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Abstract
In this paper we study the future asymptotics of spatially homogeneous Bianchi
type II cosmologies with a tilted perfect fluid with a linear equation of state.
By means of Hamiltonian methods we first find a monotone function for a
special tilted case, which subsequently allows us to construct a new set of
monotone functions for the general tilted type II cosmologies. In the context
of a new partially gauge-invariant dynamical system, this then leads to a proof
for a theorem that for the first time gives a complete description of the future
asymptotic states of the general tilted Bianchi type II models. The generality
of our arguments suggests how one can produce monotone functions that are
useful for determining the asymptotics of other tilted perfect fluid cosmologies,
as well as for other sources.

PACS numbers: 04.20.−q, 04.20.Ha, 98.80.Jk

1. Introduction

Spatially homogeneous anisotropic perfect fluid models have been successfully studied during
the last decades using a dynamical system approach. The book [1] summarizes most
of the presently known results about the so-called non-tilted perfect fluid cosmologies, while
the more general ‘tilted’ perfect fluid models have been primarily investigated more recently
[2–15].

In all of the papers investigating tilted models, the analysis has relied on techniques
from dynamical system theory. In particular, most of the results concern the identification
of fixed points and a subsequent linear stability analysis of these points. In order to get a
grip on the global aspects of the solutions, an effective tool is the use of monotone functions.
Unfortunately such functions are hard to find, and in most of the previous works on tilted
models the monotone functions were obtained by brute force, trial and error and luck. It
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would therefore be desirable to have a more systematic method to seek and find monotone
functions.

For non-tilted spatially homogeneous perfect fluid models, virtually all known results
crucially rely on the existence of conserved quantities and monotone functions. These have
turned out to be connected to the existence of certain symmetries, intimately associated with
conservation laws such as the preservation of the number of particles in a fluid element, and
the so-called scale-automorphism group [16]. Although not necessary, the symmetries and
associated structures were, to a large extent, found by means of Hamiltonian techniques, see
chapter 10 in [1] and [16]. One aim of this paper is to illustrate that one can generalize
methods that previously have been applied to non-tilted models to tilted ones. To do so, we
will consider an example—the tilted Bianchi type II models.

The tilted perfect fluid Bianchi type II models have been analyzed before as a dynamical
system in [6]. In that paper, as well as in the present one, the perfect fluid was assumed to
obey a linear equation of state characterized by p̃/ρ̃ = w = const, where p̃ and ρ̃ are the
pressure and energy density with respect to the rest frame of the fluid, respectively; special
cases of interest are dust, w = 0, radiation, w = 1

3 , a stiff fluid, w = 1, while a cosmological
constant � can formally be regarded as a perfect fluid with w = −1. In this paper, however,
we will consider the range −1 < w < 1.

In [6] the fixed points of the system were found and their linear stability properties were
studied. It was observed that the future stability of the fixed points depended on the equation of
state parameter w, but that a future stable fixed point existed for all w in the range −1 < w < 1
under consideration. On the basis of the linear analysis and numerical computations it was
conjectured that the future linearly stable fixed points were attractors in the full state space,
i.e. that all orbits, except possibly a set of measure zero, approach the stable fixed points
asymptotically toward the future. This conjecture was corroborated by means of monotone
functions for some ranges of w, but the complete picture was not fully substantiated, mainly
because of the lack of a set of sufficiently restrictive monotone functions. In this paper we
generalize methods that previously have been applied to the non-tilted models and find a set
of new monotone functions that are sufficiently restrictive to determine the future asymptotics
of all tilted solutions, thus filling in the missing gaps in the conclusions drawn in [6]. Our
results as regards the general tilted Bianchi type II models are collected in theorem 3.1, and
show that all orbits in the general tilted case approach the stable fixed points, i.e. these fixed
points are not only locally stable but also globally stable. In section 4 we discuss the possible
use of our monotone functions in the context of the initial mixmaster singularity, a much more
formidable and physically interesting problem than the future asymptotics.

The outline of the paper is as follows. In section 2 we give a new partially gauge-
invariant dynamical system for the general tilted Bianchi type II models, derived in appendix
A where we also introduce some of our definitions and the relations needed for producing
monotone functions. Then, based on the structure of monotone functions obtained for more
special models by means of Hamiltonian methods, presented in appendix B, we obtain the new
monotone functions in section 3, which lead to theorem 3.1. Finally, in section 4 we conclude
with a discussion about the possible use of the monotone functions in the context of the initial
oscillatory regime, and the structure of the monotone functions, why they exist, and why one
can hope to expect similar structures in other models.

2. Dynamical system description of tilted Bianchi type II cosmologies

In [17] the so-called conformally Hubble-normalized orthonormal frame equations are given
in full generality. These are in turn specialized to the spatially homogeneous Bianchi case in
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appendix A.3 and then to the presently studied Bianchi type II models with a general tilted
perfect fluid with a linear equation of state in appendix A.4, where we also introduce a new set
of variables, invariant under frame rotations in the 23-plane. This yields the following state
vector and dynamical system.

State vector:

S = (�+, �̄, �̃2, �̌2,�k, v
2), (1)

where we treat the squared quantities �̃2, �̌2, and v2 as variables, but where we have refrained
from giving them new names.

