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Abstract Many plants respond to herbivory with an
increased production of extrafloral nectar (EFN) and/or vol-
atile organic compounds (VOCs) to attract predatory
arthropods as an indirect defensive strategy. In this study,
we tested whether these two indirect defences fit the opti-
mal defence hypothesis (ODH), which predicts the within-
plant allocation of anti-herbivore defences according to
trade-offs between growth and defence. Using jasmonic
acid-induced plants of Phaseolus lunatus and Ricinus com-
munis, we tested whether the within-plant distribution pat-
tern of these two indirect defences reflects the fitness value
of the respective plant parts. Furthermore, we quantified
photosynthetic rates and followed the within-plant transport
of assimilates with '3C labelling experiments. EFN secre-
tion and VOC emission were highest in younger leaves.
Moreover, the photosynthetic rate increased with leaf age,
and pulse-labelling experiments suggested transport of car-
bon to younger leaves. Our results demonstrate that the
ODH can explain the within-plant allocation pattern of both
indirect defences studied.
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Abbreviations

DMNT  (E)-4,8-dimethylnona-3,5,7-triene
EFN Extrafloral nectar

IAEA International Atomic Energy Agency
IRMS Isotope ratio mass spectrometry
LSD Least significant difference

JA Jasmonic acid

MeSA Methyl salicylate

ODH Optimal defence hypothesis

PAR Photosynthetic active radiation

PET Polyethyleneterephthalate

TMTT (E,E)-4,8,12-trimethyltrideca-1,3,7,1 1-tetraene
VBDB Vienna Peedee belemnite

vVOC Volatile organic compounds
Introduction

Herbivores exert an immense selection pressure on plants,
and the resulting arms-race has led to the evolution of an
enormous variety of plant defences against herbivores
(Walling 2000; Kessler and Baldwin 2002). Defences,
which directly target the performance or survival of the her-
bivore, are generally referred to as ‘direct’ defences. In
contrast, plant traits that do not directly affect the herbivore
but rather function via the attraction, nourishment or hous-
ing of predatory organisms, thereby increasing the preda-
tion pressure on herbivores, are termed ‘indirect’ defences
(Heil 2008). These plant defences, albeit often significantly
contributing to the plant’s ecological success, do however,
not come without fitness costs (Gulmon and Mooney 1986).
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From an evolutionary perspective, any organism should
respond to the resulting trade-offs in a way that maximises
its reproductive output and minimises any investment in
non-reproductive traits—even if they are essential for its
survival. One example for such an evolutionary optimisa-
tion response that is generally regarded as a cost-saving
strategy are herbivore-induced plant defences, which are
activated only in case of an herbivore attack (Karban and
Baldwin 1997; Dicke and Hilker 2003). The drawback of
inducible defences, however, is the lag-time, which is the
time required for the induction of the defence after the first
contact with the herbivore, during which the plant remains
vulnerable (Heil and Baldwin 2002; Zangerl 2003). Since
most plant defences are neither consistently expressed
throughout a plant’s life nor evenly distributed within a
plant (Zangerl and Rutledge 1996), several hypotheses have
been suggested to predict their phenotypic variation
depending on environmental or genetic factors (Karban and
Baldwin 1997; Herms and Mattson 1992; Stamp 2003).

The optimal defence hypothesis (ODH) states that
organisms evolved to allocate their defences in a way that
maximises fitness (McKey 1974, 1979; Rhoades 1979).
The underlying assumption is that defence is costly and
thus, the spatio-temporal patterns of an adaptive defence
allocation among plant parts should reflect the fitness-value
of these organs (McKey 1974, 1979). In other words, the
theoretical expectations of the ODH are that within a plant,
young, still developing leaves should be better defended
than older leaves.

However, physiological constraints may operate on
plants, thereby causing them to deviate from these theoreti-
cal predictions. Empirical tests of the ODH are therefore
required and many validating reports of this theory are
indeed known for direct defences (Zangerl and Rutledge
1996; Ohnmeiss and Baldwin 2000; Barto and Cipollini
2005). Very little information, however, is available on the
allocation pattern of indirect defensive strategies of plants.

