity,
and since GW detectors (LISA in particular) are sensitive to
the very end of the MBHB inspiral, sources are expected to be
circular when they enter the observable band. Consequently,
most of the source modeling and the signal searches and
analyses, e.g., the source injection in the LISA mock data
challenge (Babak et al. 2010), or the investigation carried out
by the LISA parameter estimation task force (Arun et al. 2009),
relied on this assumption.

However, both stellar and gas based shrinking mechanisms
have proven to be efficient in increasing the binary eccentricity
(Quinlan 1996; Armitage & Natarajan 2005; Sesana et al.
2006, 2008; Baumgardt et al. 2006; Matsubayashi et al. 2007;
Berentzen et al. 2009; Cuadra et al. 2009; Amaro-Seoane et al.
2009, 2010), calling into question whether the assumption of
circular orbits is justified for such GW sources. In this paper,
we construct a self-consistent simple model for tracking the
evolution of the MBHB eccentricity (and semimajor axis)
in stellar environments. We model the stellar distribution
surrounding the bound binary as an isothermal sphere (ρ ∝ r−2)
matching a cusp with a power-law density profile ρ ∝ r−γ inside
the binary influence radius. The MBHB is evolved taking into
account the scattering of bound stars leading to the erosion of the
cusp (Sesana et al. 2008), the subsequent scattering of unbound
stars intersecting the binary semimajor axis (Quinlan 1996;
Sesana et al. 2006), and the efficient GW emission stage (Peters
& Mathews 1963) leading to final coalescence of the system. The
main goal of the paper is to build sensible evolutionary tracks for
the MBHB as a function of the binary mass, mass ratio, initial
eccentricity at pairing and cusp slope, and to show that viable
MBHB evolution scenarios predict a significant eccentricity in
the frequency band relevant to GW observations with LISA and
PTAs.

The paper is organized as follows. In Section 2, we extensively
describe our model, defining the relevant physical mechanisms
and writing down the evolution equations for the system. In
Section 3, we provide further insights about the physics of the
model, linking our treatment to the loss-cone refilling theory. We
present our evolutionary tracks in detail in Section 4, discussing
the dependencies on the relevant model parameters, and we
draw predictions for LISA and PTA observations in Section 5.
Our main findings are summarized in Section 6.

2. INGREDIENTS OF THE MODEL

2.1. Initial Setup

We consider an MBHB with mass M = M1 +M2 (M1 > M2)
described by its semimajor axis a and eccentricity e. The system
is embedded in a purely stellar background with a density profile
described by a double power law, as follows:

ρ(r) = ρinf

(
r

rinf

)−γ

r < rinf

ρ(r) = σ 2

2πGr2 r > rinf .
(1)

Here, rinf is the influence radius of the binary, identifying the
region where the gravitational potential is dominated by the two
MBHs, and formally defined as the radius containing a stellar
mass equal to M, and ρinf is the stellar density at rinf . The density
distribution is normalized to an isothermal sphere for r > rinf ,

such a condition sets

ρinf = σ 2

2πGr2
inf

(2)

and

rinf = (3 − γ )
GM

σ 2
≈ 0.8 pc (3 − γ )M1/2

6 , (3)

where M6 is the total mass of the binary in units of 106 M�, and
we made use of the well established M–σ relation in the form
(Tremaine et al. 2002)

M6 = 0.84σ 4
70 (4)

(σ70 is the velocity dispersion in units of 70 km s−1) to get rid
of σ in the last approximation. We identify the region r < rinf
as the inner cusp, and we use γ = 1, 1.5, and 2 corresponding
to nuclei characterized by cores/weak cusps, mild cusps, and
steep cusps, respectively.

N-body simulations of unequal mass binaries in the mass ratio
range 0.01–10−3 (Baumgardt et al. 2006; Matsubayashi et al.
2007) have shown that dynamical friction is efficient in driving
the secondary MBH much deeper than rinf in the potential well
of the primary-cusp system. The two MBH pairs together form
an MBHB and continue to harden down to a separation at
which the enclosed mass in the binary is of the order of M2,
without significantly affecting the stellar density profile. This is
an indication that the hardening is still driven by the dynamical
friction exerted by the overall distribution of stars, rather than
by close individual encounters with stars intersecting the binary
orbit. In our model, we assume that M2 is driven by dynamical
friction down to a separation a0 where the enclosed stellar mass
in the binary is twice the mass of the secondary MBH,

a0 = (3−γ )
GM

σ 2

(
q

1 + q

)1/(3−γ )

= rinf

(
q

1 + q

)1/(3−γ )

, (5)

(q = M2/M1 is the mass ration of the binary system) without
affecting the stellar distribution in the cusp significantly. At that
point, three-body interactions take over, and the binary evolution
is dictated by individual encounters with stars intersecting its
orbit.

2.2. Physical Mechanisms in Operation

On its way to final coalescence starting from a0, the binary
is subject to three main dynamical mechanisms driving its
evolution, namely: (1) the erosion of the cusp bound to the
primary MBH, (2) the scattering of unbound stars supplied
into the binary loss cone by relaxation processes once the
stellar distribution is significantly modified by the MBHB, and
(3) the emission of GWs. The detailed description of each
mechanism has been presented elsewhere, and the reader will be
referred throughout this section to the appropriate references for
further insights. The focus of the present work is to add them
together coherently, to produce sensible, although admittedly
very simplistic, evolutionary tracks for MBHBs hardening in
stellar environments.

2.2.1. Bound Cusp Erosion

The hardening of an unequal mass MBHB, with an initial
semimajor axis a0 and eccentricity e0, in a bound cusp was
extensively studied by Sesana et al. (2008), hereinafter SHM08.
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Using their formalism, two differential equations determine the
rate of change of the orbital separation and eccentricity:

da

dt

∣∣
b

= − 2a2

GM1M2

∫ ∞

0
ΔE

d2Nej

da∗dt
da∗, (6)

de

dt

∣∣
b

=
∫ ∞

0
Δe

d2Nej

da∗dt
da∗. (7)

Here, a∗ is the semimajor axis of a star bound to M1 and
d2Nej/da∗dt is the number of stars subject to slingshot ejec-
tion in the semimajor axis and time intervals [a∗, a∗ + da∗],
[t, t + dt]. The terms Δe, ΔE are measured from scattering ex-
periments. The ejection rate d2Nej/da∗dt is instead computed
by coupling the numerical results of the experiments to an an-
alytic framework for the binary evolution, which is embedded
in a cusp of the form described by Equation (1), as detailed in
SHM08. The major finding of SHM08 is that the binary hardens
by a factor of ∼10 by extracting the binding energy of the stars
in the cusp. During this process, e usually increases by a large
factor, depending on the binary mass ratio and on the cusp slope.
Results are tabulated in Table 1 of SHM08.