Evolution equations:

�′
+ = −(2 − q)�+ − 3�̌2 + 4�k + 1

2 (1 + w)G−1
+ v2�, (2a)

�̄′ = −(2 − q)�̄ − 2
√

3�̃2 +
√

3�̌2 +
√

3
2 (1 + w)G−1

+ v2�, (2b)

(�̃2)′ = −2(2 − q − 2
√

3�̄)�̃2, (2c)

(�̌2)′ = −2[2 − q − 3�+ +
√

3�̄]�̌2, (2d)

�′
k = 2(q − 4�+)�k, (2e)

(v2)′ = 2G−1
− (1 − v2)[3w − 1 − �+ −

√
3�̄]v2. (2f )

Constraint equation:

f (S) = 4�̌2�k − (1 + w)2G−2
+ v2�2 = 0 . (2g)

The variables �+, �̄, �̃2, �̌2 describe the shear of the congruence normal to the
homogeneous hypersurfaces relative to the overall Hubble expansion, while �k is proportional
to the Hubble-normalized scalar spatial curvature, and v is the speed of the matter relative to
the rest space defined by the homogeneous hypersurfaces. In the above equations, w is the
equation of state parameter, and the density parameter � is given by the Gauss constraint

� = 1 − �2 − �k, (3)

where

�2 = �2
+ + �̄2 + �̃2 + �̌2. (4)

The condition � � 0 in combination with (3) yields 0 � �2
+ + �̄2 + �̃2 + �̌2 + �k � 1. The

deceleration parameter q is given by

q = 2�2 + 1
2G−1

+ [1 + 3w + (1 − w)v2]�, (5)

while

G± = 1 ± wv2; (6)

finally, ′ denotes differentiation with respect to a dimensionless time parameter τ , determined
by dτ = H dt , where t is the clock time along the congruence normal to the spatially
homogeneous hypersurfaces.

We now give a brief description of the invariant subset, see table 1, and fixed points of the
system (2), which is analogous to the analysis given by Hewitt et al [6]. Note that although our
system is invariant under frame rotations in the 23-plane it is not invariant under all rotations.
Hence there exist multiple representations of solutions. For further comments on this, see [6].
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Table 1. Invariant sets of the state space. The last column indicates if a subset is part of the
boundary of the state space of the general tilted Bianchi type II models or if it is an interior subset.

Name Restrictions Dimension Interior/boundary

(i) Non-tilted non-vacuum Bianchi type II v2 = �̌2 = 0 4 Boundary
(ii) Non-tilted non-vacuum Bianchi type I v2 = �k = 0 4 Boundary

(iii) Vacuum Bianchi type II �̌2 = � = 0 4 Boundary
(iv) Vacuum Bianchi type I (Kasner) �k = � = 0 4 Boundary
(v) Extreme tilt v2 = 1 4 Boundary

(vi) Orthogonally transitive Bianchi type II �̃2 = 0 4 Interior

Fixed points:

(i) The flat Friedmann solution, F: −1 < w < 1,

�+ = �̄ = �̃2 = �̌2 = �k = v2 = 0.

(ii) The Collins–Stewart solution [19], CS: − 1
3 < w < 1,

�+ = 1
8 (3w + 1), �̄ = �̃2 = �̌2 = v2 = 0, �k = 3

64 (3w + 1)(1 − w).

(iii) Hewitt’s solution [3], H: 3
7 < w < 1,

�+ = 1

8
(3w + 1), �̄ =

√
3

8
(7w − 3), �̃2 = 0,

�̌2 = 3(1 − w)(11w + 1)(7w − 3)

16(17w − 1)
,

�k = 3(1 − w)(5w + 1)(3w − 1)

4(17w − 1)
, v2 = (3w − 1)(7w − 3)

(11w + 1)(5w + 1)
.

(iv) Hewitt et al’s 1-parameter set of solutions [6]4, HL: w = 5
9 , 0 < b = const < 1,

�+ = 1

3
, �̄ = 1

3
√

3
, �̃2 = 4

27
b, �̌2 = 4(4b + 1)(8 − 3b)

513
,

�k = (2b + 1)(17 − 8b)

171
, v2 = 3(4b + 1)(2b + 1)

(17 − 8b)(8 − 3b)
.

(v) Hewitt et al’s extreme tilted point [6], HET: −1 < w < 1,

�+ = 1

3
, �̄ = 1

3
√

3
, �̃2 = 4

27
, �̌2 = 100

513
, �k = 3

19
, v2 = 1.

The system also admits the following fixed point sets: the Kasner circle K◦, for which v2 = 0,
the Kasner lines KL±, for which v2 = const, and the extremely tilted Kasner circle K◦

ET, for
which v2 = 1. These subsets reside on the Bianchi type I vacuum boundary, i.e. �2 = 1, with
�̃ = �̌ = 0, see [6]; however, since these fixed points do not play a prominent role in this
paper we refrain from giving them explicitly.

Remark. Below we will refer to the relevant fixed point values for �+ and �̄ by �+0 and �̄0,
respectively.

4 There is a misprint in [6] where the square root on the b in the �1 expression of the line of fixed points, HL, has
disappeared.
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3. Future asymptotes in tilted Bianchi type II cosmology

In what follows certain monotone functions will play a crucial role. Based on our results in
appendix A and appendix B, we hence begin by deriving them.

3.1. Monotone functions

There are several auxiliary equations that are useful in the context of monotone functions, see
appendix A.

Auxiliary equations:

�′ = [
2q − (1 + 3w) + (1 + w)(3w − 1 − �+ −

√
3�̄)G−1

+ v2]�, (7a)

Q′ = −[2(1 − q) + �+ +
√

3�̄]Q, (7b)

� ′ = [2q − (1 + 3w)]�, (7c)

where

Q = (1 + w)G−1
+ v �, � = �−(1−w)G−1

+ �, (8)

and � is given by equation (A.3).
Since

2q − (1 + 3w) = 4�2 − (1 + 3w)(1 − �) + (1 − 3w)(1 + w)G−1
+ v2� � 0,

if − 1 < w � −1/3, (9)

as follows from (A.19), � is a monotonically increasing function when −1 < w � −1/3;
henceforth we denote � in this interval of the equation of state parameter by MF.

Before we continue, let us introduce some notation:

φ∗ = 1 − �+0�+ − �̄0�̄, (10a)

ϕ∗ = [�+0(�+ − �+0) + �̄0(�̄ − �̄0)]
2, (10b)

ϕ̄∗ = [�̄0(�+ − �+0) − �+0(�̄ − �̄0)]
2, (10c)

where the subscript ∗ henceforth denotes a specific fixed point, while �+0 and �̄0 are the
associated fixed point values for �+ and �̄, respectively. In the following it is important that
φ∗ > 0, which can be seen as follows:

φ∗ = 1
2

[
1 − �2

+0 − �̄2
0 + 1 − �2

+ − �̄2 + (�+ − �+0)
2 + (�̄ − �̄0)

2
]

> 1
2

[
1 − �2

+0 − �̄2
0

]
> 0, (11)

where we have used the Gauss constraint (3) and � > 0, �k > 0.
For non-tilted perfect fluid models

MCS:v2=0 = φ−2
CS �m

k �1−m = �m
k �1−m

(1 − �+0�+)2
;

(12)
m = 3(1 − w)�+0

8
(
1 − �2

+0

) , �+0 = 1

8
(1 + 3w), �̄0 = 0,

is a monotonically increasing function. However, it is of interest to generalize this function
by replacing � with �, which is equal to � in the non-tilted case, i.e.