This study aims at testing the predictions made by the
ODH for two particularly widespread indirect defence
traits: extrafloral nectar (EFN) and volatile organic com-
pounds (VOCs), which are both involved in mediating the
interaction between herbivore-damaged plants and mem-
bers of the third trophic level (Arimura et al. 2005; Heil
2008). By offering EFN as a carbohydrate-rich reward
(Bentley 1977; Koptur 1992) or by emitting VOCs that
indicate the increased presence of potential prey to preda-
tors and parasitoids (Turlings et al. 1990; Pare and Tumlin-
son 1997), plants defend themselves indirectly against
herbivores. Both EFN and VOCs are inducible traits, i.e.
their production rate increases in response to herbivory or
mechanical damage and this response is known to be regu-
lated by the octadecanoid pathway, in which the phytohor-
mone jasmonic acid (JA) plays a key role (Hopke et al.
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1994; Heil et al. 2001). Exogenous treatment of plants with
JA results in increased production rates of both EFN and
VOCs, which closely resemble the plant’s response induced
by herbivore feeding in terms of quality and quantity
(Dicke et al. 1999; Heil 2004).

We used lima bean (Phaseolus lunatus L., Fabacecae)
and castor (Ricinus communis L., Euphorbiaceae) as exper-
imental systems. Both plants bear extrafloral nectaries at
the petioles of their leaves. In addition, lima bean releases
VOC:s after herbivory or when treated with JA that attract,
e.g. carnivorous mites or parasitoid wasps under laboratory
conditions (Dicke et al. 1999). At its natural growing site,
JA-mediated EFN secretion has been shown to benefit the
plant (Heil 2004; Kost and Heil 2005, 2008). In R. commu-
nis, herbivore or mechanical damage is known to increase
EFN production (Wickers et al. 2001). In the present inves-
tigation, we used JA to induce the production of EFN (both
species) and VOCs (lima bean only) and tested the follow-
ing predictions, which are derived from the ODH:

1. Both constitutive (i.e. untreated) and induced levels of
EFN secretion and VOC emission are higher in
younger leaves.

2. The ontogenetic pattern of indirect defence production
(both EFN and VOCs) cannot be explained solely by
the photosynthetic rate of the respective leaves.

3. Allocation of these defences to younger leaves is medi-
ated by transporting newly assimilated carbohydrates
from older source to younger sink leaves.

Materials and methods
Plant material and growth conditions

Plants of P. lunatus L. (lima bean) were cultivated from
seeds derived from a native population growing in the
coastal area near Puerto Escondido in the state of Oaxaca,
Mexico. The parental plants have been used previously in
field experiments on indirect plant defences (Heil 2004;
Kost and Heil 2005, 2008). Ricinus communis L. plants
(castor oil plant) were grown from seeds (Weber Seeds,
Romhild, Germany) harvested from greenhouse-grown
plants. Growing conditions were 20-22°C, 30-55% humid-
ity during a 16 h photoperiod. Experiments were performed
with 4-week-old plants (i.e. 5-6 leaf stage for P. lunatus
and 4 leaf stage for R. communis). To study the ontogenetic
pattern, both plants were grown in Klasmann clay substrate
(Klasmann-Deilmann, Geeste, Germany). All experiments
were performed in the greenhouse.

Numbering of leaves was based on their age as assessed
by their insertion order into the main shoot. In P. lunatus,
leaf 1 was the youngest, still unfolding leaf, leaves 2 and 3
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were mostly unfolded, and leaves 4 and 5 were slightly to
completely hardened leaves, respectively (Fig. la). The
four leaves of R. communis were numbered accordingly
(Fig. 1d).