2.2.2. Slingshot of Unbound Stars

The theory of MBHB hardening in a distribution of unbound
field stars characterized by a density ρ and a velocity dispersion
σ was singled out by Quinlan (1996) and extensively revisited by
Sesana et al. (2006), hereinafter SHM06. The binary evolution
can be expressed as a function of the dimensionless hardening
rate H and eccentricity growth rate K as

da

dt

∣∣
u

= −a2Gρ

σ
H, (8)

de

dt

∣∣
u

= aGρ

σ
HK. (9)

The quantities H and K are related to the average energy and
angular momentum exchange between the stars and the binary
in a single encounter and are computed via extensive three-body
scattering experiments, as described, e.g., in SHM06. In general,
hardening by scattering of unbound stars becomes effective
when the binary reaches the so-called hardening radius, defined
as (Quinlan 1996)

ah ≈ GM2

4σ 2
. (10)

This is the separation at which the specific binding energy of
the binary is of the order of the specific kinetic energy of the
field stars. For a > ah, stars are basically too fast to effectively
exchange energy and angular momentum with the binary (soft
binary regime); when a < ah, the binary tends to capture stars in
short living weakly bound orbits, kicking them to infinity with
v > σ (hard binary regime). The transition soft/hard binary
is rather smooth and happens at about ah. Once the binary is
hard, its hardening proceeds at about constant rate, as shown by
the H tracks plotted in Figure 3 of SHM06. Perfectly circular
binaries tend to stay circular (because of the conservation of
the Jacobian integral of motion in the three-body problem),
while even slightly eccentric binaries tend to increase their
eccentricity, as shown by the K rates plotted in Figure 4 of
SHM06.

2.2.3. Gravitational Wave Emission

For our purposes, the effect of GW emission can be modeled
in the quadrupole approximation. Under this assumption, the
evolution equations for the system are given by Peters &
Mathews (1963):

da

dt

∣∣
GW = − 64

5

G3

c5

M1M2M

a3(1 − e2)7/2

(
1 +

73

24
e2 +

37

96
e4

)

= − 64

5

G3

c5

M1M2M

a3
F (e) (11)

de

dt

∣∣
GW = −304

15

G3

c5

M1M2M

a4(1 − e2)5/2
e

(
1 +

121

304
e2

)
. (12)

The function F (e) is defined by the last equality in Equation (11).
The shrinking rate is a strong factor of a, meaning that GW-
driven hardening is effective only at small separations. The
eccentricity evolution rate is also a strong function of a and
e itself, and it is always negative. GW emission, therefore, is
very effective in circularizing MBHBs, which, in turn, is the
reason why little attention has been paid so far to eccentric
systems in the context of GW detection.

2.3. General Equations for the Binary Evolution

Having identified the relevant mechanisms at play, we can put
the pieces together by writing the evolution of the binary as

da

dt
=

∑
i

da

dt

∣∣
i

(13)

de

dt
=

∑
i

de

dt

∣∣
i
, (14)

where i = b, u, GW labels the three mechanisms considered.
Here, we handle MBHBs in stellar environments, and the
relevant scale of the stellar distribution is defined by the sphere
of influence rinf of the MBHBs. It is then natural to consider as
relevant parameters the stellar density and velocity dispersion at
the influence radius, ρinf and σinf = σ (for an isothermal sphere,
the velocity dispersion is independent on radius). It is then
instructive to recast the MBHB dynamics in the dimensionless
H and K formalism proposed by Quinlan, to compare the
dimensionless rates given by each mechanism.

The global evolution of the system can be then written as a
generalization of Equations (8) and (9) in the form

da

dt
= −a2Gρinf

σ

∑
i

Hi (15)

de

dt
= aGρinf

σ

∑
i

HiKi, (16)

where Hi is trivially defined as

Hi = σ

a2Gρinf

da

dt

∣∣
i

(17)

and

Ki = a
de

dt

∣∣
i

⎛
⎝∑

j

da

dt

∣∣
j

⎞
⎠

−1

. (18)
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We integrate the coupled differential Equations (15) and (16)
starting from a0. As described in Section 2.1(Equation (5)), the
value of a0 is set by the total mass of the binary M, the mass
ratio q = M2/M1, the cusp slope γ , and the stellar velocity
dispersion σ . In our default models, we force σ to obey the
M–σ relation given by Equation (4). In this manner, there is
a one-to-one correspondence between the mass of the binary
and σ , i.e., equally massive binaries are embedded in identical
isothermal spheres. Having set the normalization of the stellar
distribution and the initial separation a0, the evolution of the
binary depends on the four parameters M1, q, e0, and γ . We
extensively sample this parameter space as following:

1. log(M1/M�) = 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
2. q = 1, 1/3, 1/9, ..., 1/729
3. e0 = 0.01, 0.1, 0.3, 0.6, 0.9
4. γ = 1, 1.5, 2

for a grand total of 10 × 7 × 5 × 3 = 1050 simulations. Even
though the binary evolution under the effect of stellar encounters
is basically scale free, the simulation of systems with different
absolute masses was necessary to match together the scattering-
driven phase to the GW-driven phase, which instead is highly
mass dependent. The assumption of different eccentricities at
the moment of pairing takes the environmental effects affecting
the dynamical friction stage into account. In general, during the
merging process, galaxies capture each other on a very eccentric
orbit, which is reflected in the initial trajectories of the two
MBHs (still at kpc separations at this stage). Dynamical friction
against massive, rotationally supported, circumbinary disks has
been proven to circularize the orbit (Dotti et al. 2006). However,
this is not in general true in gas poor environments, where
the process is driven by interaction with the stellar distribution
(Colpi et al. 1999), and the eccentricity of the MBHB at the
moment of pairing may retain memory of its initial value, or
may, in general, be different from zero.

We also consider four alternative models to address the impact
of the assumed M–σ relation and the choice of normalizing the
efficiency of unbound scatterings to ρinf . Let us denote with σ̂ the
value of the velocity dispersion predicted by the M–σ relation
for a given M. We consider models with velocity dispersions
equal to 0.7σ̂ and 1.3σ̂ , which is approximately the range of
variance of σ for a given MBH mass measured in the M–σ
relation (Haring & Rix 2004). We also run models with two
different normalizations for the unbound scattering process: a
fast model normalized to 10ρinf and a slow model normalized
to 0.1ρinf . The motivation for this set of runs will be clarified in
Section 3.2.

To practically evolve the binary, we make use of the results
of the scattering experiments with unbound and bound stars
performed in SHM06 and SHM08. In those papers, the quan-
tities Δe, ΔE , d2Nej/da∗dt (for the bound scatterings), H and
K (for the unbound scatterings) were recorded on a grid of a
and e, covering the relevant dynamical range. The evolution of
the coupled differential Equations (15) and (16) is performed
by interpolation over the grid as the binary evolves. In SHM06,
unbound scatterings were carried out for all the considered mass
ratios down to q = 1/243. To complete the sample, we carried
out additional experiments for the case q = 1/729. SHM08,
instead, focused on unequal MBHBs, with q � 0.1. To com-
plete the mass ratio sample, we ran experiments for the cases
q = 1, 1/3. We then have all the bound and unbound scattering
experiments’ results spanning the q and e0 range of interest.

