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In this paper, we study the Ricci flow on higher dimensional compact manifolds. We

prove that nonnegative isotropic curvature is preserved by the Ricci flow in dimensions

greater than or equal to four. In order to do so, we introduce a new technique to prove that

curvature functions defined on the orthonormal frame bundle are preserved by the Ricci

flow. At a minimum of such a function, we compute the first and second derivatives in

the frame bundle. Using an algebraic construction, we can use these expressions to show

that the nonlinearity is positive at a minimum. Finally, using the maximum principle, we

can show that the Ricci flow preserves the cone of curvature operators with nonnegative

isotropic curvature.

1 Introduction

It is well known that various positive curvature conditions imply strong topological re-

strictions on a Riemannian manifold. One famous example is the 1/4 pinching sphere

theorem of Klingernberg, Berger and Rauch, which is a simply connected manifold Mn

with globally 1/4 pinched sectional curvatures homeomorphic to a sphere. This theorem

was proved using delicate comparison theorems on geodesics. Micallef and Moore [11]
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2 H. T. Nguyen

used analytic methods to prove a topological sphere theorem for pointwise 1/4 pinched

manifolds using harmonic map theory from S
2 to Mn. They introduced a new curvature

condition, a positive isotropic curvature that arose from the complexified second varia-

tion of energy of maps from surfaces to M. The condition states that an n-dimensional

Riemannian manifold, Mn, n ≥ 4, has positive isotropic curvature if for every orthonor-

mal four-frame, {e1, e2, e3, e4}, the curvature operator satisfies

R1313 + R1414 + R2323 + R2424 > 2R1234.

As pointwise 1/4 pinched sectional curvature implies positive isotropic curva-

ture, Micallef–Moore use this more general condition to prove their sphere theorem. For

n = 4, the theorem above is proved by Hamilton [10] using Ricci flow. In fact, a stronger

result is shown in this case, a partial classification of manifolds with positive isotropic

curvature up to diffeomorphism. This difficult result is proved using the Ricci flow with

surgery; see also [4]. The important first step is to show that positive isotropic curvature

is preserved by Ricci flow. However, the proof of this statement is special to dimension

four as it uses the self-dual/anti-self-dual decomposition of the curvature operator in

dimension four.

In this paper, we shall show that nonnegative isotropic curvature is preserved

by the Ricci flow in all dimensions. Let (Mn, gij) be a compact, connected n-dimensional

Riemannian manifold without boundary, the Ricci flow is the following well-known

geometric evolution equation:

∂

∂t
gij = −2Rij, gij|t=0 = gij(0).

The main result of this paper is to show that the curvature cone of nonnegative

isotropic curvature is preserved by the Ricci flow. That is, we will prove the following

theorem.

Theorem 1.1 (Nonnegative Isotropic Curvature is Preserved by Ricci Flow). Let

(Mn, gij(t )), n ≥ 4 be a solution to the Ricci flow with an initial compact, connected Rie-

mannian metric (Mn, gij(0)) that has nonnegative isotropic curvature, then (Mn, gij(t ))

also has nonnegative isotropic curvature.

We would like to mention that the above theorem was independently proved in

[3], where it was used to resolve the 1/4 pinching sectional curvature diffeomorphism

sphere theorem. The curvature conditions preserved by the Ricci flow often lead to strong

restrictions to the underlying manifold. In particular, we have the following results

 at M
ax P

lanck Institute for G
ravitational P

hysics on M
ay 5, 2010 

http://im
rn.oxfordjournals.org

D
ow

nloaded from
 

http://imrn.oxfordjournals.org


Isotropic Curvature and the Ricci Flow 3

of Böhm and Wilking [2], who showed that manifolds with 2-positive curvature are

diffeomorphic to space forms. This extended previous results of [8] and [5] in dimension

four. We cannot expect such a result for positive isotropic curvature, for example S
3 × S

1

has positive isotropic curvature. In fact, it was proved by Micallef and Wang [12] that

positive isotropic is stable under the operation of pointwise connected sum. Hence, we

have the following conjecture.

Conjecture 1.2 (see [13]). Let (Mn, gij), n ≥ 4 be a compact Riemannian manifold with

positive isotropic curvature. Then a finite cover of Mn is diffeomorphic to S
n, S

n−1 × S
1

or a connected sum of these. In particular, the fundamental group is virtually free, that

is, there exists a free subgroup of finite index in π1(M).

We now describe the proof. As mentioned above, the four-dimensional case relies

on the self-dual/anti-self-dual decomposition so4 = so(3) ⊕ so(3) of the curvature operator

which is special to four dimensions. Hence, in order to prove the theorem, we will use an

entirely different method that was developed in [1]. We consider the isotropic curvature

as a function of the orthonormal frame bundle of the manifold. Since we use the maximum

principle, it suffices to compute pointwise. This allows us to take derivatives in the

frame bundle, {x, t} × O(n) ⊂ OM(n). At a minimal frame, the first-order derivatives in

the frame bundle vanish and the matrix of second derivatives is convex. However, the

entries in the matrix of second-order derivatives are linear in curvature, whereas the

nonlinearity is quadratic. To overcome this, we introduce an algebraic construction

involving the tensor product of the matrix of second-order derivatives. By choosing

appropriate vectors, we can use the positivity of this matrix to show that the nonlinearity

is nonnegative at a minimal frame. Hence, the ODE associated the nonlinearity of the

Ricci flow that preserves the set of nonnegative isotropic curvatures. By applying the

maximum principle, the Ricci flow also preserves this set.

2 Preliminary Results

For the convenience of the reader, we collect here some facts that we will use later on.

