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Motivated by the increasing interest in models which consider scalar fields as viable dark matter

candidates, we have constructed a generalization of relativistic boson btars (BS) composed of two

coexisting states of the scalar field, the ground state and the first excited state. We have studied the

dynamical evolution of these multistate boson stars (MSBS) under radial perturbations, using numerical

techniques. We show that stable MSBS can be constructed, when the number of particles in the first

excited state, Nð2Þ, is smaller than the number of particles in the ground state, Nð1Þ. On the other hand,

when Nð2Þ >Nð1Þ, the configurations are initially unstable. However, they evolve and settle down into

stable configurations. In the stabilization process, the initially ground state is excited and ends in a first

excited state, whereas the initially first excited state ends in a ground state. During this process, both states

emit scalar field radiation, decreasing their number of particles. This behavior shows that even though BS

in the first excited state are intrinsically unstable under finite perturbations, the configuration resulting

from the combination of this state with the ground state produces stable objects. Finally we show in a

qualitative way, that stable MSBS could be realistic models of dark matter galactic halos, as they produce

rotation curves that are flatter at large radii than the rotation curves produced by BS with only one state.
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I. INTRODUCTION

The existence of dark matter (DM) in the Universe is
strongly supported by astronomical observations that range
from galactic up to cosmological scales (see for example
[1] and references therein). Observations indicate that stars
rotate too fast around the center of the galaxy to be bound
by Newtonian gravity if all matter is visible [2,3]. This
issue, known as the rotation curves (RC) problem, implies
within the context of Einstein’s general relativity, that a
great amount of the matter in the galaxy is invisible. The
nature of this dark matter, that has a negligible interaction
with the visible matter and whose presence is only ob-
served trough its gravitational effects, is still unknown. The
most popular candidate are the so-called weakly interact-
ing massive particles (WIMPs) [4,5], leading to the stan-
dard cold dark matter model. This scenario is very
successful at a cosmological level, as its predictions are
in good agreement with the observational data [6,7].
However, it has difficulties in fitting the observations at a
galactic level [8–12]. If DM is modeled by WIMPs, one
obtains a cuspy density profile of the DM in the galaxy. But
high resolution data of low surface brightness galaxies,
which are composed mainly of DM, imply that their DM
distribution has a flat core [10,11]. This model also fails in
predicting the number of satellite galaxies around each
galactic halo, exceeding far beyond what is observed
around the Milky Way [12].

A different approach consists in describing the dark
matter as a scalar field [13–15]. The scalar field dark matter
(SFDM) model has been proved to be successful at cos-

mological scales [16]. This model can also avoid the
problems that WIMPs present at a galactic level, producing
a noncuspy density profile [16–18] and explaining the
dearth of satellite galaxies around each galactic halo
[16]. Because of the viability presented by the SFDM
model, it is stimulating to go further on testing it. For
instance, the model has to reproduce the observed RC of
galaxies. At this point boson-star-like objects could play an
important role.
In the SFDM model, the dark matter particle is an

ultralight massive spinless boson (m� 10�23 eV [16]).
These bosons could collapse forming gravitationally
bounded structures. With such ultralight mass, the boson’s
Compton wave length is of the order of kilo-parsecs, and
structures with comparable length scales—like galactic
halos—could be formed as condensates described by a
coherent scalar field [19]. These condensates can be asso-
ciated with boson stars (BS), which are solutions of the
Einstein-Klein-Gordon equations where the gravity attrac-
tion is balanced by the dispersive character of the scalar
field [20,21]. BS were first studied by Kaup [22] and a year
later by Ruffini and Bonazzola [23], who settled two differ-
ent treatments. The first one, developed in [22], is a com-
pletely classical treatment with a massive complex scalar
field minimally coupled to gravity. In the second one [23],
a real quantized scalar field is introduced in order to
describe a many boson system though maintaining the
geometry as a classical entity (i.e., a semiclassical limit
is adopted). The relevant quantity computed in this case is

the mean value hQjT̂��jQi of the energy-momentum tensor
operator, where jQi is the state of the system of many
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particles. When one considers a jQi for which all the
particles are in the same state, it turns out that the mean

value of T̂�� generates the same energy-momentum tensor

as the complex classical field and consequently, the same
macroscopic results, i.e. both a quantized real scalar field
and a classical complex scalar field yield to the same self-
gravitating system.

Until very recently, only boson stars with all the particles
in one state have been considered. However, Newtonian
configurations with scalar fields coexisting in the ground
and excited states were introduced in [24] in order to model
dark matter halos. Previous studies in modeling dark mat-
ter halos using Newtonian BS were done in [25–29].
However, these structures can not account for a realistic
halo since the configurations in the ground state produce
RC which are not flat enough at large radii. The case of a
massless scalar field used in order to fit rotation curve data
of several galaxies was considered in [30]. Nevertheless, it
has been proved in [31,32] that no nonsingular self-
gravitating solitonic objects can be formed with a massless
scalar field. On the other hand, RC from excited BS are in
better agreement with the astrophysical observations, but
these structures are unstable [33].