2.4. Limitations and Caveats

Our evolutionary tracks are computed in a self-consistent way,
summing together the effects of different mechanisms. However,
we should be aware of the several limitations and simplifications
we have adopted. One major caveat is the extension of the bound
scattering experiments to mass ratios of q > 1/9. It is in fact
unlikely that, in such cases, M2 would reach a0 without affecting
the stellar cusp at all. Cusp disruption would start earlier
(especially in the equal mass case), and the cusp erosion phase
described here may not be a trustworthy description of reality.
However, we find that the impact of the bound cusp erosion on
the binary evolution is smaller for larger mass ratios. This is
because for q → 1, a0 ∼ rinf (see Figure 1), and the impact of
the binding energy extraction in the total energy budget of the
system becomes less significant. The eccentricity evolution in
the cusp erosion phase is only mild when q = 1, 1/3, implying
that our approximate treatment would not significantly affect the
overall results. Another caveat to bear in mind is that the three-
body scattering is a scale-free problem as long as m∗ 
 M2.
Even though we compute “a posteriori” evolutionary tracks for
systems with M1 = 100 M� and q = 1/729, we consider
our results meaningful only when M2 > 100 M�. This is also
reasonable, since we are interested in the evolution of MBHBs.
Moreover, if M2 is small (<104 M�), the amount of stars
interacting with the binary is also quite small, i.e., the granularity
of the problem increases. Our smooth evolutionary tracks should
then be interpreted more as “trends” or “mean evolutions” rather
than paths followed by each individual binary. We have also
not included the possibility of stellar tidal disruption, which
has been shown to be an efficient process in the cusp erosion
phase, especially in the mass ratio range 0.01 < q < 0.1 (Chen
et al. 2009). In general, the inclusion of tidal disruptions mildly
enhances the increase of eccentricity (Chen et al. 2010), because
disrupted stars preferentially have a∗ < a, i.e., they would drive
the binary toward circularization if ejected (see SHM08 for a
detailed discussion of this effect). Lastly, there is a somewhat
net distinction between bound and unbound scatterings in our
formalism, which is certainly oversimplistic, since in reality
relaxation processes will mix up the different stellar populations.
The appearance of distinctive features in the transition between
the bound and the unbound regime can be therefore considered
somewhat artificial; the reality would probably be more gentle.
We do not believe that this has a major impact on our main
results.

3. PHYSICS OF THE BINARY EVOLUTION

The relative contributions of the three mechanisms considered
in the previous section are set by the typical lengthscales below
which they become effective. As stated before, cusp erosion
becomes effective at a0. At this point, Hb and Kb start to
dominate the MBHB evolution.

On the other hand, scattering of unbound stars becomes fully
effective at the hardening radius ah defined by Equation (19):

ah ≈ 1

4(3 − γ )

(
q

1 + q

)(2−γ )/(3−γ )

a0

≈ 0.2 pc M
1/2
6

(
q

1 + q

)
. (19)

We see that ah = (1/4)a0 independently of the mass ratio for
γ = 2, and in general, with decreasing γ , the ratio ah/a0
becomes smaller and q dependent. As the binary shrinks,
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Figure 1. Relevant lengthscales in the binary hardening problem as a function
of the binary mass ratio for two different absolute values of the binary mass
M = 105 M� (thick lines) and M = 109 M� (thin lines). For each set of
curves, from left to right, we plot rinf , a0, ah, and aGW (for a circular binary,
i.e., assuming F (e) = 1, see Equation (11)), as labeled in the figure. The cusp
slope is fixed to γ = 1.5.

the central cusp is depleted and the scattering of unbound
stars refilling the binary loss cone (i.e., the family of stellar
orbits intersecting the binary semimajor axis, see the next
section) becomes dominant. In this second stage, occurring at
approximately 0.1a0 the binary evolution is determined by Hu
and Ku.

Gravitational radiation will eventually take over at aGW,
driving the binary to the final coalescence. aGW can be derived
by imposing da/dt |u = da/dt |GW; rearranging and dividing by
ah we find

aGW = 4

[
128π (3 − γ )F (e)

5H

]1/5
σ

c
q−4/5(1 + q)3/5ah

≈ 0.00027 pc (3 − γ )1/5F (e)1/5M
3/4
6

q1/5

(1 + q)2/5
, (20)

where F (e) is defined by Equation (11), and we again used the
M–σ relation to write the last approximation. Figure 1 highlights
the behavior of the lengthscales of the system (rinf, a0, ah, aGW)
as a function of q for two selected values of M and γ = 1.5. It is
easy to see that, in general, aGW 
 ah. For example, assuming
circular binaries with q = 1, H = 15, and σ = 100 km s−1

(or M = 4 × 106 M�, according to the M–σ ) gives aGW/ah ≈
2 × 10−3. aGW can approach ah if the mass ratio is extreme
(q ∼ 10−3) and the velocity dispersion is very large (e.g., if
the binary is massive; σ > 300 km s−1 or M > 109 M�), as
shown by the set of thin lines in Figure 1. In general, Figure 1
clearly shows that there are three well-defined zones where one
single shrinking mechanism is dominant among the others and
we have

aGW < ah < a0 < rinf . (21)

3.1. H and K Formalism in the Loss-cone Framework

It is instructive at this point to frame the hardening rate
given by Equation (8) in the context of loss-cone refilling
theory (Frank & Rees 1976; Lightman & Shapiro 1977; Cohn

& Kulsrud 1978). After the binary has depleted all the stars
intersecting its orbit (formally defining what is called the
“binary loss cone” of the stellar distribution function, see
Milosavljevic & Merritt 2003 for a comprehensive review), its
further hardening depends on the rate Γ at which such orbits (i.e.,
the loss cone) are refilled. Loss-cone refilling can proceed by
diffusion of stars either in energy (ε∗) or in angular momentum
(j∗). In general, stellar encounters are much more efficient in
changing the star angular momentum, and diffusion in the j∗
space is the relevant process. The loss-cone refilling depends
on the average Δj∗ experienced by a star on an almost radial
orbit during one orbital period. If this change is larger than the
size of the binary loss cone in the angular momentum space,
jlc ∼ √

2GMa, then stars are easily scattered back and forth
into the loss cone and the loss cone is filled. In this regime, the
supply rate of stars from a given distance to the binary r is given
by Lightman & Shapiro (1977) and Perets & Alexander (2008):

dΓf

d log r
≈ a

r

N∗(< r)