2.1 Isotropic curvature

In this section, we will introduce isotropic curvature. Let (Mn, gij), n ≥ 4 be the

Riemannian manifold. Its curvature operator is a self-adjoint mapping on the space
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4 H. T. Nguyen

of two forms, R : �2TpM → �2TpM. Let us consider the complexification of the tan-

gent space and space of two forms TpM ⊗ C and �2TpM ⊗ C. We may then extend the

inner product of g(, ) in two different ways: first, we can extend as an Hermitian form

for 〈Z , W〉 = g(Z , W ), or in a complex form (Z , W ) = g(Z , W ) where Z , W ∈ TpM ⊗ C. The

complex sectional curvature is then defined for a complex plane σ = span{Z , W} ⊂
TpM ⊗ C, where {Z , W} is a unitary two-frame,

KC(σ ) = 〈R(Z ∧ W ), Z ∧ W〉.

Then we say Z is isotropic if (Z , Z ) = 0 and σ is an isotropic two-plane if

σ = span{Z , W}, where Z , W are isotropic and unitary two-frame. A Riemannian man-

ifold (Mn, gij) is said to have nonnegative isotropic curvature if the complex sectional

curvature on isotropic two planes is nonnegative, that is,

KC(Z , W ) = 〈R(Z ∧ W, Z ∧ W〉, and (Z , Z ) = (W, W ) = 0.

Consider the decomposition of complex vector into its real and imaginary parts

Z = X + iY, then the condition (Z , Z ) = 0 implies g(X, X) = g(Y, Y) and g(X, Y) = 0. Hence,

any isotropic plane may be written as the span of four orthonormal vectors. In particular,

(Mn, gij) has nonnegative isotropic curvature if for every orthonormal four-frame, the

following curvature condition is satisfied:

R1313 + R1414 + R2323 + R2424 ≥ ±2R1234. (1)

2.2 Evolution equations

The Ricci flow is the following quasilinear parabolic system:

∂

∂t
gij = −2Rij, gij|t=0 = gij(0).

The following evolution equations may be found in [7] and [9]. Note that we auto-

matically use Uhlenbeck’s trick (evolving orthonormal frames) to simplify the evolution

equation of the full curvature tensor:

∂t Rijkl = �Rijkl + 2(Bijkl − Bijlk + Bikjl − Bil jk), (2)

where

Bijkl = Rpiqj Rpkql . (3)
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Isotropic Curvature and the Ricci Flow 5

3 Refined Maximum Principle

To prove that the positive isotropic curvature is preserved by the Ricci flow, we will

use a refined version the advanced maximum principle; [6, Theorem 4.8]. Let us denote

by �x, the space of algebraic curvature operators at x, that is the set of symmetric

bilinear forms R on the space of antisymmetric (0, 2)-tensors that satisfy the Bianchi

identity. We will consider the isotropic curvature function defined on the frame bundle,

OM = {(x, e1, . . . , en) : x ∈ M, ei ∈ TxM, gx(ei, ej) = δi j} by

K(x, e1, . . . , en) = Rx(e1, e3, e1, e3) + Rx(e1, e4, e1, e4)

+ Rx(e2, e3, e2, e3) + Rx(e2, e4, e2, e4) − 2Rx(e1.e2, e3, e4),

= R1313 + R1414 + R2323 + R2424 − 2R1234.

Observe that the space of curvature operators with K = {K ≥ 0} ⊂ �x is a convex

set for each x ∈ M and invariant under parallel translation. Hence, by the advanced

tensor maximum principle, the Ricci flow preserves the condition K ≥ 0, if the reaction

ODE does. Hence, we will consider any curvature operator in �x such that K ≥ 0 for all

frames in Ox and suppose that there exists some frame {e1, . . . , en} such that K = 0. We

will consider the first- and second-order conditions for minimality within Ox to deduce

inequalities for curvature components. This, in turn, will allow us to show that at a

minimum the reaction ODE points into K. We compute the first and second derivatives

of K along the curves in Ox, defined by

d

ds
ei(s) = �i jej(s); ei(0) = ei,

where � is an arbitrary antisymmetric 2-tensor. This gives us the following first- and

second-order derivatives:

1

2
∇K(P ) =

∑
i, j

∂K

∂�i j
�i j = ∂s

1

2
K(P ) = Rj313�1 j + R1 j13�3 j + Rj414�1 j + R1 j14�4 j

+ Rj323�2 j + R2 j23�3 j + Rj424�2 j + R2 j24�4 j

− Rj234�1 j − R1 j34�2 j − R12 j4�3 j − R123 j�4 j

= (Rj313 + Rj414 − Rj234)�1 j + (Rj323 + Rj424 − R1 j34)�2 j

+ (R1 j13 + R2 j23 − R12 j4)�3 j + (R1 j14 + R2 j24 − R123 j)�4 j. (4)
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6 H. T. Nguyen