In [34] it was shown that Newtonian mixed configura-
tions could account for more realistic DM halos, as they are
stable and could fit with better agreement the observed RCs
even at large radii. In the present work, we are interested in
the fully relativistic generalization of these MSBSs. The
idea is to consider the possibility that the bosons are not all
in the same state, but rather populating different coexisting
states, as was already pointed out in [23]. It turns out (see
[23] and Appendix A) that the resulting equations for a
MSBS in the semiclassical approach are equivalent to the
case where a collection of complex classical scalar fields is
considered, one for each state, which are only coupled
through gravity. Without any loss of generality, we can
choose either the semiclassical formulation of such MSBS
or its pure classical counterpart. We will follow the latter
approach in order to investigate MSBS, analyzing in detail
the properties and stability of configurations with two
states, a ground state and a first excited state.

The previous stability studies of BS can be divided
roughly in two categories, depending on the type of per-
turbations considered:

(1) Studies where the perturbations preserve the number
of particles (infinitesimal perturbations), which gen-
erally involve linear perturbation analysis [35,36]
and catastrophe theory [37].

(2) Those where the perturbations do not conserve the
number of particles (finite perturbations), which
have been addressed mainly by numerical studies.
[33,38,39]. Furthermore, the late time evolution of
unstable boson star under finite perturbation can
only be followed by numerical simulations.

A consistent result coming from both type of studies is that

BS in the ground state are stable against perturbations if the
amplitude of the scalar field at the origin �ð0Þ is smaller
than the critical value �maxð0Þ where the maximum mass
Mmax is reached. In the case of excited BS there are some
important differences. Although the linear stability analy-
sis shows stability up to the critical value �maxð0Þ [21,36]
when the number of particles is not conserved, excited BS
are intrinsically unstable even for �ð0Þ � �maxð0Þ, since
finite perturbations drive the star either to collapse to a
black hole or to decay to the ground state [33,36].
From these results one could infer that the MSBS states

would be unstable under perturbations when the number of
particles is allowed to change, since they contain at least
one excited state. Quite surprisingly, our numerical analy-
sis shows that there is a region of the solution space with
stable configurations. Roughly speaking, the ground state
produces a deeper gravitational potential which can be
enough to stabilize the excited state.
This paper is organized as follows. In Sec. II, we present

the formalism used for the numerical evolution of the
Einstein-Klein-Gordon system, describing a MSBS in the
classical approximation. Section III describes how the
initial data for a MSBS with two different states is con-
structed. In Sec. IVA, we present numerical results ob-
tained from the evolution of the two-state boson stars. We
study two features of the evolution, namely, the stability
and the late time behavior. In both cases, we add an small
perturbation. In the first case, the perturbed MSBS is
evolved for short time scales, in order to study the behavior
of the perturbations. In the second case, we evolve unstable
MSBS for longer times following the properties of the
resulting configurations. We compute in Sec.n V RC
from stable MSBS and discuss qualitatively why these
RC are in better agreement with the observed RC of
galaxies. We conclude in Sec. VI. The description of the
semiclassical approach is presented in Appendix A, while
Appendix B is devoted to a detailed description of the
evolution equations used for numerical evolution.

II. THE EINSTEIN-KLEIN-GORDON SYSTEM

Let us consider a semiclassical real massive scalar field
with P different excited states, which is equivalent to
considering a collection of P classical complex scalar
fields (one for each state) coupled only through gravity.
In a curved spacetime, the dynamics of these MSBS can be
described by the following Lagrangian density (adopting
geometrical units, i.e. G ¼ c ¼ @ ¼ 1),

L ¼ � 1

16�
Rþ XP

n¼1

1

2
½gab@a ��ðnÞ@b�ðnÞ þ Vðj�ðnÞj2Þ�;

(1)

where R is the Ricci scalar, gab is the spacetime metric,

�ðnÞ are the scalar fields, ��ðnÞ their complex conjugate, and

Vðj�ðnÞj2Þ a potential depending only on j�ðnÞj2.
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Throughout this paper, Roman letters from the beginning
of the alphabet a; b; c; . . . denote spacetime indices ranging
from 0 to 3, while letters near the middle i; j; k; . . . range
from 1 to 3, denoting spatial indices. This Lagrangian gives
rise to the equations determining the evolution of the
metric (Einstein equations) and those governing the scalar
fields behavior (Klein-Gordon equations).