P (r)
. (22)

Here, P (r) is the typical period of a star on an almost radial orbit
coming from a distance r and N∗(<r) is the number of stars
enclosed in a sphere of radius r around the MBHB. Let us focus
on stars coming from r > rinf . Assuming that an isothermal
sphere N∗(<r) = (M/m∗)(r/rinf) and that the typical period of
a star on a radial orbit is P (r) ∼ r/σ , integrating Equation (22)
from rinf to ∞ and using Equation (2), we get

Γf ≈ 2π
M

m∗

Gρinfa

σ
. (23)

Let us contrast this result with Equation (8). In the Quinlan
formulation, the binary is embedded in a homogeneous stellar
field with density ρ. The hardening rate H is then derived writing
the interaction rate as a flux of stars through the binary cross
section, namely

ΓQ = ρ

m∗
Σv, (24)

where ρ/m∗ is the number density of field stars, v their velocity
at infinity (i.e., far from the binary), and Σ the binary cross
section. If b is the star impact parameter at infinity and if
we assume the encounter to be relevant only for b < bmax,
then Σ = πb2

max. Relating b to the maximum approach x to
the binary via gravitational focusing (b2 = 2GMx/v2) and
replacing xmax = a (stars have to cross the binary semimajor
axis to exchange energy and angular momentum efficiently), we
get

ΓQ = 2π
M

m∗

Gρa

v
. (25)

By comparing Equations (23) and (25), if we identify the
intruder velocity at infinity v with the dispersion velocity in the
isothermal sphere σ , we see that our Hu and Ku prescriptions
for the scattering of unbound stars correspond to considering
the loss cone always full at rinf .

3.2. Loss-cone Refilling

By normalizing Hu and Ku to σ and ρinf , our model implicitly
assumes that the loss cone is always full at r > rinf (i.e., in the
so-called pinhole regime) and empty for r < rinf (i.e., in the so-
called diffusive regime, Cohn & Kulsrud 1978). The status of the
loss cone then enters as a parameter in our formulation, set by
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Figure 2. MBHB evolutionary tracks produced by our model by assuming γ = 1.5 and e0 = 0.1. Left plot: in each of the four pairs of panels, we plot the eccentricity
(top) and semimajor axis (bottom) evolution as a function of time. Different panels refer to different values of q, as marked by the inset labels. Different linestyles
correspond to different binary masses: M = 105 M� (solid), 106 M� (dotted), 107 M� (short-dashed), 108 M� (long-dashed), and 109 M� (dotted-dashed). Right
plot: corresponding binary eccentricity growth rate K (top panels in each of the four sectors) and hardening rate H (bottom panels in each of the four sectors), as a
factor of the binary separation normalized to a0. Linestyles as in the left plot.

our choice of normalizing the system to ρinf . The issue of what is
the physical mechanism that keeps the loss cone full at r > rinf is
not addressed in this paper. We will only briefly discuss here the
plausibility of such a scenario. After the loss cone is depleted,
in the absence of any other physical mechanism, two-body
relaxation (Binney & Tremaine 2008) sets the timescale for loss-
cone refilling. This is usually longer than the Hubble times in
real galaxies (Merritt & Szell 2006), and under this assumption,
the loss cone is, in general, in the diffusive regime way beyond
rinf . However, in more realistic situations, a myriad of other
physical factors play a substantial role, shortening the loss-
cone refilling timescale. It has been shown that axisymmetry
and in particular triaxiality (Yu 2002; Merritt & Poon 2004;
Berczik et al. 2006) are very effective in repopulating the loss
cone, driving stars on chaotic and centrophilic orbits toward
the black hole. Moreover, the matter distribution in stellar
bulges is far from being smooth. Inhomogeneous concentrations
of matter, such as massive star clusters or giant molecular
clouds (the so-called massive perturbers), have been proven
efficient in perturbing stellar orbits, significantly shortening
the loss-cone refilling timescale (Perets & Alexander 2008).
We should note that these mechanisms are likely to operate
efficiently for r > rinf . Inside the MBH influence radius,
indeed, the presence of a central massive object dominating the
gravitational potential tends to force the stellar system toward
a more spherical symmetry (and the triaxial structure may be
erased in the central region, see, e.g., Merritt & Quinlan 1998).
For the same reason, massive perturbers tend to be stripped
by the MBH tidal field and would hardly survive in this region.
Also, the two-body relaxation timescale increases for decreasing
r if the potential is dominated by a central object, because
the velocity dispersion of the system, which in this region is
the Keplerian velocity around the MBH, scales as r−1/2, and the
relaxation timescale has a strong dependence on the velocity
dispersion (Binney & Tremaine 2008). Moreover, inside rinf ,
the ejection of stars bound in the cusp depletes those orbits
with energy ε∗ < GM/(2rinf), and since ε∗ diffusion is much
less efficient than j∗ diffusion the contribution to the loss-cone

refilling coming from r < rinf should be, in general, negligible.
It is then reasonable to assume a full loss cone for r > rinf ,
and otherwise empty. We shall test the implication of such a
hypothesis by varying the normalization used in Equations (15)
and (16). We therefore test models normalized to 10ρinf and
0.1ρinf , which correspond to consider the loss cone full only
for r > 101/2rinf and down to r = 10−(3−γ )/2rinf (where γ
is the slope of the inner cusp as defined by Equation (1)),
respectively. The consideration of smaller values of the relevant
density assumed for the diffusion process (0.1ρinf) also serves
as a test for the robustness of our results against different
outer density profiles. Although our refilling rate is derived for
an isothermal distribution, which reasonably fits the measured
density profiles of several nearby galaxies and of the Milky
Way (Lauer et al. 1995; Dehnen & Binney 1998), many other
galaxies show shallower outer density profiles (Ferrarese et al.
1994; Gebhardt et al. 1996; Rest et al. 2001) and the bulk of
stars participating to the refilling mechanism may come from
slightly larger radii, where the density is lower. We will show
(Section 5.2 and Figure 7) that this has a minor impact on our
results, changing the eccentricity of the system in the observable
GW bands by a factor �2.

4. EVOLUTIONARY TRACKS FOR MBHBs

In this section, we present the MBHB evolutionary tracks
produced by our hybrid model. As discussed in the previous
section, the binary goes through three subsequent phases, which
are in general distinct. In the discussion, we will simply identify
them as the bound phase (erosion of the bound cusp), unbound
phase (scattering of unbound stars refilling the loss cone), and
GW phase (where GW emission becomes more efficient than the
unbound scattering). Each phase is characterized by its proper Hi
and Ki. In the following compilation of plots, we will present the
evolution of the global rates H = ∑

i Hi and K = ∑
i Ki ; it will

be clear by looking at the figures which particular mechanism
dominates in each region of the binary evolution. Each of the
Figures 2, 3, and 4 shows the quantities e(t), a/a0(t), K(a/a0),
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Figure 3. Same as Figure 2, but now assuming M = 106 M� and varying the initial eccentricity e0. In each individual panel, different linestyles are for e0 = 0.01
(solid), 0.1 (dotted), 0.3 (short-dashed), 0.6 (long-dashed), and 0.9 (dotted-dashed). The inner cusp slope is fixed to γ = 1.5.