MCS = φ−2
CS �m

k �1−m, (13)

5
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which leads to the following time derivative in the present fully tilted state space:

(ln MCS)
′ = 3φ−1

CS

[
(1 − w)

(
ϕCS(

1 − �2
+0

)
�2

+0

+
ϕ̄CS

�2
+0

+ �̃2

)

+
1

8
(3 − 7w)

(
2�̌2 + (1 + w)G−1

+ v2�
)]

, (14)

and hence MCS is monotonically increasing when −1/3 < w � 3/7.
In appendix B we derive a monotone function for the tilted orthogonally transitive case

�̃2 = 0 which can be written as

MH = φ
−(3+13w)
H (�̌2)

7w−3
2 �3w−1

k �4. (15)

It sometimes turns out to be the case that a monotone function for a given state space is also
monotone in a more general state space in which the original is embedded in, at least for a
limited range of the equation of state parameter, see e.g. [11, 16]. We hence compute the time
derivative for MH in the full tilted case; this gives us

(ln MH)′ = φ−1
H

[
49(16ϕH + 3(1 − w)(3 + 13w)ϕ̄H)

8 + 3
8 (91w − 31)(7w − 3)

+
3

4
(5 − 9w)(13w + 3)�̃2

]
, (16)

and hence MH is monotonically increasing when 3/7 < w � 5/9.
The above monotone functions all have the form

M∗ = φ−β
∗ (�̃2)α1(�̌2)α2�

α3
k (�)α4 , (17)

where β = 2(α1 + α2 + α3 + α4), and α1, α2, α3, α4, β � 0. For the individual cases we have

MF : α1 = α2 = α3 = 0, α4 = 1, β = 2, (18)

MCS : α1 = α2 = 0, α3 = m, α4 = 1 − m, β = 2, (19)

MH : α1 = 0, α2 = 1
2 (7w − 3), α3 = 3w − 1, α4 = 4, β = 3 + 13w. (20)

Let us assume the form (17) in order to find a monotone function for the range
5/9 < w < 1. We obtain

MHET = φ−46
HET

(�̃2)4(�̌2)10�9
k, (21)

and hence α1 = 4 , α2 = 10 , α3 = 9 , α4 = 0 , β = 46, which leads to(
ln MHET

)′ = φ−1
HET

[
243ϕHET + 207ϕ̄HET +

23(9w − 5)

3
G−1

+ (1 − v2)�

]
, (22)

and thus MHET is monotonically increasing when 5/9 < w < 1.

3.2. Future asymptotic limits

Let us denote the invariant set for the general tilted Bianchi type II case, for which
(1 − v2) v2 �̃2 �̌2 ��k �= 0, by SGen, while we denote the invariant set for the orthogonally
transitive case, for which (1 − v2) v2 �̌2 ��k �= 0, by SOT.

A local analysis, as in [6], reveals that the state space S has fixed points as local sinks
according to table 2, which leads to the following bifurcation diagram:

F
w=−1/3−−−−−−→ CS

w=3/7−−−−−−→ H
w=5/9,b=0−−−−−−→ HL

w=5/9,b=1−−−−−−→ HET, (23)

where the parameter b was introduced in solution (iv) above.

6
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Table 2. Sinks for SGen.

Range of w Sink

−1 < w � −1/3 F
−1/3 < w � 3/7 CS
3/7 < w < 5/9 H
w = 5/9 HL
5/9 < w < 1 HET

It was conjectured in [6] that the above local sinks were future attractors, i.e. that all
orbits, except a set of measure zero, asymptotically approach these sinks. Using the above
monotone functions we, in the following theorem, show that all orbits that belong to SGen end
up asymptotically at the above sinks, i.e. the local sinks are globally stable. The theorem uses
the concept of the ω-limit set of a point, which we first define (see [1, 23], and references
therein).

Definition. For a dynamical system on a state space X, the ω-limit set ω(x) of a point x ∈ X
is defined as the set of all accumulation points toward the future (i.e. as τ → ∞) of the orbit
γ (τ) through x.

Theorem 3.1. For all x ∈ SGen

ω(x)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

= F −1 < w � −1/3
= CS −1/3 < w � 3/7
= H 3/7 < w < 5/9
⊂ HL w = 5/9
= HET 5/9 < w < 1.

The proof makes use of the monotonicity principle [1, 18], which gives information about
the global asymptotic behavior of solutions of a dynamical system. It is stated as follows:
let φτ be a flow on R

n with X being an invariant set. Furthermore, let M be a C1 function
M : X → R. Then if M is increasing on orbits, then for all x ∈ X

ω(x) ⊆ {
s ∈ X\X | lim

y→s
M(y) �= inf

X
M

}
. (24)

Proof. We make use of the fact that SGen is a relatively compact set and hence that every orbit
in SGen has an ω-limit point in SGen. Moreover, the ω-limit set of every orbit in SGen must be
an invariant set. In every case infSGen M∗ = 0, and hence we only have to investigate the set
where (ln M∗)′ = 0. It turns out that in all cases the invariant set associated with (ln M∗)′ = 0
is precisely the pertinent fixed point(s), which thus is the ω-limit of every orbit in SGen. Hence
the proof, and the situations, is virtually identical to that of the non-tilted Bianchi type II
perfect fluid case given in [1] on p 151. For the cases −1 < w � −1/3, −1/3 < w � 3/7,
3/7 < w < 5/9 and w = 5/9, 5/9 < w < 1, one uses MF, MCS, MH, and MHET , respectively.