Measurement of EFN secretion rates

To ensure that no nectar was present at the onset of the
experiment, extrafloral nectaries were rinsed thoroughly
with tap water and allowed to dry. EFN secretion was quan-
tified one day after spraying either tap water (control treat-
ment) or an aqueous solution of 1 mM JA (JA treatment) on
all the leaves until runoff. Plants were treated twice at an
interval of 30 min and after that leaves were allowed to dry
for 1 h before plants were placed back into the greenhouse.
The EFN produced after 24 h was quantified as the amount
of secreted soluble solids (i.e. sugars and amino acids)
using a temperature-compensated refractometer (ATAGO
N-10E refractometer, Leo Kiibler GmbH, Karlsruhe,

Fig.1 a Numbering of
differentially aged leaves,

b ontogenetic variation of EFN
secretion rate (n = 9), and

¢ photosynthetic rate (n = 6), of
untreated and jasmonic acid
(JA)-induced Phaseolus lunatus
plants. d Numbering of
differentially aged leaves, e EFN
secretion rate (n = 7), and

f photosynthetic rate (n = 7) of
untreated and JA-induced

R. communis plants. EFN
secretion rate is given in
milligrams of soluble solids per

(a) Phaseolus lunatus

Germany) as described by Heil et al. (2000, 2001). EFN
was quantified as amount of soluble solids per dry weight
of the secreting leaf material per 24 h.

Measurement of photosynthetic rate

The photosynthetic rate was measured with a portable
open-mode photosynthesis system LI-6400 (LI-COR, Lin-
coln, NE, USA) using the 6400-15 Arabidopsis chamber on
leaves attached to the plant. Measurements were taken
between 9:00 a.m. and 2:00 p.m. using 360 ul 1=' CO, in
the reference stream under approximately 900 uyM m~2 s~
PAR.

Collection and analysis of VOCs
The VOC emission as a function of leaf age in lima bean

plants was measured by bagging all leaves individually in
PET hoses (Toppits® ‘Bratschlauch’, Melitta, Minden,

(d) Ricinus communis

. 2.0
g leaf dry weight per 24 h. The (b) C—IControl 6 (e) —IControl
net photosynthetic rate is given o =30 % 5 E=9A
as rates of CO, uptake in g —~ 151 ¢ c = b
pmol m~2 s~!. Due to the small S = 23 41
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size, the photosynthetic rate of g T 104 o 3
the youngest leaf could not be e g ’ 5 ] @ a
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significant differences between a ae 14 ab
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univariate ANOVA, P < 0.05). 20 = Control 14 S Control
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Germany) that do not emit detectable volatiles by them-
selves. VOCs emitted from each individual leaf were col-
lected continuously for 24 h on charcoal traps (1.5 mg
charcoal, Grinicher and Quartero, Daumazan sur Arize,
France) by pulling air at about 500 ml min~' using a 12 V
vacuum pump (Gast Manufacturing, Benton Harbor, MI,
USA). The traps were eluted with 2 x 20 pl of dichloro-
methane containing 200 ng pl~!' of 1-bromodecane as an
internal standard. The leaves were dried for dry weight
determination. VOC samples were analysed on a Thermo
Finnigan Trace GC-MS (Thermo, Bremen, Germany)
equipped with a fused silica Alltech ECS column
(15 m x 0.25 mm internal diameter x 0.25 pm film thick-
ness) using 1.5 ml min~! helium as carrier gas. Separation
was achieved under programmed conditions (45°C for
2 min, 10°C min™~" to 200°C, then 30°C min™~" to 280°C for
1 min; injector temperature: 220°C). MS analysis was per-
formed on a TraceMS in electron impact full-scan mode at
70 eV with source temperature at 200°C and GC interface
temperature at 280°C. Individual compounds were quanti-
fied with respect to the peak area of the internal standard
and related to the dry weight of the leaf. The ten most dom-
inantly emitted compounds, namely (Z)-3-hexenyl-acetate,
(E)-p-ocimene, (R)-(—)-linalool, (F)-4,8-dimethylnona-
1,3,7-triene (DMNT), (E)-2,6-dimethyloctatetraene (C,,H,,),
methyl salicylate (MeSA), 2,6-dimethyl-3,5,7-octatriene-2-ol
(C,0H;60), cis-jasmone, (E)-f-caryophyllene, and (E,E)-
4,8,12-trimethyltrideca-1,3,7,11-tetraene (TMTT), were
summed up to test for a putative effect of leaf position on
total VOC emission.