Figure 4. Same as Figure 2, but now assuming M = 106 M�, e0 = 0.1 and varying the cusp slope. Different linestyles are for γ = 1 (solid), 1.5 (dashed), and 2
(dotted-dashed).

and H (a/a0) for different q, as labeled in each panel. In the
discussion, we will simply refer to the panels as e, a, H, and K
panels.

4.1. Dependence on the Model Parameters

The evolution of the system depends on the chosen values
for the parameters M1, q, e0, and γ . Such dependencies are
extensively illustrated in Figures 2, 3, and 4. Let us consider
each parameter separately, by starting with those defining the
masses of the system: M1 and q.

The evolution of the MBHB as a function of M1 and for
different q is plotted in Figure 2, assuming γ = 1.5 and ei = 0.1.
Since our treatment of stellar scattering is scale free, the value of
M1 affects the system evolution only, by setting the relative gap
between ah and aGW, which has a mild dependence on M1. By
substituting the M–σ relation in Equation (20), we have in fact
ah/aGW ∝ M−1/4, i.e., the gap is larger for lighter systems. This
means that, in general, lighter binaries become more eccentric,
because, after the bound scattering phase (which is basically

scale free by construction) they evolve under the effect of
unbound scattering for a larger portion of their dynamical range,
as it becomes clear by looking at the K panels of Figure 2. For
equal mass binaries with e0 = 0.1, the eccentricity grows only
to 0.15 for M1 = 109 M� and up to 0.3 for M1 = 105 M�. The
mass dependence of the eccentricity growth is also evident for
binaries with q = 1/9, while it tends to disappear for lower
mass ratios where the eccentricity evolution is dominated by the
bound phase. The q dependence of the eccentricity evolution is
emphasized by the four different quadrants of Figures 2, 3, and 4.
Let us consider again Figure 2. The main result here is that the
eccentricity growth in the bound phase, at least when e0 is small,
is in general much larger for lower values of q, as explained in
detail in Section 4.1 of SHM08. This is nicely shown by the
K panels: as q decreases from 1 to 1/729, the peak in the K
rate increases from ∼0.05 to ∼0.6. The value of q also sets the
relative weight of the bound and of the unbound phases in the
hardening process. Although a0/ah is only mildly dependent on
q (depending on the cusp slope γ , see Equation (19)), ah/aGW
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is a strong function of q (see Equation (20)) and it can be even
less than one for high M1 and small q (as shown in Figure 1).
Therefore, as q decreases, the eccentricity growth is dominated
by the bound phase. For e0 = 0.1, the maximum eccentricity
reached by the binary at the end of the stellar driven phase
increases from ∼0.2 for q = 1 to ∼0.9 for q = 1/729. The
trends with M1 and q presented in Figure 2 are preserved when
changing γ and e0.

The dependence of the MBHB evolution on e0 is studied in
Figure 3, where we fixed M1 = 106 M� and γ = 1.5. The binary
eccentricity, in general, tends to increase in the scattering phase
regardless of the value of e0. When e0 = 0.01, binaries with
q > 0.1 experience only a mild increase in their eccentricity, up
to a value ∼0.2, while binaries with smaller q can reach e > 0.8.
Binaries with e0 > 0.3 tend to reach eccentricities larger than
0.9 regardless of q, M1, and γ . The evolution of H is basically
unaffected by the eccentricity of the system in the bound and
unbound phases (in general the average energy subtracted to the
binary by the star is not affected by the binary eccentricity, see
e.g., SHM06); while K is interestingly larger for higher e0 when
q is large, and vice versa, it decreases with increasing e0 for
small q.

The impact of the assumed slope γ of the density profile is
highlighted in Figure 4 for binaries with M1 = 106 M� and
e0 = 0.1. In general, MBHBs in steeper cusps evolve faster,
but to a lower maximum eccentricity, during the scattering
phase. As explained in SHM08 this is because, in the scattering
process, stars with a∗ > a tend to increase e while stars with
a∗ < a tend to decrease it, and the relative weight of the former
is larger in shallower cusps. Moreover, by increasing γ , the
dynamical range covered by the scattering process is much
shorter (especially for low q), because the a0–aGW gap is smaller,
and there is less room for significant eccentricity growth. The K
rates are mildly affected by γ , with a higher value of γ resulting
in smaller K, as explained before. Also note that the absolute
value of H in the bound phase increases a lot with γ . This is
because the value of a0 is much smaller for high γ , and the
shrinkage in the bound phase is accordingly much faster. In
general, for any value of γ , the eccentricity reached at the end
of the star scattering phase is >0.7 for q < 0.1, while, again,
equal mass binaries experience a less pronounced increase in
the eccentricity.

Figures 2, 3, and 4 allow also a detailed study of the
evolutionary timescale as a function of the system parameters.
Since the bound phase is usually much faster than the unbound
one, the evolution timescale of the system is set by a/ȧ =
σ/(GρHa) ∝ 1/a. The coalescence timescale is then set by
the bound-GW transition occurring at aGW. By substituting aGW
given by Equation (20) in the timescale definition above, we get
for the coalescence timescale

τc ∝ F (e)−1/5(3 − γ )9/5q−1/5(1 + q)2/5. (26)

Firstly, we note that τc is independent of the absolute value
of the MBHB mass, in agreement with Figure 2. This is a
consequence of normalizing the stellar distribution outside rinf
to an isothermal sphere obeying the M–σ relation. τc also has a
very mild dependence on q, increasing by a factor of ∼3 when
the mass ratio drops from q = 1 to q = 1/729, as shown
by the correspondent panels in Figure 2. High values of the
maximum eccentricity accelerate the coalescence by a factor
F (e)1/5, which is ∼5 for e = 0.9; this effect is clear in the (a)
and (e) panels of Figure 3. The impact of γ is also quite mild,
in spite of the 9/5 exponent, and it modifies τc by a factor of

∼3–4 (see (a) and (e) panels in Figure 4). In general, we find
107 yr < τc < few × 108 yr.