�

Remark. It follows that the isolated fixed points F, CS, H, HET attract a 4-parameter set of
solutions, as does the line HL. However, in this case it follows from the reduction theorem,
see e.g. [20], that each point on the line attracts a 3-parameter set since the line is transversally
hyperbolic. For a discussion about the physical interpretation of the future asymptotic limits
given in theorem 3.1, see [6].

7
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Corollary 3.2. For all x ∈ SOT

ω(x) =
⎧⎨
⎩

F −1 < w � −1/3
CS −1/3 < w � 3/7
H 3/7 < w < 1.

Proof. This follows immediately from the previous proof, in combination with noting the
form for (ln MH)′ when �̃2 = 0. �

We hence have established that the local bifurcation diagram

F
w=−1/3−−−−−−→ CS

w=3/7−−−−−−→ H (25)

from [6] reflects the global features of the solution space of SOT.

4. Discussion

The goal of this paper was twofold: (i) to investigate the general Bianchi type II tilted perfect
fluid models, and (ii) to use these models as an example for how one can produce monotone
functions for tilted perfect fluid models with a non-diagonal metric.

As regards (i) we have found that there exists a collection of monotonically increasing
functions that completely determine and describe the future asymptotics of tilted Bianchi
type II models. Unfortunately the late stage regime of these models is not that physically
interesting, but our results are of relevance as regards the intermediate regime of models with
a cosmological constant, which is arguably more physically interesting. Nevertheless, there is
no doubt that it is the initial mixmaster regime that is of most physical interest. We believe that
our monotone functions are of use also for determining past asymptotics, but unfortunately
they do not suffice to determine the initial asymptotic behavior. Nevertheless, we expect them
to be crucial, perhaps even necessary, ingredients for a successful investigation of this regime.
Hopefully they provide a structure that is similar to that in the recent proof of the Bianchi type
XI attractor [22]. Even so, a proof about the initial singularity for the present models would
require many other ideas as well, and is clearly outside the scope of this paper.

As regards (ii) we first note that all monotone functions take the form

M∗ = φ−β
∗ (�̃2)α1(�̌2)α2�

α3
k (�)α4 , (26)

where β = 2(α1 + α2 + α3 + α4), and α1, α2, α3, α4, β � 0. Moreover, the time derivatives of
the monotone functions MCS, MH, MHET , with nonzero �2

+0 +�̄2
0 (and hence non-zero ϕ∗ + ϕ̄∗)

all take the form

(ln M∗)′ = φ−1
∗ (A∗ϕ∗ + B∗ϕ̄∗ + Inv∗), (27)

where A∗ and B∗ are constants, and Inv∗ is a function that vanishes on one of the invariant sets
in table 1. Outside these invariant sets the function Inv∗ is positive only in a limited range of
values for w. In the MCS case InvCS is zero for the non-tilted subset for which v2 = �̌2 = 0;
in the MH case InvH is zero for the orthogonally transitive subset for which �̃2 = 0; finally,
in the MHET case InvHET is zero for the extreme tilt subset for which v2 = 1. Clearly it is
easier to find these monotone functions on these subsets first and then extend them to the
larger state space, as we did in order to find the key monotone function MH in appendix B.
Moreover, we also first computed MHET for the extreme tilt subset v2 = 1, although we did
not use Hamiltonian methods in this case5.
5 If one wants to use Hamiltonian methods to deal with extreme tilt, one first has to observe that these models have
the same equations as those associated with a source that takes the form of a perfect fluid with a radiation equation
of state w = 1/3, but with a null vector field replacing the time-like 4-velocity.

8
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The importance of the hierarchical structure of Bianchi cosmology, where we have systems
with boundaries on boundaries, has been emphasized before, see e.g. [21–23] and references
therein. Here we see yet another context for this observation, which suggests that one should
first try to find monotone functions for subsets and then attack the case one is really interested
in. Hence one should first identify subsets for a given state space and write them on the form
ZA = 0 and then, if there exists a locally future stable fixed point on a given subset that admits
subsets Za = 0, attempt to find monotone functions of the form6

M∗ = φ−β
∗

∏
a

Zαa

a . (28)

Is there a deeper reason why monotone functions like this should exist? The analysis of
the non-tilted case in [16] suggests that the existence of these monotone functions is related to
the scale-automorphism group. In the tilted case this group can be viewed as consisting of an
off-diagonal special automorphism group and a diagonal scale-automorphism group. The off-
diagonal special automorphism gives rise to conserved momenta, if the underlying symmetry
is not broken by source terms, and hence also to monotone functions, in a similar way as for
the non-tilted models, see [16]. We have not discussed such monotone functions here since
we did not need them for the future asymptotics, although they could be of help for the much
more difficult past asymptotic behavior. However, the off-diagonal automorphisms also have
other dynamical consequences. It is because of the off-diagonal automorphisms we only had
diagonal shear degrees of freedom in φ∗ in the present case, and it is because of this one
would expect the present analysis also to be of relevance for other tilted models, and for other
sources7. Moreover, in the present case we have encountered a hierarchy of source subsets that
is typical. It is the increasing complexity of the source that breaks the vacuum symmetry group
associated with the scale-automorphism group, creating a hierarchy of monotone functions
associated with different source subsets. This is also what one encounters in the non-tilted
case [16], but with an increasingly complex source this phenomenon seems to be even more
pronounced! Hence a systematic attempt on the tilted models, or other sources, strongly
suggests a deeper investigation into the dynamical consequences for the scale-automorphism
group for the various relevant subsets. This is a quite ambitious task and we have therefore
refrained from doing it here; instead we used the structures one can expect to arise from
such an analysis without deriving all the details that completely determine all the monotone
functions from the scale-automorphism group (for a hint of how this can be done, see the
complete analysis of the class A non-tilted models from a Hamiltonian perspective in [16]) in
order to see if this is likely to be a fruitful project. The answer seems to be yes.
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6 Note that although the difficult part in (28) is the detailed structure of φ∗, the product part also appears in simpler
monotone functions. This situation is somewhat similar to the one in [24], where special solution curves were used
to obtain more general exact solutions, which again emphasizes the importance of considering special subsets first in
order to obtain information about more general cases.
7 The present methods extend previous work from diagonalizable models to non-diagonal models. Hence they may
also be of relevance for non-diagonal class B models without any source! In particular we have in mind the generic
exceptional Bianchi type VI−1/9 vacuum models. There are good reasons for believing that there exists a monotone
function of the present type for those models, and the construction of such a monotone function may very well be
crucial if an attempt to determine these models’ initial oscillatory behavior [25] is to be successful.
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Appendix A. Definitions, relations and derivation of the dynamical system