Labelling experiment

In order to follow the internal transport of newly assimi-
lated carbon, experiments were performed using syntheti-
cally premixed air containing '3CO, instead of '*CO, at a
natural concentration of 380 ppm. In all cases, the air with
13CO2 was purged for 24 h after induction with 1 mM JA
solution. For each plant, each of five leaves were bagged
individually in a PET hose (i.e. ‘Bratschlauch’, see above)
and in each case, one of the five leaves was purged with
labelled air, while all the other four leaves were purged
with normal air. After 24 h, the '*C content in the tissue of
all five leaves as well as in the EFN secreted from this leaf
was quantified using an isotope ratio mass spectrometer
(IRMS). This procedure was applied to a total of eight rep-
licates of four plants each, with one of the five leaves hav-
ing experienced the 13COZ-treatment until each leaf
position within the four-plant group had received the '*C
treatment once. Due to technical reasons, we focussed this
analysis on leaves in positions 1-3 and 5.

For IRMS measurements of EFN, nectar samples were
filled in small 0.04 ml tin capsules for liquid samples (d:
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3.5 mm, I: 5.5 mm; part. No. 184.9915.26, Liidi AG, Fla-
wil, Switzerland), dried in a desiccator filled with P,O5 as
drying agent, and weighed before further analysis. For the
solid leaf sample measurements, dried and powdered leaf
material was weighed in 0.07 ml tin capsules (d: 4.0 mm, 1:
6.0 mm; part. No. 176.1305.53, Liidi AG). Capsules were
sealed and combusted (oxidation at 1,020°C, reduction at
650°C) in a constant helium stream (80 ml min~') quantita-
tively to CO,, N,, and H,O using an elemental analyzer
(EuroEA CN2 dual, HEKAtech, Wegberg, Germany).
After passing a water trap (MgClO,), the gases were sepa-
rated chromatographically at 85°C and transferred via an
open split to a coupled isotope ratio mass spectrometer
(IsoPrime, Micromass, Manchester, UK). Our laboratory
working standard (acetanilide) has been calibrated on the
VPDB scale using IAEA reference material, NBS 22, with
a 0 °C value of —29.78%0 (Werner and Brand 2001). All
isotope ratios are given as 6 °C values: & C (%o) =
[(Rample/Rytandara) — 11 X 10%, where R corresponds to the
3C/'2C ratio of the sample and the standard.

Statistical analysis

All experiments were analysed with linear mixed-effect
models with ‘treatment’ as fixed and ‘plant individual’ as
random factor. Values of EFN secretion and total VOC
emission have been log-transformed to meet the test
assumptions of normality and homogeneity of variances.
Global LSD post hoc tests were applied to the measured
values for EFN secretion, VOC emission, and photosyn-
thetic rates to test for between-group differences between
all factor combinations of leaf position and treatment. All
statistical analyses were performed using SPSS 13.0 (SPSS
Inc., Chicago, IL, USA). To control for multiple testing in
comparing qualitative differences in the VOCs blend with
leaf age, false-discovery rate (FDR) procedure was used.

Results
Ontogenetic pattern of EFN production

In both, P. lunatus and R. communis, the youngest leaf (i.e.
leaf position 1) secreted the highest amount of EFN in
undamaged controls as well as in JA-treated plants and the
EFN secretion rate significantly decreased with leaf age
(Fig. 1b, e, LSD post hoc test after univariate ANOVA:
P <0.01, n=9 and 7, respectively). In case of lima bean,
the mean amount of EFN secreted from the youngest leaf
exceeded that of the oldest leaf about fivefold. In this spe-
cies, the two youngest leaves secreted on average two times
more EFN than the two older leaves. An analysis of the
inducibility with respect to leaf age indicated that in both
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plant species the youngest leaf did not only show the high-
est level of constitutive EFN secretion, but was also induc-
ible to higher defence levels than the older leaves (LSD
post hoc test after univariate ANOVA, P<0.05, n=9 in
lima bean and n = 7 in R. communis).