The second derivative equation may be written as

1

2
∇2

K(P ) =
∑
i j,kl

∂2
K

∂�i j�kl
= 1

2
∂2

s K(P ) = Rk313�1 j� jk + Rjk13�1 j�3k

+ Rj3k3�1 j�1k + Rj31k�1 j�3k

+ Rk414�1 j� jk + Rjk14�1 j�4k + Rj4k4�1 j�1k + Rj41k�1 j�4k

+ Rk323�2 j� jk + Rjk23�2 j�3k + Rj3k3�2 j�2k + Rj32k�2 j�3k

+ Rk424�2 j� jk + Rjk24�2 j�4k + Rj4k4�2 j�2k + Rj42k�2 j�4k

+ Rkj13�3 j�1k + R1k13�3 j� jk + R1 jk3�3 j�1k + R1 j1k�3 j�3k

+ Rjk14�4 j�1k + R1k14�4 j� jk + R1 jk4�4 j�1k + R1 j1k�4 j�4k

+ Rjk23�3 j�2k + R2k23�3 j� jk + R2 jk3�3 j�2k + R2 j2k�3 j�3k

+ Rjk24�4 j�2k + R2k24�4 j� jk + R2 jk4�4 j�2k + R2 j2k�4 j�4k

− Rk234�1 j� jk − Rjk34�1 j�2k − Rj2k4�1 j�3k − Rj23k�1 j�4k

− Rkj34�2 j�1k − R1k34�2 j� jk − R1 jk4�2 j�3k − R1 j3k�2 j�4k

− Rk2 j4�3 j�1k − R1kj4�3 j�2k − R12k4�3 j� jk − R12 jk�3 j�4k

− Rk23 j�4 j�1k − R1k3 j�4 j�2k − R12kj�4 j�3k − R123k�4 j� jk. (5)

We expand this expression and collect like terms.

Proposition 3.1. Let K denote the isotropic curvature. Then, at a space frame minimum,

the second derivative of K at {x} × so(n) is

∇2
K = (Rjk12 + Rj21k − Rj1k2 − 2Rjk34)�1 j�2k + (Rjk13 + Rj31k − Rj1k3 − 2Rj2k4)�1 j�3k

+ (Rjk14 + Rj41k − Rj1k4 − 2Rj23k)�1 j�4k + (Rjk23 + Rj32k − Rj2k3 − 2R1 jk4)�2 j�3k

+ (Rjk24 + Rj42k − Rj2k4 − 2R1 j3k)�2 j�4k + (Rjk34 + Rj43k − Rj3k4 − 2R1 j2k)�3 j�4k

+ (Rk313 + Rk414 − Rk234)�1 j� jk + (Rk323 + Rk424 − R1k34)�2 j� jk

+ (R1k13 + R2k23 − R12k4)�3 j� jk + (R1k14 − R2k24 − R123k)�4 j� jk

+ (Rj3k3 + Rj4k4)�1 j�1k + (R3 j3k + Rj4k4)�2 j�2k

+ (R1 j1k + R2 j2k)�3 j�3k + (R1 j1k + R2 j2k)�4 j�4k.

4 Four-Dimensional Isotropic Curvature

In this section, we will show that in dimension four, nonnegative isotropic curvature

is preserved by the Ricci flow. This result was first proved in [10]; however, that proof
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Isotropic Curvature and the Ricci Flow 7

relied on the special decomposition of the Riemann curvature tensor in dimension four.

The proof below does not require such a structure. Furthermore, the proof will only rely

upon first-order derivatives, and this will allow us to use it in the higher dimensional

cases.

Theorem 4.1 [10, see Theorem B1.2]. The Ricci flow on a compact four-manifold pre-

serves positive isotropic curvature.

For the sake of convenience, we write the evolution equations for the Ricci flow:

∂ Rijij

∂t
= �Rijij + 2(Bijij + Biijj − 2Bijji),

= �Rijij + 2
(
R2

ipjq + Ripiq Rjpjq − 2Ripjq Rjpiq
)
.

The components of the isotropic curvature are as follows:

dR1313

dt
= R2

1313 + R2
1323 + R2

1334 + R2
1213 − R2

1232 + R2
1234 + R2

1413 + R2
1423 − R2

1434

− 4R2143 R1432 + R1212 R3232 + R1414 R4343 + 2R1412 R2343,
dR2424

dt
= R2

2424 + R2
2414 + R2

2443 + R2
2124 − R2

2141 + R2
2143 + R2

2324 + R2
2314 − R2

2343

− 4R1234 R2341 + R2121 R4141 + R2323 R3434 + 2R2321 R1434,
dR1414

dt
= R2

1414 + R2
1424 + R2

1443 + R2
1214 − R2

1242 + R2
1243 + R2

1314 + R2
1324 − R2

1343

− 4R2134 R1342 + R1212 R4242 + R1313 R3434 + 2R1312 R2434,
dR2323

dt
= R2

2323 + R2
2313 + R2

2334 + R2
2123 − R2

2131 + R2
2134 + R2

2423 + R2
2413 − R2

2434

− 4R1243 R2431 + R2121 R3131 + R2424 R4343 + 2R2421 R1343,
dR1234

dt
= B1234 − B1243 + B1324 − B1423.

To compute this last term, we use the expansion

B1234 = R1223 R3243 + R1221 R3241 + R1423 R3443 + R1421 R3441,

B1243 = R1224 R4234 + R1221 R4231 + R1324 R4334 + R1321 R4331,

B1324 = R1332 R2342 + R1331 R2341 + R1432 R2442 + R1431 R2441,

B1423 = R1442 R2432 + R1441 R2431 + R1342 R2332 + R1341 R2331.
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8 H. T. Nguyen

Now, after making the obvious cancellations, we have the following evolution equation:

d

dt
K(P ) = d

dt
(R1313 + R1414 + R2323 + R2424 − 2R1234),

= R1212K(P ) + R3434K(P ) (6)⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−2R2323 R1342 + R2
1342 + R2

2323 − 2R1414 R1342 + R2
1414 + R2

1342

+2R1314 R1323 + R2
1314 + R2

1342 + 2R1442 R2432 + R2
1424 + R2

2423

+2R2424 R1432 + R2
2424 + R2

1432 + 2R1313 R1432 + R2
1313 + R2

1423

−2R1431 R2441 + R2
1442 + R2

1413 − 2R1332 R2342 + R2
1323 + R2

2324,

(7)

+ 2R1312 R2434 + 2R2421 R1343 + 2R1224 R4234 − 2R1321 R1334, (8)