Bianchi cosmologies with a tilted perfect fluid exhibit several structures. One set of structures
arises from that spacetimes of spatially homogeneous cosmologies by definition are foliated
by a geodesically parallel family of spatially homogeneous slices with a time-like unit normal
vector na, see, e.g. [1, 26, 27] and references therein. Another set of structures arises from
that the fluid has a 4-velocity ũa �= na . Some structures naturally arise in a formulation
with a time-independent left-invariant spatially homogeneous frame while other features are
better captured in symmetry adapted orthonormal or conformally orthonormal frames. In this
appendix we work out the relations between these structures and subsequently use them to
derive monotone functions in appendix B and section 3. Moreover, these relations can also
be used to obtain monotone functions for other tilted cosmologies. In addition we derive a
new partially gauge-invariant dynamical system for Bianchi type II. Throughout we use units
c = 1 and 8πG = 1, where c is the speed of light and G is Newton’s gravitational constant.

A.1. Perfect fluids

Making a 3+1 split w.r.t. na of the total stress-energy tensor Tab, and an associated irreducible
spatial decomposition, yields

Tab = ρnanb + 2q(anb) + phab + πab, (A.1a)

ρ = nanbTab, qa = −ha
bncTbc, p = 1

3habTab, πab = h〈achb〉dTcd, (A.1b)

where hab = nanb + gab and A〈ab〉 = ha
chb

dAcd − 1
3habh

cdAcd ; ρ, p are the total energy
density and total effective pressure, respectively, measured in the rest space of na. In this paper
we consider a perfect fluid, which yields the stress-energy tensor:

T ab = (ρ̃ + p̃)ũaũb + p̃gab, (A.2)

where ρ̃ and p̃ are the energy density and pressure, respectively, in the rest frame of the fluid,
while ũa is its 4-velocity; throughout we assume that ρ̃ � 0. Making a 3+1 split with respect
to na leads to

ũa = �(na + va); nav
a = 0, � = (1 − v2)−1/2, (A.3)

where va is the 3-velocity of the fluid, also known as the tilt vector; this gives

ρ̃ = �−2 G−1
+ ρ, qa = (1 + w)G−1

+ ρ va, p = wρ + 1
3 (1 − 3w)qav

a, πab = q〈avb〉,
(A.4)

where G± = 1 ± w v2, w = p̃/ρ̃.

A.2. Orthonormal frame equations

In Bianchi cosmology the metric can be written as
4g = −N2(x0) dx0 ⊗ dx0 + gij (x

0) ω̂i ⊗ ω̂j (i, j = 1, 2, 3), (A.5)

where {ω̂i} is a time-independent left-invariant co-frame dual to a time-independent left-
invariant spatial frame {êi}, see e.g. p 38 in [1] about the meaning of group-invariant frames.
This frame is a basis of the Lie algebra with structure constants Ĉi

jk , i.e.

[êi , êj ] = Ĉk
ij êk = (

εijmn̂mk + 2â[iδj ]
k
)
êk or, equivalently, dω̂i = − 1

2 Ĉi
jkω̂

j ∧ ω̂k,

(A.6)

10
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where we have decomposed the structure constants Ĉi
jk as [28]

Ĉi
jk = εjkmn̂mi + ânδ

ni
jk, âi = 1

2 Ĉj
ij , (A.7)

âi âj = 1
2hεikmεjpn n̂kpn̂mn, â2 = âi â

i = 1
2h[(n̂i

i )
2 − n̂i

j n̂
j
i], where h is a constant group

invariant that is unaffected by frame choices. The Bianchi models are divided into two main
classes: the class A models for which âi = 0, and the class B models for which âi �= 0.

There exists a natural symmetry adapted orthonormal frame associated with (A.5),

e0 = N−1 ∂

∂x0
, eα = eα

i(x0) êi where δαβeα
i(x0)eβ

j (x0) = gij (x0),

α, β = 1, 2, 3, (A.8)

where gij (x0) is the left-invariant contravariant spatial metric associated with gij (x
0).

Since the unit normal to the spatial symmetry surfaces n = e0 by definition is hypersurface
forming, and since it is the tangent to a geodesic congruence due to spatial homogeneity, we
obtain

[ e0,eα ] = Cβ
0α eβ = fα

β eβ = −[
H δα

β + σα
β + εα

β
γ �γ

]
eβ, (A.9a)

[ eα,eβ ] = Cγ
αβ eγ = [

2a[αδβ]
γ + εαβδn

δγ
]
eγ , (A.9b)

where H is the Hubble variable; σαβ is the shear associated with n; �α is the Fermi rotation
which describes how the spatial triad rotates with respect to a gyroscopically fixed so-called
Fermi frame8. Relations (A.8) and (A.9) yield

H = 1
3

(
g− 1

2
)
e0

(
g

1
2
) = − 1

3eα
ie0

(
eα

i
)
, σαβ = −eγ

iδγ 〈αe0
(
eβ〉i

)
(A.10a)

�α = 1
2εα

β
γ eβ

ie0
(
eγ

i
)
, nαβ = g− 1

2 eα
ie

β
j n̂

ij , aα = eα
i âi , (A.10b)

where g is the determinant of the spatial metric gij, and eα
i is the inverse of eα

i , i.e.

g = det(gij ) = (det(eα
i))

2 = (det(eα
i))−2, eα

ieβ
i = δα

β. (A.11)

Note that the above relations between the orthonormal frame variables nαβ and aα and the
structure constants n̂ij and âi , associated with the time-independent left-invariant spatial frame,
are needed when one wants to derive monotone functions, as exemplified by equation (B.25)
in appendix B.