4.2. Comparison with Numerical Works

The evolution of MBHBs in stellar environments has been
tackled by several authors by means of full N-body simula-
tions (Milosavljevic & Merritt 2001; Hemsendorf et al. 2002;
Aarseth 2003; Makino & Funato 2004; Baumgardt et al. 2006;
Matsubayashi et al. 2007; Merritt et al. 2007; Berentzen et al.
2009; Amaro-Seoane et al. 2009, 2010). However, the limited
number of particles (N < 106) in such simulations results in
very noisy behavior for the binary eccentricity, and it is difficult
to draw conclusions about the general trends behind the numer-
ical noise. We can compare our results with N-body simulations
carried out in two regimes: q = 1 (equal mass inspirals) and
q = 1/1000 (intermediate MBH–MBH inspiral). Milosavljevic
& Merritt (2001) carried out numerical integration of equal
MBHBs embedded in two merging isothermal cusps (γ = 2).
Starting with circular orbits, they find a mild eccentricity in-
crease to a value of �0.2 during the stellar-driven hardening
phase, consistent with our findings. Merritt et al. (2007) con-
sidered equal MBHBs embedded in Dehnen density profiles
(Dehnen 1993) with γ = 1.2 with different initial eccentricities.
Again, they find that circular binaries tend to stay circular, while
eccentric binaries tend to increase their eccentricities in reason-
able agreement with the prediction of scattering experiments,
and, consequently, with the tracks we presented in Figure 3
for the q = 1 case. Simulations carried out by Aarseth (2003)
and Hemsendorf et al. (2002) produce MBHBs with e0 ≈ 0.8
at the moment of pairing, with e subsequently increasing up
to �0.95, again consistent with our findings. Berentzen et al.
(2009) studied the evolution of equal MBHBs in rotating sys-
tems described by a King stellar distribution. They also find
quite eccentric binaries at the moment of pairing (e > 0.4),
and the subsequent evolution leads to eccentricities larger than
0.95 at which point GW emission takes over, again consistent
with our findings. Amaro-Seoane et al. (2009) focused on in-
termediate MBHBs (M ∼ 103 M�) in massive star clusters.
They employ a machinery similar to ours, coupling full N-body
simulations to three-body scattering experiments. Their binaries
have significant eccentricity (∼0.5–0.6) at the moment of pair-
ing, and the predicted range in the LISA band is 0.1 < e < 0.3,
in good agreement with the results shown by the eccentricity
maps in Figure 5 that we will describe in the next section. Sim-
ilar conclusions are reported by Amaro-Seoane et al. (2010).
On the small q side, simulations were performed by Baumgardt
et al. (2006) and Matsubayashi et al. (2007), assuming a stellar
density profile γ = 1.75. When properly rescaled, the eccen-
tricity increase found in both papers agrees surprisingly well
with our predictions based on the hybrid cusp erosion model.
Unfortunately, we did not find any mention in the N-body lit-
erature about the eccentricity evolution for intermediate values
of q (0.01 < q < 0.1), and it would be useful to compare our
results with N-body simulations in this intermediate range. We
find, however, the overall good agreement, at least in the trends,
shown at the two extremes of the mass ratio range comforting.

5. ECCENTRICITY IN THE LISA AND PTA WINDOWS

One of the main goals of the present study is to draw sensible
predictions for the eccentricity of MBHBs emitting GWs in
the LISA and in the PTA frequency ranges. So far, most of the
work related to source modeling, signal analysis and parameter
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Figure 5. Contour plots of e computed at fLISA = 5 × 10−5 Hz, in the (M1, q) plane for selected model parameters, as labeled in each panel. Note that we excluded
the bottom-left region, corresponding to systems for which M2 < 100 M�.

(A color version of this figure is available in the online journal.)

estimation relied on the assumption of circular orbits. This
seems reasonable because GW emission is very efficient in
dampening the binary eccentricity, and since GW detectors
(LISA in particular) are sensitive to the very end of the MBHB
inspiral, sources are assumed to be circular when they enter
the observable band. However, the level of residual eccentricity
critically depends on how large e is at the transition between the
stellar hardening and the GW phases. In the scenario proposed
here, such values can easily be larger than 0.9, implying non-
negligible residual eccentricities in the frequency bands to be
probed by future GW detectors.

5.1. Eccentricity Maps

To convert our evolutionary track into predictions for GW
observations, we proceed as follows. For each MBHB (uniquely
defined by M1, q, γ , and e0), we convert the a/a0(t) tracks into
a(t) tracks, and then we compute fk(t), the orbital frequency
of the binary, simply by assuming Kepler’s law. Having e(t)
and fk(t), we then construct the e(fk) evolution from the
moment of pairing to the final coalescence. We then select two
frequencies appropriate for LISA and PTA campaigns, fLISA and
fPTA, respectively, and evaluate e|fLISA

and e|fPTA . Remember
that for circular binaries, gravitational radiation is emitted at
fGW = 2fk . We pick fLISA = 5 × 10−5 Hz (corresponding to
fGW = 10−4 Hz, which is approximately the lower bound of
the LISA band); on the other hand, we use fPTA = 5 × 10−9 Hz
(corresponding to fGW = 10−8 Hz, which is approximately
the frequency at which a 5-to-10 yr PTA campaign will be most

sensitive to). The results are shown in Figures 5 and 6 as contour
plots e|fLISA

(M1, q) and e|fPTA (M1, q), for selected values of γ
and e0, as labeled in the figures. Let us start discussing the LISA
case. First, we limited M1 to an upper value of 107 M�, since the
inspiral of binaries with higher masses will fall outside the LISA
band.1 We also excluded from our contour plots systems with
M2 < 100 M�, for the reasons discussed in Section 2.4. The
general trend is that lighter unequal mass binaries tend to have
larger e when they enter the relevant frequency range. The mass
trend is easily explained by the fact that our treatment is largely
mass invariant, but the absolute frequency of the system is not.
Same stages of the MBHB evolution correspond to progressively
lower frequencies as M1 increases, and since we are in the GW-
dominated phase (and thus de/df < 0), more massive systems
have lower eccentricities at a given frequency. Binaries with
smaller q are in general more eccentric because the eccentricity
growth they experience in the stellar scattering phase is larger.
If binaries are approximately circular at the moment of pairing
(e0 = 0.01), then the maximum eccentricity in the LISA band is
∼0.2 when M1 ∼ 104 M� and q � 0.1, and the general trend is
largely independent on γ . This is the result of two competitive
effects: milder cusps lead to larger values of e, but in this case
GW takes over earlier (because the timescale of the three-body

1 The higher frequency signal coming from the coalescence and ringdown as
well as higher harmonic corrections to the late inspiral phase (Porter &
Cornish 2008) are likely to push the detectable mass limit close to 108 M�;
however, the imprint of any residual eccentricity would be very small and hard
to observe for such extreme masses.
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Figure 6. Same as Figure 5, but now for fPTA = 5 × 10−9 Hz. Note the different scale in the x-axis, dictated by the fact that PTAs are sensitive to more massive
systems emitting at lower frequencies.