+ 2R1412 R2343 + 2R2321 R1434 − 2R1223 R3243 − 2R1421 R3441, (9)

+ 4R2
1234 − 4R12334 R1342 + 4R1234 R1432 − 4R1243 R2431 + 4R1234 R2341. (10)

We choose a minimal frame so that K(P ) = 0 or R1313 + R1414 + R2323 + R2424 =
2R1234. Furthermore, at this minimal frame by (4), we have

R1434 − R1232 − R3234 + R1214 = 0, (11)

R1343 − R2124 + R4243 − R1213 = 0. (12)

We note here that we do not require positivity of the matrix, ∇2
K. We obtain

the following cross terms. We explicitly compute one such term, the others follow by

permutation. Consider the cross terms:

2R1312 R2434 + 2R2421 R1343 + 2R1224 R4234 − 2R1321 R1334

= 2R1242(R4243 + R1343) + 2R1312(R2434 + R1343)

= 2(R1242 + R1312)(R2434 + R1343)

= 2(R2434 + R1343)2, (13)

where the equality on the third line follows by (11). Similarly, we have the equation

2R1412 R2343 + 2R2321 R1434 − 2R1223 R3243 − 2R1421 R3441 = 2(R1214 − R1232)2. (14)

The terms (7) simplify as squares:

− 2R1332 R2342 + R2
1323 + R2

2324 = (R1323 − R2324)2,

− 2R1431 R2441 + R2
1442 + R2

1413 = (R1413 − R1424)2,

2R1442 R2432 + R2
1424 + R2

2423 = (R1424 + R2423)2,

2R1314 R1323 + R2
1414 + R2

1342 = (R1314 + R1323)2, (15)
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Isotropic Curvature and the Ricci Flow 9

and as

− 2R1414 R1342 + R2
1414 + R2

1342 = (R1414 + R1324)2,

− 2R2323 R1342 + R2
1342 + R2

2323 = (R2323 + R1324)2,

2R1313 R1432 + R2
1313 + R2

1423 = (R1313 − R1423)2,

2R2424 R1432 + R2
2424 + R2

1432 = (R2424 − R1423)2.

We may use the Bianchi identity, R1423 = R1324 + R1234, in the last four terms to get

(R1414 + R1324)2 + (R2323 + R1324)2 + (R1313 + R1423)2 + (R2424 + R1423)2

= (R1414 + R1423)2 + (R2323 + R1423)2 + (R1313 + R1324)2 + (R2424 + R1324)2

− 2R1234(R1313 + R1414 + R2323 + R2424 − 2R1234) + 4R2
1234

= (R1414 + R1423)2 + (R2323 + R1423)2 + (R1313 + R1324)2 + (R2424 + R1324)2

− 2R1234K(P ) + 4R2
1234. (16)

And the fully mixed terms are dealt with as follows:

4R2
1234 − 8R1234 R1324 − 8R1234 R1432 = 4R1234(R1234 − 2R1324 − 2R1432) = −4R2

1234, (17)

where we used the Bianchi identity in the second line, R1432 + R1324 = R1234. Hence, the

evolution equation summing (13)–(17) and the term (R1212 + R2323)K(P ) (the term R2
1234

cancels precisely), we get the following evolution equation:

d

dt
K(P ) = d

dt
(R1313 + R1414 + R2323 + R2424 − 2R1234),

= (R1212 + R3434 − 2R1234)K(P ) + (R2323 − R1432)2 + (R1414 − R1432)2

+ (R2424 − R1324)2 + (R1313 − R1324)2 + (R1314 + R1323)2 + (R1424 + R2423)2

+ (R1413 − R1424)2 + (R1323 − R2324)2 + 2(R1214 − R1232)2 + 2(R2434 + R1343)2.

As K(P ) = 0 implies that

R1212K(P ) + R3434K(P ) − 2R1234K(P ) = 0,

we have the inequality

d

dt
K ≥ 0,

when we are at a minimal frame. By the maximum principle, this proves Theorem 4.1.
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10 H. T. Nguyen

Remark 4.2. We remark here that the above computation only made use of the two

facts: first, at a zero minimum, we have K(P ) = 0 and second that ∇K(P ) = 0. We did not

require the fact that ∇2
K is positive semidefinite.

Corollary 4.3. Let gij be a solution to the Ricci flow and suppose we have a space–time

frame {x, e1, . . . , e4} such that,

R1313 + R1414 + R2323 + R2424 − 2R1234 = K(P ) = 0

and ∇K(P ) = 0, that is

R1434 − R1232 − R3234 + R1214 = 0,

R1343 − R2124 + R4243 − R1213 = 0,

then d
dtK(P ) ≥ 0.

5 Five-Dimensional Isotropic Curvature

In this section, we prove that Ricci flow preserves positive isotropic curvature for

n = 5. This dimension differs from higher dimensions as there are no mixed terms,

that is, curvature terms that contain two vectors not lying on the minimal isotropic

plane.

Theorem 5.1. Let (M5, gij(t )) be a solution to the Ricci flow on [0, T ) such that the initial

metric (M5, gij(0)) has nonnegative isotropic curvature. Then (M5, gij(t )) has nonnegative

isotropic curvature.