Ontogenetic pattern of photosynthetic rate

Quantification of the photosynthetic rate indicated that
younger leaves showed a lower gas exchange capacity than
older ones in both control and JA-treated plants (Fig. 1c, f,
LSD post-hoc test after univariate ANOVA: P<0.02,n=6
and 7, respectively), thus indicating a negative relation
between EFN production and photosynthetic capacity. JA
treatment did not significantly alter the photosynthetic rate
in both plant species investigated (univariate ANOVA,
P >0.05, n =7 in lima bean and n = 6 in R. communis).

Labelling experiment

Due to the absence of a positive relation between photosyn-
thetic rate and EFN secretion (Fig. 1), we hypothesized that
there should be a flow of photosynthates within the plant
from older source to younger sink leaves. In labelling
experiments with lima bean plants, in which one of five
leaves was purged with artificial air containing 13CO2 at
380 ppm while the other leaves were treated with natural
air for 24 h, we measured the '3C/'?C-ratios of the EFN
from each leaf (Fig. 2a) and the corresponding leaf tissue
(Fig. 2b). After labelling leaf 1, no increased *C concentra-
tion in the tissues as well as EFN of the untreated leaves
was observed. Treatment of leaves 2 and 3 showed for
some replicates a clear, but for others only a slightly
increased incorporation of '3C into the younger leaves 1 or
1 and 2, respectively. In no case was a downstream trans-
port, i.e., from the younger (1-3) to older (4-5) leaves,
observed. The 6'*C values of downstream leaves were in all
experiments close to the natural abundance level (—20 to
—30%o; i.e. values of control plants). Labelling of leaf 5 led
to a strong incorporation of '*C in the tissues and the EFN
of leaves 3, 2 and 1. The incorporation of 13C in the leaf
material was strongest in the most distal leaf number 1 and
decreased continuously with increasing leaf age (i.e. the
level of incorporation followed the leaf order
5% > 1>2>3>4, * =labelled leaf).

No increase of '*C in the tissue and the EFN of leaf 4
could be detected, not even after treatment of leaf 5. In all
experiments, the 6'>C values of leaf 4 were in the range of
the natural abundance level. The amount of *C incorpo-
rated into EFN was on average about ninefold higher than
that observed for the leaf tissue. Taken together, this exper-
iment revealed a unidirectional transport of photosynthates
from older source to younger sink leafs. Furthermore, no

photosynthetic products were transported to leaf 4 and no
transport occurred downstream to older leaves.

Ontogenetic pattern of VOC emission

Volatile organic compounds emitted from individual leaves
were collected from uninduced controls and JA-treated
lima bean plants and compared among leaf positions
(Fig. 3). The total amount of VOCs released after induction
from young leaves was significantly higher than the
amounts emitted from older leaves (LSD post hoc test after
univariate ANOVA, P <0.01, n=28). Constitutive VOC
emission levels, however, were extremely low in leaf num-
ber 1 and virtually absent in all other leaves (Fig. 3). JA
induction significantly increased the total VOC emission of
leaves 1 and 2 over that of the older leaves 3, 4, and 5 (uni-
variate ANOVA, P <0.01, n=28). Similar to our observa-
tion for the EFN secretion, the youngest lima bean leaf
showed both the highest level of constitutive VOC emis-
sion and was inducible to higher levels than all the older
leaves. Qualitative changes among differently aged leaves
were observed in some of the main constituents of the emit-
ted VOC blend (Fig.3b, FDR-corrected univariate
ANOVA: P <0.03, n=38). No significant difference was
observed in levels of (Z)-cis-3-hexenyl acetate, MeSA,
p-caryophyllene and TMTT emitted with leaf positions. In
general, younger leaves (leaf positions 1-3) emitted more
volatiles than the older leaves (leaf positions 4-5).