By means of the decomposition associated with na in (A.1), the matter conservation
equation ∇aT

ab = 0 for a perfect fluid with a linear equation of state yields

(ln ρ)̇ = (1 + w)G−1
+ [−3H + fαβvαvβ + 2aαvα], (A.12a)

v̇ = G−1
− (1 − v2)

[
3wH + fαβcαcβ − 2waβcβv

]
v, (A.12b)

ċα = [δα
β − cαcβ][fβ

γ cγ − v(aβ + εβγ δn
δζ cζ c

γ )], (A.12c)

where fαβ is defined in equation (A.9a), aβ +εβγ δ nδζ cζ cγ = Cζ
βγ cζ cγ and where instead of

the 3-velocity vα we have found it convenient to introduce v = √
vαvα � 0 and the unit vector

cα = vα/v as variables; for the first introduction of the unit vector ca = va/v, see [2]. To obtain
a more compact notation, we also introduced ḟ = (f )˙= e0f = N−1df/dx0 = df/dt , where
t is the clock time associated with the normal congruence of the spatial symmetry surfaces
(i.e. N = 1 for this parameterization).

8 The sign in the definition of �α is the same as in [17, 29], but opposite of that in [1].
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When dealing with tilted perfect fluid models, several structures are most easily found
by considering quantities associated with the rest frame of the fluid, and hence with ũa . In
particular it is of interest to consider the particle number density ñ and the chemical potential
μ̃, which, for a linear equation of state, can be defined as (see [27, 30] and references therein)

ρ̃ = ñ1+w, μ̃ = (1 + w)ñw. (A.13)

Defining

l = ñ g
1
2 �, (A.14)

yields the evolution equation (ln l)˙ = 2aαvα = 2(aαcα) v, and hence l is a constant
of the motion whenever aαvα = 0, e.g. for the class A perfect fluid models. Another
quantity of interest is Taub’s spatial circulation 1-form [31, 32] ta = μ̃ ũa , whose spatial
components can be written as tα = μ̃ � vα = μ̃ � v cα , with the norm μ̃ � v, which satisfies
(ln μ̃�v)̇ = fαβcαcβ , which, together with (A.12c), yields ṫα = μ̃�v(fαβ − vCγ

αβcγ )cβ .
This in turn gives t̂i = eα

i tα , where e0 (eα
i) = −fβ

αeβ
i obeys the equation

˙̂t i = −(μ̃ �)−1 Ĉk
ij t̂k t̂

j , (A.15)

which has a zero rhs for several models, e.g. Bianchi type II, thus leading to constants of the
motion. Constants of the motion based on l and t̂i play a critical role for deriving monotone
functions for tilted perfect fluids, as exemplified by equation (B.25) in appendix B.

A.3. The Hubble-normalized dynamical system approach

In the conformal Hubble-normalized approach one factors out the Hubble variable H by
means of a conformal transformation which yields dimensionless quantities [17, 33]. Note
that the conformal Hubble-normalized approach reduces to the Hubble-normalized approach
pioneered by Wainwright and Hsu [34] in a spatially homogeneous context, and that this
formulation in turn owes a debt to Collins’ insight about the importance of dimensionless
variables [35]. In the spatially homogeneous case the Hubble-normalized approach amounts
to the following:

(�αβ, Rα,Nαβ,Aα) = 1

H
(σαβ,�α, nαβ, aα),

(�, P,Qα,�αβ) = 1

3H 2
(ρ, p, qα, παβ),

(A.16)

where we have chosen to normalize the stress-energy quantities with 3H 2 rather than H2 in
order to conform with the usual definition of �; in the perfect fluid case this results in

Qα = Qcα, P = w� + 1
3 (1 − 3w)vQ, �αβ = vQc〈αcβ〉, (A.17)

where

Q = (1 + w)G−1
+ v�. (A.18)

In addition to this we choose a new dimensionless time variable τ by means of the
lapse choice N = H−1. Since H is the only variable with dimension, its evolution equation,
H ′ = −(1 + q)H , which defines the deceleration parameter q decouples from the remaining
equations for dimensional reasons; throughout a prime denotes d/dτ . By means of one of
Einstein’s equations Gab = Tab—the Raychaudhuri equation, we obtain

q = 2�2 + 1
2 (� + 3P) = 2�2 + 1

2G−1
+ [1 + 3w + (1 − w)v2]�, �2 = 1

6�αβ�αβ,

(A.19)
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where the last equality for q refers to the perfect fluid case. The remaining Einstein field
equations together with the Jacobi identities yield the following set of equations, which we
divide into evolution equations and constraints:

Evolution equations

�′
αβ = −(2 − q)�αβ − 2εγ δ 〈α�β〉γ Rδ − 3R〈αβ〉 + 3�αβ, (A.20a)

(Nαβ)′ = (3qδγ
(α − 2Fγ

(α)Nβ)γ , (A.20b)

A′
α = Fα

βAβ, (A.20c)

�′ = (2q − 1)� − 3P + 2AαQα − �αβ�αβ, (A.20d)

v′ = −G−1
− (1 − v2)

[
1 − 3w + �αβcαcβ + 2w(Aβcβ)v

]
v, (A.20e)

c′
α = [

δα
β − cαcβ

][
Fβ

γ cγ − v
(
Aβ + εβ

γ
δN

δζ cζ cγ

)]
. (A.20f )

Constraint equations

0 = 1 − �2 − �k − �, (A.21a)

0 = (
3δα

γ Aβ + εα
δγ Nδβ

)
�β

γ − 3Qα, (A.21b)

0 = AβNβ
α, (A.21c)

where A2 = AαAα , and

Fα
β = qδα

β − �α
β − εα

β
γ Rγ , �k = 1

12B
α

α + A2, (A.22a)

3R〈αβ〉 = B〈αβ〉 − 2εγ δ 〈αNβ〉γ Aδ, Bαβ = 2Nαγ Nγ
β − Nγ

γ Nαβ. (A.22b)

The Gauss constraint (A.21a) and the Codazzi constraint (A.21b) figure prominently
throughout.