5.1 First-order equalities and second-order inequalities

Let K(P ) denote the isotropic curvature of an isotropic plane P . At a space–time frame

maximum, we have the following equalities:

∇K =
∑
i, j

∂K

∂�i j
�i j = 0.
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Isotropic Curvature and the Ricci Flow 11

In the component form

1

2

∂K

∂�12
= 1

2

∂K

∂�34
= 0, (18)

1

2

∂K

∂�13
= 1

2

∂K

∂�24
= R2313 + R2414 − R1323 − R1424 = 0, (19)

1

2

∂K

∂�14
= 1

2

∂K

∂�23
= −R1213 + R3424 − R1334 + R1224 = 0, (20)

1

2

∂K

∂�15
= R1353 + R5414 − R5234 = 0, (21)

1

2

∂K

∂�25
= R5323 + R5424 − R1534 = 0, (22)

1

2

∂K

∂�35
= R1315 + R2523 − R1254 = 0, (23)

1

2

∂K

∂�45
= R1514 + R2524 − R1235 = 0. (24)

Furthermore, the following matrix is positive semidefinite:

∇2
K =

∑
i, j,k,l

∂2
K

∂�i j∂�kl
≥ 0.

We consider the matrix ∇2
K with respect to the basis � = [�15 �25 �35 �45 ], which we

will denote by M:

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−R1313 − R1414

+R3535 + R4545

+R1234

−R1323 − R1424
−R1535 − R2545

−R1434 + R2343

−R1545 + R2535

−R1343 − R2434

−R1323 − R1424

−R2323 − R2424

+R3535 + R4545

+R1234

−R3525 + R1545

−R2434 − R1343

−R2545 − R1535

−R3423 + R1434

−R1535 − R2545

−R1434 + R2343

−R3525 + R1545

−R2434 − R1343

−R1313 − R2323

+R1515 + R2525

+R1234

−R1314 − R2423

−R1545 + R2535

−R1343 − R2434

−R2545 − R1535

−R3423 + R1434

−R1314 − R2423

−R1414 − R2424

+R1515 + R2525

+R1234

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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12 H. T. Nguyen

Let

A = −R1535 − R2545, B = −R1434 + R2343,

C = −R1545 + R2535, D = −R1343 − R2434,

E = −R1323 − R1424, F = −R1314 − R2423.

The above matrix may be written succinctly as

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−R1313 − R1414

+R3535 + R4545

+R1234

E A+ B C + D

E

−R2323 − R2424

+R3535 + R4545

+R1234

−C + D A− B

A+ B −C + D

−R1313 − R2323

+R1515 + R2525

+R1234

F

C + D A− B F

−R1414 − R2424

+R1515 + R2525

+R1234

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (25)

Note that we will often use the shorthand Mi jkl = M(�i j, �kl ) to represent entries of the

second derivative matrix.

5.2 Evolution equation

We now turn to the evolution equation. First, we note that the five-dimensional isotropic

curvature evolution equation contains the four-dimensional isotropic evolution equation,

which by Proposition 4.3 is positive at a minimal frame. We will denote this by ∂
∂t K4 and

will only concern ourselves with terms involving the frame e5. The remaining curvature

terms have a very intriguing structure; they may firstly be separated into two types:

the first type contains curvatures that appear in the first derivatives and the second

type contains curvatures that only appear in the second derivative. The first type may be

further refined: one set has one first derivative term multiplied by the curvature term that

appears nowhere in the first or the second derivative (27). They are automatically zero at a

minimal frame. The second set has curvature terms that appear in a first derivative (28)–

(31), which turn out after some manipulation to be nonnegative at a minimum. The second

type (26), which contains only second derivatives, is crucial to the entire argument. It
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Isotropic Curvature and the Ricci Flow 13

contains good positive terms that may be written as a linear combination of diagonal

entries of the second derivative matrix and bad negative terms that are the off-diagonal

terms of the second derivative matrix. To control these terms, we must, of course, use the

semipositivity of the matrix. Note that the second derivative matrix has terms that are

linear in curvature whereas the nonlinearity is quadratic. We will overcome this later by

introducing a generalized determinant.

∂

∂t
K = ∂

∂t
K4 + (R1515 + R2525)(R3535 + R4545) − R2

1535 − R2
1545 − R2

2535 − R2
2545

− 2R1535 R2545 + 2R1545 R2535, (26)[
+ 2R1215(R3532 + R2454 + R3541 − R4531) + 2R1252(R1454 + R1353 + R3245 − R4235)

+2R3435(R1514 + R2425 + R1523 − R1325) + 2R3454(R1315 + R2325 + R1425 − R1524)

]
, (27)

+ 2R2
2534 + R2

2453 + R2
2354 − 4R2435 R3425 − 4R5234 R2345 + R2

3153 + R2
4154

− 2R1335 R2345 + 2R1445 R2435,
(28)

+ 2R2
5143 + R2

4153 + R2
3154 − 4R4153 R4351 − 4R3154 R3451 + R2

3253 + R2
4254

− 2R1435 R2445 + 2R1345 R2335,
(29)

+ 2R2
1253 + R2

5123 + R2
5213 − 4R2153 R2351 − 4R5213 R5312 + R2

5224 + R2
5114

− 2R1532 R2542 + 2R1541 R2531,
(30)

+ 2R2
1254 + R2

5124 + R2
5214 − 4R1254 R1542 − 4R1254 R1452 + R2

1315 + R2
2325

− 2R1531 R2541 + 2R1542 R2532.
(31)

We may rewrite the equation in terms of the first- and second-order quantities for K at

a minimal frame.