Discussion

The ODH predicts that the spatial allocation of defensive
traits within a plant should favour more valuable and vul-
nerable plant parts (McKey 1974, 1979; Rhoades 1979). In
line with these predictions, the young leaves of both lima
bean and castor showed the highest level of the two indirect
defences, EFN secretion and VOC emission (Figs. 1b, e, 3).
Young leaves are generally important for future plant
fitness since they already have caused high construction
costs without having contributed very much yet to the
plant’s pool of photo-assimilates. Consequently, they have
the highest future life span and can therefore be expected to
contribute bulk to the prospective photosynthetic assimila-
tion. Moreover, very young leaves usually still lack effec-
tive mechanical defences (Harper 1989) and indeed it has
been shown for several plant species that young leaves,
which are more nutritious (Slansky 1993), suffer more from
herbivory than older ones within the same plant (Kursar
and Coley 1991; Boege and Marquis 2006). Our results
show that the young leaves are defended more, both before
and after induction (Fig. 1). This observation is in line with
the interpretation that EFN and VOCs are allocated based
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on the value and probability of attack of the leaves, as pre-
dicted by the ODH (Anderson and Agrell 2005). Also in the
lima bean, which is a cyanogenic plant species, similar pat-
terns have already been demonstrated for its direct defence,
as young leaves were characterised by increased amounts
of cyanide-containing precursors and higher capacities to
release HCN per time unit than mature leaves (Ballhorn
et al. 2005).

Our study lends support to previous findings where more
valuable plant parts showed increased defence levels upon
herbivore feeding (Heil et al. 2000; Wickers and Bonifay
2004; Rostas and Eggert 2008). Furthermore, it is known that
in myrmecophytes, ants preferably patrol and defend young
leaves (Heil et al. 2001). In obligate ant-plants, however, this
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pattern is not necessarily caused by the spatial distribution of
ant rewards (i.e. food bodies and EFN; Heil et al. 1997), but
could also be achieved by special behavioural adaptations of
the ants (Heil et al. 2004). In contrast, optimal distributions
of defenders in facultative interactions with unspecialised
animals require that the plants distribute the attractive traits
accordingly (Downhower 1975; Heil et al. 2000).

Indeed, the overall emission rate of VOCs increased
from young to older leaves, while the qualitative composi-
tion of the emitted blend changed only slightly. Both the
quantitative and qualitative emission of VOCs have been
shown to be highly variable depending on several interact-
ing factors such as plant and herbivore species, type of
damage (chewing vs. piercing-sucking) and abiotic factors
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Fig. 3 a Ontogenetic variation a
of the total VOC emission
(mean + 95% CI) of lima bean
plants (n = 8). The amount of
emitted VOCs is given as peak
area (A,,) relative to the peak
area of an internal standard (Ag)
per 24 h per g leaf dry weight.
Different letters denote signifi-
cant differences between groups
(global LSD post hoc for all fac-
tor combinations between leaf
position and treatment after uni-
variate ANOVA, P <0.05). b
Mean (£ 95% CI) relative
amounts of volatiles emitted by
JA-treated plants as determined
by the ratio of peak area of the
particular compound (Ayqc) to 0
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leaf positions as determined with
a FDR-corrected univariate
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nyl acetate, 2 ocimene, 3 (R)-lin-
alool, 4 DMNT, 5 C,jH,, 6
methyl salicylate, 7 C,(H,40, 8
cis-jasmone, 9 -caryophyllene,
10 TMTT
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"

VOC emission (AvocAis™ 24h™ g™)
o
3

like rainfall and light intensity (for review, see Arimura
et al. 2005). Our finding that VOCs are emitted more from
younger leaves could be interpreted as a strategy of a direc-
tional attraction of parasitoids or other arthropod predators
to younger leaves (Hazarika et al. 2007)—a hypothesis that
remains to be tested in future studies.