The variation of the action associated with the
Lagrangian (1) with respect to the metric gab, leads to
the well-known Einstein equations

Rab � R

2
gab ¼ 8�Tab; (2)

where Rab is the Ricci tensor. Tab is the total stress-energy
tensor, given by the addition of the single stress-energy
tensors of each scalar field, namely

Tab ¼ XP
n¼1

Tab
ðnÞ; (3)

Tab
ðnÞ ¼ 1

2
½@a ��ðnÞ@b�ðnÞ þ @a�

ðnÞ@b ��ðnÞ�

� 1

2
gab½gcd@c ��ðnÞ@d�ðnÞ þ Vðj�ðnÞj2Þ�: (4)

The Einstein equations form a system of 10 nonlinear
partial differential equations for the spacetime metric com-
ponents gab.

On the other hand, the variation of the Lagrangian (1)

with respect to each scalar field�ðnÞ, leads to a set of Klein-
Gordon (KG) equations which are only coupled through
the gravity,

h�ðnÞ ¼ dV

dj�ðnÞj2 �
ðnÞ; (5)

where the box h ¼ gabrarb stands for the wave operator
on a curved background. In the following, we will restrict
ourselves to the free field case, where the potential takes
the form

Vðj�ðnÞj2Þ ¼ m2j�ðnÞj2; (6)

with m a parameter that can be identified with the bare
mass of the field theory.

The matter Lagrangian is invariant under global U(1)
transformations

�ðnÞ ! �ðnÞei’ðnÞ
: (7)

This symmetry implies that there is a set of Noether

currents densities JðnÞa ,

JðnÞa ¼ i

2

ffiffiffiffiffiffiffi�g
p ½ ��ðnÞ@a�ðnÞ ��ðnÞ@a ��ðnÞ�; (8)

satisfying for each n the conservation law raJðnÞa ¼ 0. The
Noether charge contained in some radius is given by

NðnÞðrÞ ¼
Z r

0
g0aJðnÞa dx3; (9)

so that the total Noether charge of the system N is the sum

of the total individual ones NðnÞ � NðnÞð1Þ, namely

N ¼ XP
n¼1

NðnÞ: (10)

As discussed in [23], this quantityN can be associated with

the total number of bosonic particles. Consequently, NðnÞ
can be interpreted as the number of particles in the state
labeled by n.

III. INITIAL DATA FOR MULTISTATE BOSON
STARS

The initial data for the MSBS configurations is com-
puted in spherical symmetry with a one-dimensional code.
We adopt the following harmonic ansatz for each scalar
field,

�ðnÞðt; rÞ ¼ �nðrÞe�i!nt: (11)

With this assumption, the source for the Einstein equations
becomes time independent. Our goal is to find f�nðrÞ; !ng
and the metric coefficients, such that the spacetime gen-
erated by this matter configuration is static.
We begin by considering the problem in polar-areal

coordinates [22,40]. The line element in these coordinates
takes the form

ds2 ¼ ��ðrÞ2dt2 þ aðrÞ2dr2 þ r2d�2: (12)

Then the equilibrium equations, obtained by substituting
the ansatz (11) and the metric (12) in the Einstein-Klein-
Gordon system (2) and (5), are given by

@ra ¼ a

2

�
�a2 � 1

r
þ 4�r

XP
n¼1

��
!2

n

�2
þm2

�
a2�2

n þ�2
n

��
;

(13)

@r� ¼ �

2

�
a2 � 1

r
þ 4�r

XP
n¼1

��
!2

n

�2
�m2

�
a2�2

n þ�2
n

��
;

(14)

@r�n ¼ �n; (15)

@r�n ¼ �
�
1þ a2 � 4�r2a2m2

�XP
s¼1

�2
s

��
�n

r

�
�
!2

n

�2
�m2

�
�na

2: (16)

In order to obtain a solution of this system, we provide
the following boundary conditions, motivated by the physi-
cal situation under study,
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�nð0Þ ¼ �cn; (17)

�nð0Þ ¼ 0; (18)

að0Þ ¼ 1; (19)

lim
r!1�nðrÞ � 0; (20)

lim
r!1�ðrÞ ¼ lim

r!1
1

aðrÞ ; (21)

which guarantee regularity at the origin and asymptotic
flatness. For given central values of the fields f�cng, we
only need to adjust the eigenvalues f!ng and the value �ð0Þ
in order to generate a solution with the appropriate asymp-
totic behavior (20) and (21). This is a shooting problem
that we solve by integrating from r ¼ 0 towards the outer
boundary r ¼ rout, with a second order shooting method.
The boundary conditions for the scalar fields at rout are
imposed considering that localized solutions decrease

asymptotically as �n � expð� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 �!2

n

p
rÞ=r in a

Schwarzschild-type asymptotic background. At the outer
boundary, the conditions are

�nðroutÞ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 �!2
n

q
þ 1

r2out

�
þ�nðroutÞ ¼ 0: (22)

The shooting procedure is performed for different values of
rout. As rout is increasing, the shooting parameters con-
verge, and we choose the solution as the one which satisfies
the conditions (22) for some rout within a prescribed toler-
ance. From this point on, we match to the scalar fields and
the metric coefficients their asymptotic behavior.