Claim 5.2. At a minimal space–time frame, the evolution equation above may be rewrit-

ten as

∂

∂t
K5 = ∂

∂t
K4 + 1

4
(M1515 + M2525)(M3535 + M4545) − A2 − C 2, (32)

+ R1215
∂K

∂�25
+ R1252

∂K

∂�15
+ R3435

∂K

∂�45
+ R3454

∂K

∂�35
, (33)

+ (R1353 + R2435)2 + (R1454 + R2354)2 + (R2454 + R1345)2 + (R2353 + R1435)2, (34)

+ (R2524 + R1352)2 + (R1415 + R1532)2 + (R1513 + R1542)2 + (R2523 + R1452)2. (35)
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14 H. T. Nguyen

Proof. Assuming that the isotropic curvature is zero, the term (26) follows easily,

M1515 + M2525 = −R1313 − R2323 + R1515 + R2525 + R1234 − R1414 − R2424 + R1515

+ R2525 + R1234 = 2(R1515 + R2525),

M3535 + M4545 = −R2323 − R2424 + R3535 + R4545 + R1234 − R1313 − R1414 + R3535

+ R4545 + R1234 = 2(R3535 + R4545),

and

A2 + C 2 = (R1535 + R2545)2 + (−R1545 + R2535)2

= R2
1535 + R2

1545 + R2
2535 + R2

2545 + 2R1535 R2545 − 2R1545 R2535.

This gives us term (32). Next, we will simplify term (28):

2R2
2534 + R2

2453 + R2
2354 − 4R2534(R2435 − R2345), (36)

+R2
3153 + R2

4154 + [−2R1335 R2345 + 2R1445 R2435]. (37)

Applying the Bianchi identity, R2345 + R2453 + R2534 = 0, to the term in the brackets, we

get

4R2534(R2345 − R2435) = −4R2
2534,

which allows us to simplify (36):

2R2
2534 + R2

2453 + R2
2354 − 4R2435 R3425 − 4R5234 R2345 = R2

2453 + R2
2354 − 2R2

2534.

Again, using the Bianchi identity, R2345 = R2435 − R2534, on the terms in (37), we get

2R1353 R2345 − 2R1454 R2435 = 2R1353(R2435 − R2534) − 2R1454(R2345 + R2534)

= 2R1353 R2435 − 2R1454 R2345 − 2R2534(R1353 + R1454)

= 2R1353 R2435 − 2R1454 R2345 + 2R2
2534, (38)

where the last line follows from

1

2

∂K

∂�15
= R1353 + R1454 − R5234 = 0 =⇒ R1353 + R1454 = −R2534.

Hence,

2R2
2534 + R2

2453 + R2
2354 − 4R2534(R2435 − R2345) + R2

3153 + R2
4154 − 2R1335 R2345 + 2R1445 R2435

= R2
2453 + R2

2354 − 2R2
2534 + 2R1353 R2435 − 2R1454 R2345 + 2R2

2534 + R2
1353 + R2

1454

= (R1353 + R2435)2 + (R1454 − R2345)2.
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Isotropic Curvature and the Ricci Flow 15

Terms (29)–(31) simplify by a similar argument,

2R2
1254 + R2

5124 + R2
5214 − 4R1254(R1542 + R1452) + R2

1315 + R2
2325 − 2R1531 R2541 + 2R1542 R2532

= (R1513 + R1542)2 + (R2523 − R1452)2,

2R2
1253 + R2

5123 + R2
5213 − 4R1253(R5213 − R2351) + R2

5224 + R2
5114 − 2R1532 R2542 + 2R1541 R2531

= (R2524 + R1352)2 + (R1415 − R1532)2,

and

2R2
5143 + R2

4153 + R2
3154 − 4R4351(R4153 − R3154) + R2

3253 + R2
4254 − 2R1435 R2445 + 2R1345 R2335

= (R2454 + R1345)2 + (R2353 − R1435)2.

This completes the proof of the claim.

By the advanced maximum principle, to prove that K5 is preserved by the Ricci

flow, it suffices to prove the following claim.

Claim 5.3. At a zero space-frame minimum, {x, e1, . . . , e5}, we have the following

inequality:

1

4
(M1515 + M2525)(M3535 + M4545) ≥ −A2 + C 2.

In order to prove this claim, we will introduce a method to extract quadratic

estimates from the semipositivity of the matrix M. First note that if a matrix M : V → V

is semipositive, then the tensor product M ⊗ M is positive semidefinite. Next, consider

the wedge product v ∧ w, which belongs to the space V ⊗ V ,

v ∧ w = 1√
2

(v ⊗ w − w ⊗ v).

Then we have

M ⊗ M(v ∧ w, v ∧ w) = M(v, v)M(w, w) − M(v, w)2 ≥ 0,

which is the determinant of a two-by-two submatrix. However, we can use sums of wedge

products of vectors to obtain more sophisticated estimates, which is what we will do

in the following. We now apply this to our positive semidefinite matrix M above with

V = so(5) and vectors v = �i j.
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16 H. T. Nguyen

Proof. Here, we will exploit the fact that M is positive semidefinite. We apply the

following vectors:

V−
1 = (�15 ∧ �35 − �25 ∧ �45),

V+
2 = (�15 ∧ �45 − �25 ∧ �35),

to the positive semidefinite matrix M ⊗ M, and we get the following inequalities:

M ⊗ M(V−
1 , V−

1 ),

M1515M3535 + M2525M4545 ≥ (A+ B)2 + (A− B)2 − 2(C + D)(−C + D) + 2E F

= 2A2 + 2B2 − 2(D2 − C 2) + 2E F , (39)

M ⊗ M(V+
2 , V+

2 ),

M1515M4545 + M2525M3535 ≥ (C + D)2 + (−C + D)2 + 2(A+ B)(A− B) − 2E F

= 2C 2 + 2D2 + 2(A2 − B2) − 2E F . (40)

Adding (39) to (40),

(M1515 + M2525)(M3535 + M4545) ≥ 4A2 + 4C 2. (41)

Proof (Proof of Theorem 5.1). By Claims 5.2 and 5.3, we see that at a minimal space

frame, we have

d

dt
K ≥ 0.