When deriving monotone functions in section 3.1, we make use of the Bianchi type II
specializations, see equation (7), of the following equations:

Q′ = −[2 − q − Fαβ cα cβ + 2(Aα cα) v] Q, (A.23a)

(ln �)′ = 2q − (1 + 3w) + 2(1 + w)(Aαcα)v, � = �−(1−w)G−1
+ �, (A.23b)

where � is intimately connected with ñ and l, since � is obtained by taking ñ � = g−1/2 l and
raising the rhs to the power 1 + w and normalizing with H.9

A.4. Bianchi type II

For the Bianchi type II models we have Aα = 0, and in addition we can choose a spatial frame
eα to be an eigenframe of the matrix Nαβ , with N11 �= 0, while otherwise Nαβ = 0. It follows
that equation (A.20b) yields R2 = �31, R3 = −�12, and that the Codazzi constraint (A.21b)
implies

v1 = 0 = c1. (A.24)

Inserting the conditions of equation (A.24) into equation (A.20f ) gives the following relation:

0 = �12c2 + �31c3 = −R3c2 + R2c3 ⇔ εABRAcB = 0, (A.25)

9 This quantity has appeared before in the literature, e.g. in [6], where �−(1−w) G−1
+ has been denoted by β.
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where A,B = 2, 3 and εAB is the two-dimensional permutation that has ε23 = 1 (hence
cA cA = 1). It follows from εAB RA cB = 0 that RA ∝ cA ∝ QA, where the last relation
holds when � �= 0; hence �12 and �31 are linearly dependent and can be replaced by a single
variable.

We have the freedom to rotate in the 23-plane, which is expressed in the field equations as
the freedom to choose R1. To obtain a set of variables that are invariant under such rotations
we introduce the following new shear variables:

�+ = 1
2�A

A = − 1
2�11, �̄ = 1√

3
(�AB − �+δAB)

(
cAcB − 1

2δAB
)
, (A.26a)

�̃ = 1√
3
(�AB − �+δAB)εB

C

(
cAcC − 1

2δAC
)
, �̌2 = 1

3

(
�2

12 + �2
31

)
. (A.26b)

Hewitt et al [6] make use of the freedom to rotate in the 23-plane to set c2 = 0, which
yields that c3 = 1 and R2 = 0 = �31. This leads to a correspondence between the variables
�−, �1, �3 in [6] to our variables, when setting c2 = 0, according to �̄ = −�−, �̌2 = �2

3 ,
�̃2 = �2

1 .
Because of the existence of discrete symmetries one can simplify the analysis, e.g. the

eigenvalue analysis, by introducing the following state vector S = (�+, �̄, �̃2, �̌2,�k, v
2),

where �k = N2
11/12, and where � can be obtained in terms of S via the Gauss constraint

(A.21a). By inserting these restrictions and definitions into (A.20) and (A.21), we obtain the
dynamical system given in section 2.

Appendix B. Hamiltonian considerations and derivation of monotone functions

B.1. Hamiltonian considerations

The scalar Hamiltonian is given by

H̃ = 2N g
1
2 na nb(Gab − Tab) = 2Ñ g na nb(Gab − Tab) = ÑH = Ñ(T + Ug + Uf), (B.1)

where we have defined Ñ = Ng−1/2, and where (T , Ug, Uf) = 6 g H 2(−1 + �2, �k, �). By
means of (A.4), (A.13) and (A.14), this yields

Uf = 2gρ = 2l1+w g(1−w)/2 �1−wG+, (B.2)

while T and Ug depend on the model and the metric representation.
In [36] it was shown that the tilted orthogonally transitive Bianchi models exhibit a

so-called time-like homothetic Jacobi symmetry. It was later realized that such symmetries
are related to the existence of monotone functions (Uggla in chapter 10 in [1], and [16]).
Unfortunately the analysis in [36] is quite cumbersome and we will therefore make a new
derivation of the ‘homothetic structure’ and from this derive a monotone function. To do
so, we need to connect the time-independent spatially homogeneous frame in (A.5) with the
orthonormal frame. This is done in two steps: (i) diagonalization by means of the off-diagonal
special automorphism group, and (ii) normalization by means of diagonal scaling. We hence
write eα

i in the transformation (A.8), i.e. eα = eα
i(x0) êi , as eα

i = (D−1)α
j (S−1)j

i , or
eα

i = Dα
j Sj

i , where Sj
i is a special automorphism transformation that hence leaves âi and

n̂ij unaffected. In addition we define the new metric variables β1, β2, β3 via the matrix Dα
j

so that

(D−1)α
j =

⎛
⎝exp(−β1) 0 0

0 exp(−β2) 0
0 0 exp(−β3)

⎞
⎠ , (B.3)

where βα = βα(x0); hence g1/2 = exp(β1 + β2 + β3).
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To obtain the Hamiltonian for the orthogonally tilted transitive Bianchi models we choose
a spatially homogeneous frame so that the line element can be written as (A.5) with all structure
constants being zero except n̂11 = n̂1. In the orthogonally transitive case we can specify the
spatially homogeneous frame so that gij in (A.5) have one off-diagonal component, g12, and so
that the perfect fluid velocity has a single non-zero left-invariant frame component, v̂3. Hence
we follow [36] and write10

Sα
j =

⎛
⎝1 −√

2n̂1θ
3(x0) 0

0 1 0
0 0 1

⎞
⎠ . (B.4)

It follows from (A.10b) that

n11 = exp(β1 − β2 − β3)n̂1. (B.5)

Due to that θ3 is associated with the off-diagonal special automorphism group, the associated
momentum, which is proportional to σ12, is conserved [36]. Furthermore, note that (A.15)
yields the constant of the motion t̂3 = const. This is consistent with the Codazzi constraint, also
known as the Hamiltonian momentum constraint, which linearly relates these two constants
to each other. The constants n̂1, l, t̂3 allow us to write T + Ug + Uf in (B.1) so that

H = T + Ug + Uf = Td + Uc + Ug + Uf, (B.6)

where Uc is the so-called centrifugal potential, which is proportional to the �2
12 term in �2,

where, furthermore, Uc, Ug and Uf are all expressible in terms of βα , and no other time-
dependent quantities. Expressing ÑTd in terms of β̇α or the associated momenta πα , see [16]
and also [37], by means of (A.10) and the transformations in this subsection leads to