(A color version of this figure is available in the online journal.)

scattering evolution is set by the density at rinf which is lower
for milder central cusps, being rinf itself larger), and it has more
time to circularize the orbit before the binary get to fLISA. If
binaries are significantly eccentric at the moment of pairing
(e0 = 0.6 as a study case), then the q dependence in the contour
plots almost disappear, because the eccentricity growth in the
scattering phase is very efficient irrespective of q when e0 is
large. In this case, light MBHBs (M1 < 104) may reach fLISA
with eccentricities up to ∼0.5.

The situation is even more “dramatic” for PTA observations.
PTAs are sensitive to much larger masses (M1 > 107 M�)
emitting at much lower frequencies (f ≈ 10−8 Hz). Systems
are, in general, caught far from coalescence (the typical time
to coalescence is ∼104 yr, Sesana & Vecchio 2010) and they
did not have much time to circularize under the effect of GW
emission. Because of this, even if binaries were circular at
the moment of pairing, eccentricities can be as high as 0.7
in the PTA band, with the same trend observed for the LISA
case (i.e., lighter binaries with smaller q are more eccentric).
If e0 = 0.6, then all the systems with M1 < 109 M� are
expected to have e > 0.5. Again, the results are only mildly
dependent on γ . Note that frequencies are computed in the
reference frame of the source, the actual observed frequency has
then to be appropriately redshifted by a factor (1 + z) according
to the redshift of the emitting system. This means that for high
redshift sources, an observed frequency of 10−4 Hz corresponds
to a higher intrinsic frequency. High redshift sources may then
have milder eccentricities in the observable band, which may
be relevant for LISA sources (whereas typical PTA sources are
at z < 1).

5.2. The Impact of the Chosen Normalization

We want to check at this point how the M–σ normalization
and the tuning of the loss-cone refilling efficiency to rinf impact
on our results. Selected cases of alternative models are presented
in Figure 7. The left-hand plot is representative of LISA sources.
We see that changing σ merely shifts the timescale of the
binary evolution. For larger σ , the system is more compact,
the timescale for three-body scattering is shorter, GW emission
takes over later, and consequently the residual e at fLISA is
larger. However, as shown by the e(fk) tracks, this is at most a
factor-of-2 effect. Changing the normalization ρ in the loss-cone
refilling process has instead a major impact on the evolutionary
timescale and on the eccentricity evolution of the system, but
still the residual eccentricity at fLISA is basically unaffected
when e0 = 0.01, and it changes by at most a factor of 3
in the e0 = 0.6 case. In the right-hand plot, we consider
instead the typical PTA source. All the considerations made
for the LISA case still hold, and in the relevant frequency range
3 × 10−9 Hz < f < 3 × 10−8 Hz, the expected e changes by at
most a factor of 2. We therefore consider our results quite robust
irrespective of the assumed normalizations.

5.3. Eccentricity Distributions for Selected MBHB
Population Models

As a final step, we quantify the eccentricity distribution of GW
sources in the relevant frequency range resulting by applying our
eccentricity evolution scheme to standard MBHB population
models.
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Figure 7. Impact on the M–σ assumption and on the ρ normalization on the evolution of the binary. Left plot: representative LISA source, with system parameter
highlighted at the top. Right plot: typical PTA sources, with system parameters highlighted at the top. In each plot, in the left panels we considered three different
normalizations of the stellar velocity dispersion: σ = σ̂ (i.e., the value predicted by the M–σ relation, solid lines), 1.3σ̂ (short-dashed lines), and 0.7σ̂ (long-dashed
lines); in the right panel we stick the efficiency of loss-cone refilling to ρinf (solid lines), 10ρinf (short-dashed lines), and 0.1ρinf (long-dashed lines). Top and middle
panels represent the evolution of e and a against t, respectively; bottom panels represent e(fk). In these latter panels, fLISA and the relevant frequency PTA range
3 × 10−9 Hz < f < 3 × 10−8 Hz are highlighted.

For the LISA case, we use two of the models utilized by
the LISA parameter estimation task force (Arun et al. 2009):
in the first case seeds are light (M � 100 M�, VHM model;
Volonteri et al. 2003), being the remnant of the first POPIII star
explosions (Madau & Rees 2001); in the second case already
quite heavy (M � 104 M�) seed BHs form by direct collapse of
massive protogalactic discs (BVR model; Begelman et al. 2006).
We ran 50 Monte Carlo realizations of each model, producing
50 catalogs of coalescing binaries over a period of three
years. We then estimate the signal-to-noise ratio (S/N) of each
binary in the LISA detector by assuming circular inspiral and
computing the waveform to the second post-Newtonian order.
We then consider only those events resulting in an S/N > 8
in the detector, and we compute the expected eccentricity
distribution at fLISA. Results are shown in Figure 8. In the
upper and in the middle panels, we plot the contour plots of
the differential distribution of GW sources as a function of
M1 and q, d2N/dM1dq, averaged over the 50 Monte Carlo
realizations, superposed to the contour plots for e|fLISA

(M1, q).
The two observed MBHB populations are extremely different:
in the VHM model, the bulk of sources have M ∼ 104 M� with
q ∼ 0.1; while in the BVR model, most of the sources have
M > 104 M� and q ≈ 1. The resulting eccentricity distributions
are plotted in the lower panel, where we plot the probability
density function p(e) against e for the observed population.
When e0 = 0.01 (binaries approximately circular), eccentricity
is expected to be <10−2 in the BVR model, with a peak at about
2 × 10−3, but a broad eccentricity spectrum covering the range
10−3–0.2 is expected in the VHM case. In this latter scenario,
in fact, sources are on average less massive and with low q, a
condition that maximizes the eccentricity increase during the
stellar scattering phase. If e0 is already large (0.6 in our study
case), then the observed eccentricity at fLISA is peaked at ∼0.1
for the BVR case and at ∼0.4 in the VHM case.

In exploring the consequences for PTA observations, we
adopt the standard Tu-SA population model employed by Sesana

et al. (2009), where merging galaxies are populated by MBHs
according to the M − Mbulge in the form given by Tundo et al.
(2007) and accretion is triggered onto the more MBH before
the final coalescence. The reader is referred to Sesana et al.
(2009) for details. We ran 50 Monte Carlo realizations of the
model (assuming binaries in circular orbit) and we pick only
the individually resolvable sources generating a timing residual
larger than 1 ns. Again, the obtained differential distribution of
the individually resolvable sources, d2N/dM1dq, averaged over
the 50 Monte Carlo realizations, is superposed to the contour
plots for e|PTA(M1, q) in Figure 9. The source distribution is
strongly peaked around M1 = 109 M� and q = 0.1, with a
long tail extending to q = 10−3. If binaries are approximately
circular at the moment of pairing (e0 = 0.01), then the expected
p(e) is basically flat in the range [0.03, 0.3], while for e0 = 0.6,
p(e) has a sharp peak in the range [0.5, 0.7], highlighting the
possible significant impact of eccentricity for PTA observations.