By the refined maximum principle, this shows that K5 is preserved by the Ricci flow.

6 Higher Dimensional Isotropic Curvature

In this section, we consider nonnegative isotropic curvature in dimensions six and higher.

Here, the nonlinearity contains curvature terms with two components that lie off the

minimal isotropic plane.

Theorem 6.1. Let (Mn, gij(t )) be a Ricci flow with initial nonnegative isotropic curvature.

Then (Mn, gij(t )) also has nonnegative isotropic curvature.
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Isotropic Curvature and the Ricci Flow 17

6.1 First- and second-order quantities

At a critical point, we have ∇K = 0. This gives us the following identities, 5 ≤ k ≤ n:

1

2

∂K

∂�12
= 1

2

∂K

∂�34
= 0,

1

2

∂K

∂�13
= 1

2

∂K

∂�24
= R2313 + R2414 − R1323 − R1424 = 0,

1

2

∂K

∂�14
= 1

2

∂K

∂�23
= −R1213 + R3424 − R1334 + R1224 = 0,

1

2

∂K

∂�1k
= R13k3 + Rk414 − Rk234 = 0,

1

2

∂K

∂�2k
= Rk323 + Rk424 − R1k34 = 0,

1

2

∂K

∂�3k
= R131k + R2k23 − R12k4 = 0,

1

2

∂K

∂�4k
= R1k14 + R2k24 − R123k = 0.

At a minimal point, we have ∇2
K ≥ 0. We consider the matrix M where ∇2 =

�t M�, where � is the basis

⎡
⎣�12 �13�14 �23 �24

n∑
k=5

�1k �2k �3k �4k

∑
k �=l,k>l

�kl

⎤
⎦ .

We will only require the part of matrix corresponding to

[�1k �2k �3k �4k �1l �2l �3l �4l ].

This has the following form:

M =
[

Mk Nkl

Nkl Ml

]
,
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18 H. T. Nguyen

where the individual matrices Mk, Ml , Nkl have the explicit form:

Mk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−R1313 − R1414

+R3k3k + R4k4k

+R1234

−R1323 − R1424
−R1k3k − R2k4k

−R1434 + R2343

−R1k4k + R2k3k

−R1343 − R2434

−R1323 − R1424

−R2323 − R2424

+R3k3k + R4k4k

+R1234

−R3k2k + R1k4k

−R2434 − R1343

−R2k4k − R1k3k

−R3423 + R1434

−R1k3k − R2k4k

−R1434 + R2343

−R3k2k + R1k4k

−R2434 − R1343

−R1313 − R2323

+R1k1k + R2k2k

+R1234

−R1314 − R2423

−R1k4k + R2k3k

−R1343 − R2434

−R2k4k − R1k3k

−R3423 + R1434

−R1314 − R2423

−R1414 − R2424

+R1k1k + R2k2k

+R1234

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and

Nkl =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R3k3l + R4k4l −Rkl34
R13kl + R1lk3

−Rk2l4

R14kl + R1lk4

−Rk23l

−Rlk34 R3k3l + R4k4l
Rkl23 + Rk32l

−R1lk4

R24kl + R2lk4

−R1k3l

R1kl3 + R13lk

−Rl2k4

Rlk23 + R2kl3

−R1lk4

R1l1k + R2k2l −R12kl

Rlk14 + R1kl4

−Rl23k

Rlk24 + R2kl4

−R1l3k

−R12lk R1k1l + R2k2l

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Using the following expressions:

Ak = −R1k3k − R2k4k, B = −R1434 + R2343,

Ck = −R1k4k + R2k3k, D = −R1343 − R2434,

E = −R1323 − R1424, F = −R1314 − R2423,
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Isotropic Curvature and the Ricci Flow 19

the first matrix may be rewritten as follows:

Mk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−R1313 − R1414

+R3k3k + R4k4k

+R1234

E Ak + B Ck + D

E

−R2323 − R2424

+R3k3k + R4k4k

+R1234

−Ck + D Ak − B

Ak + B −Ck + D

−R1313 − R2323

+R1k1k + R2k2k

+R1234

F

Ck + D Ak − B F

−R1414 − R2424

+R1k1k + R2k2k

+R1234

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (42)

6.2 Evolution equation

The evolution equation for the high-dimensional Ricci flow of isotropic curvature is

given by the following formula. As in the five-dimensional case, we group the terms

of the evolution equation according to whether they appear in the first or the second

derivative. For the second group of terms, we make a further subdivision. First, note

that we only have in any curvature term at most two vectors ek, el that appear off the

minimal frame. Group all the terms that appear with only one vector. These terms will

appear only in the matrix Mk and may be handled like in the five-dimensional case. The

remaining terms will contain curvature with two nonminimal vectors. They are precisely

the vectors that appear in the matrix Nkl . Using this, grouping the following evolution

equation is a straightforward but long computation:

∂

∂t
Kk = ∂

∂t
K4, (43)

n∑
k=5

[
1

4
(M1k1k + M2k2k)(M3k3k + M4k4k) − A2

k − C 2
k

]
, (44)

+
n∑

k=5

[
+R121k

∂K

∂�2k
+ R343k

∂K

∂�4k
+ R34k4

∂K

∂�4k
+ R34k4

∂K

∂�3k

]
, (45)
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20 H. T. Nguyen

+
n∑

k=5

⎡
⎢⎢⎢⎢⎢⎣

(R13k3 + R243k)2 + (R14k4 − R23k4)2

+(R24k4 + R134k)2 + (R23k3 − R143k)2

+(R2k24 + R13k2)2 + (R141k − R1k32)2

+(R1k13 + R1k42)2 + (R2k23 − R14k2)2

⎤
⎥⎥⎥⎥⎥⎦ , (46)

n∑
k,l=5,k �=l

[(Rk1l3 − Rl1k3)2 + (Rk2l4 − Rl2k4)2 + (Rl1k4 − Rk1l4)2 + (Rl2k3 − Rk2l3)2], (47)