ÑTd = 2Ñ−1Gγ δβ̇
γ β̇δ = 1

4 ÑGγ δπγ πδ, (B.7)

where Gγ δ is known as the minisuperspace metric for the diagonal degrees of freedom, which,
together with its inverse Gαβ , is given by

Gαβ =
⎛
⎝ 0 −1 −1

−1 0 −1
−1 −1 0

⎞
⎠ ; Gαβ = 1

2

⎛
⎝ 1 −1 −1

−1 1 −1
−1 −1 1

⎞
⎠ . (B.8)

The centrifugal potential Uc = 2 g H 2 �2
12 = 2 g σ 2

12, re-expressed via the Codazzi
constraint in terms of t̂3, yields

Uc ∝ exp[−2(β1 − β2)]. (B.9)

By means of Ug = 6 g H 2 �k and (B.5) we find that

Ug ∝ exp(4β1). (B.10)

We can write ũa ũa = −1 as 0 = 1 − �2 + μ̃−2 tα tα , and by defining

F = (1 + w)−2l−2wgwtαtα = (1 + w)−2l−2wgwgij t̂i t̂j , (B.11)

we obtain

0 = 1 − �2 + F �2w, (B.12)

which allows one to, in general, implicitly express �2 in terms of F, i.e. �2 = �2(F ). In the
present case we find that F = (1 + w)−2 l−2w gw g33 t̂2

3 , which yields

F = (1 + w)−2 l−2w t̂2
3 exp[w(β1 + β2) − (1 − w)β3] . (B.13)

It follows that

Uf ∝ exp[(1 − w)(β1 + β2 + β3)]φ, (B.14)

where φ := �1−wG+ is a function of the particular combination w(β1 + β2)− (1 −w)β3 only.
10 There is a typographical error in equation (2.61) in [36]; the exponent should be −1 and not −1/2 of (m̂(3)) in the
expression for s3.
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B.2. Derivation of monotone functions

Based on the Hamiltonian for the diagonal degrees of freedom for the orthogonally transitive
type II case in this subsection we derive a monotone function that is of key importance for
understanding the dynamics. In chapter 10 in [1] and in [16] it is shown that monotone
functions are associated with ‘homothetic’ symmetries of the potential, i.e. we require that
there exists a vector c = cα∂βα such that cU = c(Uc + Ug + Uf) = r U , where r is a constant.
For this to be possible we require (i) that cφ = 0, and hence that

c(w(β1 + β2) − (1 − w)β3) = w(c1 + c2) − (1 − w)c3 = 0, (B.15)

and (ii) cUc = rUc, cUg = rUg and cUf = r Ug, which due to condition (i) yields
c exp[(1 − w)(β1 + β2 + β3)] = r exp[(1 − w)(β1 + β2 + β3)]. This leads to

−2(c1 − c2) = r, 4c1 = r, (1 − w)(c1 + c2 + c3) = r, (B.16)

which yields c2 = 3c1, c3 = 4c1w/(1 − w); w.l.g we can choose c1 = 1 − w, which gives

(c1, c2, c3) = (1 − w, 3(1 − w), 4w), r = 4(1 − w) . (B.17)

The causal character of this vector with respect to the metric Gαβ is crucial [16]; we obtain

Gγ δc
γ cδ = −2(1 − w)(3 + 13w), (B.18)

which is time-like if −3/13 < w < 1. The above properties of the potential U imply that the
model satisfies the criteria given in [16] for admitting a monotone function given by11

M ∝ (cαπα)2 exp

[
−r

Gγ δc
γ βδ

Gγ δcγ cδ

]
. (B.19)

We now have to express M in the dynamical system variables S. We do so in two steps
by first using �αα = �α , and then in the second step we go over to the presently used
dynamical system variables via the current gauge fixing (see the previous discussion about the
correspondence between our variables and those used in [6]). Let us define

(Vg, Vf) = exp

[
−r

Gγ δc
γ βδ

Gγ δcγ cδ

]
(Ug, Uf); (B.20)

then

exp

[
−r

Gγ δc
γ βδ

Gγ δcγ cδ

]
H = exp

[
−r

Gγ δc
γ βδ

Gγ δcγ cδ

]
T + Vg + Vf = 0, (B.21)

which yields

exp

[
−r

Gγ δc
γ βδ

Gγ δcγ cδ

]
= −

(
Vg + Vf

T

)
∝ Vg + Vf

π2
0 (1 − �2)

, (B.22)

and hence

M ∝
(

cαπα

π0

)2
Vg + Vf

(1 − �2)
=

(
cαπα

π0

)2

Vf�
−1, (B.23)

since Vg/Vf = �k/� and 1 − �2 = �k + �.
It follows from our definitions that πα = 1

6 π0 (2 − �α), π0 = π1 + π2 + π3, see also
[16, 21]. In combination with (B.17) we find that this yields

cαπα

π0
∝ 1 − 1

8
(1 − w)�1 − 3

8
(1 − w)�2 − 1

2
w�3 = 1 −

√
3

8
(7w − 3)�̄ − 1

8
(1 + 3w)�+.

(B.24)

11 This is actually the square of the monotone function in [16], but we find this form more convenient in the present
context.

16



Class. Quantum Grav. 27 (2010) 185006 S Hervik et al

Next we need to solve for Vf in terms of the state space variables (�+, �̄, �̌2,�k, v
2).

This can be done with the help of the constants of motion n̂1, l, t̂3 through equations (B.20),
(B.13), (B.12), (B.5) and (B.2), using the form (B.17) of the homothetic vector c. After some
algebra one finds that

Vf ∝
[
(v2)3−7w�8(1−w)G2(1+7w)

+

(
�k

�

)−(1−w)
]1/(3+13w)

. (B.25)

Taking M−(3+13w)/2 and replacing � with � via (8), and v2 through equation (2g), yields
the monotone function MH, which we give in the main text. Analogous, but much simpler,
Hamiltonian methods were used to find the monotone function MCS for the non-tilted Bianchi
type II models, which is also given in the main text.
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