6. DISCUSSION AND CONCLUSIONS

We studied the semimajor axis and eccentricity evolution
of MBHBs in stellar environments by coupling the results of
numerical three-body scattering experiments to an analytical
framework describing the evolution of the stellar distribution
and the supply of stars to the binary loss cone. Our treatment
takes into account the scattering of bound stars determining
the erosion of the stellar cusp bound to the binary, and the
subsequent scattering of unbound stars fed to the binary loss
cone by relaxation processes. We do not address the nature of
the relaxation processes leading to loss-cone replenishment, but
we treat the loss-cone refilling efficiency as a parameter of the
model. Eventually, GW emission takes over, leading to the final
coalescence of the system.

Our main finding is that three-body scattering induces a
significant increase in the MBHB eccentricity, which is not
efficiently washed out by GW-induced circularization before
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Figure 8. Evaluation of the eccentricity distribution of MBHBs observed by
LISA. Top and middle panels: contour plots of the differential distribution of ob-
servable sources d2N/dM1dq (gray scale, contour normalization unnecessary
for illustrative purposes), superimposed to the contour plots of e|fLISA (color
scale; γ = 1.5, e0 = 0.01) in the (M1, q) plane. Inset labels refer to the e
contours. Top panel is for the VHM model, middle panel is for the BVR model.
Bottom panel: probability density function p(e) corresponding to the contour
plot convolution; solid histograms are for e0 = 0.01 and dashed histograms are
for e0 = 0.6.

(A color version of this figure is available in the online journal.)

the system enter the LISA or the PTA bands. The eccentricity
growth is in general larger for binaries with smaller mass ratios,
and at the stellar scattering-GW transition can easily be higher
than 0.9. Equal mass binaries in general experience a milder
eccentricity growth when the initial eccentricity is close to
zero. The eccentricity growth is more prominent for systems
characterized by smaller masses. Binaries with significant initial

Figure 9. Same as Figure 8, but for PTA observations. In the top panel, the
differential distribution of observable sources d2N/dM1dq is now superposed
to e|fPTA , again assuming γ = 1.5 and e0 = 0.01. The resulting p(e) is plotted
in the bottom panel assuming e0 = 0.01 (solid histogram) and e0 = 0.6 (dashed
histogram).

(A color version of this figure is available in the online journal.)

eccentricity e0 > 0.3 end up in very eccentric orbits (e > 0.9)
regardless of the other system parameters. The impact of the
cusp slope can be significant, with shallower cusps leading to
higher maximal values of e, as explained in SHM08. In general,
the eccentricity growth is dominated by the bound scattering
phase for binaries with q < 0.1 and by the unbound scattering
phase for binaries with larger mass ratios. When compared to
the sparse results of full N-body simulations found in literature,
the results of our models are in reasonable agreement with those
of numerical studies.

The implications for GW observations are relevant. When
binaries are circular at the moment of pairing, their eccentricity
when they enter the LISA band is in the range 10−5–0.2, and it
is larger for low-mass unequal binaries. If binaries are already
eccentric at the moment of pairing, these figures shift to the
range 10−3–0.5, with lower mass binaries leading to higher
eccentricities and only a mild dependence on the mass ratio.
We emphasize once again that in our treatment, the total mass
of the system sets the typical scale of the problem; because
of this, the residual eccentricity in the LISA band is larger for
lighter binaries. This is important because LISA will be mostly
sensitive to low-mass MBHBs in the range 104–105 M�. In
the PTA windows, the implications are even stronger. Initially,
circular systems end up with eccentricities in the range 10−3–0.8
at a frequency of 10−8 Hz (relevant to PTA observations), and
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for significant initial eccentricity, binaries with M1 < 10−9 M�
always have e > 0.5 in the PTA band. The trend with the mass
and the mass ratio are the same as for their LISA counterparts. All
the results are basically independent of the cusp slope γ and are
only mildly dependent on the normalization of the stellar density
distribution and on the efficiency of the loss-cone refilling.

Once applied to standard MBHB population models, these
results predict eccentricities in the range 10−3–0.2 (depending
on the adopted seed formation model) for observable LISA
sources, and a broad flat e distribution in the interval 0.03–0.3
for sources individually resolvable by PTAs. High initial values
of e naturally lead to more eccentric systems.

Our results are of particular interest for the GW community,
showing that a proper treatment of the eccentricity might be
crucial in the challenge of GW detection. Mock data challenge
initiatives like the LISA mock data challenge have so far
implemented circular MBHBs only, and consequently, the
ability of data analysis and parameter estimation algorithms
has been proven only in this situation. The typical eccentricity
values found in the LISA band (<0.2 for systems in circular orbit
at the moment of pairing) allow for a perturbative approach
to the problem of constructing a trustworthy post-Newtonian
waveform, such as the one recently employed by Yunes et al.
(2009). In light of the results presented here, further work in
this direction would be extremely valuable. The addition of
a non-zero eccentricity would affect the waveform by adding
significant amplitude modulation and phase precession, which
in turn would affect our detection and parameter estimation
ability (work in this direction is ongoing; Porter & Sesana
2010). Also in the PTA source modeling field, the assumption
of circular orbits has been widely used so far, with the notable
exception of Enoki & Nagashima (2007). Further work on
eccentric source modeling is needed, in order to address properly
how an eccentric population of MBHB would affect the overall
level of the background, the statistics of individually resolvable
sources, the detailed shape of the residuals, and our ability to
extract signals and estimate source parameters.

We finally stress that our model is oversimplified, relying only
on stellar dynamics without taking into account the possible
impact of the presence of large amounts of gas surrounding
the binary. Gas dynamics may be particularly relevant to LISA
sources, which are expected to be found in mergers of small
galaxies at high redshift (Sesana et al. 2007), where the mass
content of galaxies is likely to be dominated by gas (see, e.g.,
Cole et al. 2000). In this view, our model should provide a more
trustworthy description of PTA sources which consist instead
of massive binaries at low redshift (Sesana et al. 2009), likely
hosted by gas-poorer galaxies. Nonetheless, we should bear
in mind that recent studies also found significant eccentricity
increase in MBHBs driven by circumbinary disks (Armitage &
Natarajan 2005; Cuadra et al. 2009). Moreover, gas dynamics
may not be efficient enough to drive the final coalescence of
MBHB systems (Lodato et al. 2009), and also for low-mass
sources at high redshift, stellar dynamics may provide a viable
alternative path through the final coalescence. We hope that
our exploratory study will stimulate further research on the
subject, which is of critical importance for a comprehensive
modeling of MBHB evolution and for their future observation
in the upcoming gravitational radiation windows.

I am grateful to E. Berti, M. Dotti, and E. Porter for their
comments and suggestions and to Frank Ohme for the invaluable
help in constructing the contour plots shown in the paper.
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