The consistent release patterns of EFN and VOCs give
rise to the question whether both traits contribute equally to
the plant’s protection. Since it was recently shown for lima
bean that VOCs act as airborne signals and induce EFN
secretion in undamaged plant parts (Kost and Heil 2006;
Heil and Silva Bueno 2007), an alternative scenario to the
defense hypothesis could be that the primary function of the
emitted VOCs is to induce EFN. In this case, parasitoids
and other insect predators learning to associate increased
VOC levels with an increased presence of herbivores could
be a secondary function of the emitted VOCs.

Furthermore, the cost of these two indirect defences
remains elusive, though VOCs have been estimated to

'O Leaf 1
§|a Leaf 2
0 Leaf 3
‘N Leaf4
‘M Leaf5

cause low costs in corn plants (Hoballah et al. 2004). VOCs
and EFN are carbon-based defences and thus might even
compete for a common pool of metabolites. The amount of
VOCs emitted ranges orders of magnitudes below the
amount of carbohydrates that is secreted as EFN. In case of
the lima bean for example, a young leaf emits only 1.9 ng/
24 h g~! dry weight of mainly carbon-based VOCs, while
the same leaf secretes 1.3 mg EFN/24 h g~! dry weight as
sugars. It is thus likely that EFN accounts for higher meta-
bolic costs than VOCs. However, further investigation is
needed to fully understand the partitioning of plant metabo-
lites for these two indirect defences and future studies must
be directed to assess these costs and benefits of both VOC
emission and EFN secretion under different herbivore pres-
sures and inductive situations.

Despite being shaped by evolution as an adaptive
response, the spatio-temporal distribution of defence traits
within plants has to obey limitations in organ-wide or plant-
wide resource availabilities. EFN and VOCs are primarily
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carbon-based defences, and differences in photosynthetic
C-assimilation among organs may thus also cause different
production rates of these defensive traits. However, pat-
terns in C-assimilation did not entirely match those
observed for EFN and VOCs production, as older leaves
were generally characterised by higher photosynthetic rates
than younger leaves. On average, younger leaves showed a
negative photosynthesis (Fig. 1c, ), i.e. respiration rate was
higher than the rate of C-assimilation.

Leaf photosynthesis is the main source for the sugars
secreted as EFN (Wardlaw 1990). Young, still developing
leaves were characterised by low photosynthetic rates
(Fig. 1c, f) and presumably had very low reserves for pro-
ducing defensive compounds (Larson and Gordon 1969).
Thus, they act as physiological sinks and import nutrients
until they become competent enough to synthesize defence
compounds on their own (Lalonde et al. 2004). Indeed, our
13C labelling experiment in lima bean plants indicated a net
transport of C assimilated by leaf 5 to younger leaves (1-3;
Fig. 2) when all leaves were treated with JA. This result
illustrates the transport of photosynthates within the plant
from mature to young leaves, where protection is most
essential. This finding is in line with previous studies show-
ing that plants can metabolically reorganize in response to
herbivory by reallocating resources to growing plant parts
(Strauss and Agrawal 1999; Hui et al. 2003) as well as by
making younger leaves stronger sinks for defensive metab-
olites (Arnold and Schultz 2002).

Transport of photosynthates depends on the vascular
architecture, and studies have shown that the systemic
induction of plant defences can depend on the way the
leaves are connected by the vascular system (Davis et al.
1991; Orians et al. 2000; Schittko and Baldwin 2003; Ori-
ans 2005; Gomez and Stuefer 2006). In our study, we mim-
icked herbivory on a plant-wide level by spraying JA on all
leaves. In this inductive situation, all the observed pattern
could be explained with the ODH.

In summary, we have tested the predictions made by the
ODH for two of the most widely distributed indirect plant
defences, secretion of EFN and emission of VOCs. We have
shown that the plant’s induced defensive strategy involves
channelling resources in a way that maximises the protection
of its most valuable parts. This result is consistent with the
ODH in that the youngest leaf, which is a greater contributor
towards future plant fitness, enjoys higher defence levels by
importing carbohydrates from older leaves. To our knowl-
edge, this is the first report verifying that the within-plant
distribution pattern of these two indirect defences does not
simply reflect patterns of carbon assimilation, but actually
represents an optimal defence strategy.
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