− 2
n∑

k,l=5,k �=l

[(R1k3l + R2l4k)(R1l3k + R2k4l ) + (R1l4k − R2k3l )(R1k4l − R2l3k)], (48)

+ 2
n∑

k,l=5,k �=l

[R12kl Rkl34 − (R1k1l + R2k2l )(R3k2l + R4k4l )], (49)

− 2
n∑

k,l=5,k �=l

[(R1k3l R2l4k)(R1l3k + R2k4l ) + (R1l4k − R2k3l )(R1k4l − R2l3k)]. (50)

6.3 Proof of Theorem 6.1

To prove the main theorem, we use the same technique as in dimension five, but now we

must account for the cross terms. Fortunately, the vectors used in that proof work for

the higher dimensional case and the cross terms are precisely accounted for.

Proof. By applying the vectors

V−
1 =

n∑
k=5

[�1k ∧ �3k − �2k ∧ �4k],

V+
2 =

n∑
k=5

[�1k ∧ �4k + �2k ∧ �3k],

to the positive semidefinite matrix M ⊗ M, we get the following inequalities:

M ⊗ M(V−
1 , V−

1 ):

n∑
k=5

[M1k1kM3k3k + M2k2kM4k4k] ≥
n∑

k=5

[
M

2
1k3k + M

2
2k4k − 2M1k4kM3k2k − 2M1k2kM3k4k

]

+ 2
n∑

k,l=5,k �=l

[M1k3lM3k1l − M1k1lM3k3l ] − 2
n∑

k,l=5,k �=l

[M1k4lM3k2l − M1k2lM3k4l ]

− 2
n∑

k,l=5,k �=l

[M2k3lM4k1l − M2k1lM4k3k] + 2
n∑

k,l=5,k �=l

[M2k4lM4k2l − M2k2lM4k4l ], (51)
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M ⊗ M(V+
2 , V+

2 ):

n∑
k=5

[M1k1kM4k4k + M2k2kM3k3k] ≥
n∑

k=5

[
M

2
1k4k + M

2
2k3k + 2M1k3kM4k2k − 2M1k2kM4k3k

]

+ 2
n∑

k,l=5,k �=l

[M1k4lM4k1l − M1k1lM4k4l ] + 2
n∑

k,l=5,k �=l

[M1k3lM4k2l − M1k2lM4k3l ]

+ 2
n∑

k,l=5,k �=l

[M2k4lM3k1l − M2k1lM3k4l ] + 2
n∑

k,l=5,k �=l

[M2k3lM3k2l − M2k2lM3k3l ]. (52)

Consider the sum of (51) and (52), the first terms on the left-hand side and the right-hand

side of the inequality sum to

(M1k1k + M2k2k)(M3k3k + M4k4k) ≥ M
2
1k3k + M

2
2k4k − 2M1k4kM3k2k − 2M1k2kM3k4k

+ M
2
1k4k + M

2
2k3k + 2M1k3kM4k2k − 2M1k2kM4k3k

= 4A2
k + 4C 2

k . (53)

The remaining terms simplify as follows:

−2M1k2lM4k3l + 2M2k1lM4k3l + 2M1k2lM3k4l − 2M2k1lM3k4l

= 2(M1k2l − M1l2k)(M3k4l − M4k3l )

= 8R12lk Rlk34, −2M1k1lM4k4l − 2M2k2kM3k3l − 2M1k1lM3k3l − 2M2k2lM4k4l

= −8(R1k1l + R2k2l )(R3k3l + R4k4l ),

M1k3lM4k2l + M1k3lM3k1l + M1k4lM4k1l − M1k4lM3k2l

+ M2k4lM1l3k + M2k4lM4k2l + M2k3lM3k2l − M2k3lM4k1l

= (M1l3k + M4k2l )(M1k3l + M2k4l ) + (M3k2l − M1l4k)(M2k3k − M1k3l ).

Using the Bianchi identity, we see that

M1l3k + M4k2l = R1kl3 − R13lk − Rl2k4 + Rlk24 + R2kl4 − R1l3k = 2R1lk3 + 2R2kl4.

Repeating for the M1k3l + M2k4l term, we get the equality

(M1l3k + M4k2l )(M1k3l + M2k4l ) = 4(R1kl3 + R2kl4)(R1lk3 + R2lk4).
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22 H. T. Nguyen

After combining these various inequalities, we have

n∑
k=5

[
1

4
(M1k1k + M2k2k)(M3k3k + M4k4k) − A2

k − C 2
k

]

≥ +2
n∑

k,l=5,k �=l

[(R1k3l + R2l4k)(R1l3k + R2k4l ) + (R1l4k − R2k3l )(R1k4l − R2l3k)]

− 2
n∑

k,l=5,k �=l

[R12kl Rkl34 − (R1k1l + R2k2l )(R3k2l + R4k4l )]

+ 2
n∑

k,l=5,k �=l

[(R1k3l R2l4k)(R1l3k + R2k4l ) + (R1l4k − R2k3l )(R1k4l − R2l3k)]. (54)

Hence, (54) shows that the sum of (44), (48), (49), and (50) is nonnegative. As the remaining

terms are strictly positive, at a space–time frame minimum, the following inequality

holds:

d

dt
Kk ≥ 0.

Applying the refined maximum principle, we can conclude that Kk is preserved by the

Ricci flow.
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