A qualitative characteristic of the radial functions �n is
their number of nodes (ie, how many times they do cross
zero), which reflects the excited state of the boson star. If
the radial function does not have any node, the boson star is
in the ground state. When there is a node, the boson star is
in the first excited state, and so on. In the next subsection
we construct initial configurations with two scalar fields
P ¼ 2, one in the ground state and the other in the first
excited state. Notice that this is the simplest nontrivial
configuration, since the MSBS with two scalar fields in
the ground state can be reduced to one scalar field solution
by redefining the scalar fields. This is a consequence of the
indistinguishably of the boson particles in the same state.

Once the solution is computed in this coordinate system,
a change of coordinates is performed to maximal isotropic
ones,

ds2 ¼ �2ð~rÞdt2 þ c 4ð~rÞðd~r2 þ ~r2d�2Þ; (23)

which are more convenient for our numerical evolutions.
Finally, a simple inspection on the system (13)–(16) shows
that the redefinition

~r ¼ rm; ~!n ¼ !n

m
; (24)

leads to a set of equations that no longer have m on it.
Hence, the selection of geometrical units (e.g. G ¼ @ ¼
c ¼ 1) and the redefinition (24) give us dimensionless units
for ~r, ~!n, which is equivalent to choosing m ¼ 1 in our
equations. Throughout this paper, we use these dimension-
less coordinates.

Configurations of ground and excited states

Let us consider the simplest nontrivial case with only

two scalar fields P ¼ 2, one with Nð1Þ particles in the

ground state, and the other with Nð2Þ particles in the first
excited state. A useful way to construct the initial data is
specifying the fraction between the number of particles in
each state of the configuration,

� ¼ Nð2Þ

Nð1Þ : (25)

In this case, we complete the system (13)–(16) with the
differential expressions for the number of particles in each
state

0 10 20 30 40 50 60

radius

0

0.01

0.02 φ
1

φ
2

0 10 20 30 40 50 60
radius

0.9

0.95

1

1.05 Ψ
α

FIG. 1 (color online). Ground-1st excited configuration for
�1ð0Þ ¼ 0:0197 and fraction � ¼ 1. The upper panel corre-
sponds to the initial profiles of the two scalar fields, and the
lower panel, to the lapse function � and the conformal factor �.
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@rN
ðnÞðrÞ ¼ 4�

a

�
!n�

2
nr

2; (26)

with boundary conditions, NðnÞð0Þ ¼ 0. If � is specified, it
is sufficient to prescribe as boundary conditions the central
value of only one of the scalar fields, for instance,�c1. The
new system of Eqs. (22) and (26) becomes a shooting
problem for the four parameters f!1; !2; �ð0Þ; �2ð0Þg.
For a specific fraction �, it is necessary to adjust the four
parameters such that Eq. (22) and the condition

Nð2ÞðroutÞ ¼ �Nð1ÞðroutÞ are satisfied.
Figure 1 shows an example of the radial profiles of the

two scalar fields, lapse and conformal factor, for a MSBS
with f� ¼ 1; �1ð0Þ ¼ 0:0197g.

Two important characteristics of MSBS are the total
gravitational mass M and the radius R99. The first one is
calculated as

M ¼ rout
2

�
1� 1

a2ðroutÞ
�
; (27)

and the radius R99 is defined as the radius whereM reaches
the 99% of its value. The choice of geometrical units, plus
the redefinition of the coordinates Eq. (24), imply that both
R99 and M are dimensionless variables. The physical units
can be recovered by using the following relations:

MPhysical ¼ M
m2

p

m
R
Physical
99 ¼ R99

@

mc
(28)

where mp the Planck’s mass and m the mass of the boson

associated to the scalar field.
In Fig. 2 we have plotted the values of these two quan-

tities for all the constructed MSBS initial configurations.
On the top panel they are shown as functions of the central
value of the scalar field in the ground state �1ð0Þ and the
Noether fraction �, while in the bottom panel they are
plotted as functions of the central value of the scalars
fields.
These figures already show some differences between

single BS and MSBS configurations: there are an infinite
number of possible equilibrium configurations [i.e. solu-
tions for the static EKG system (13)–(16)] between the two

extreme cases Nð1Þ ¼ 0 and Nð2Þ ¼ 0 that correspond pre-
cisely to the ground state BS and first excited state BS,
respectively. Figure 2 shows a more complex behavior of
the mass M and R99 than for a single BS, which can be
observed easily in Fig. 3 where some slices �1ð0Þ ¼
constant and �2ð0Þ ¼ constant of these surfaces are dis-
played. After constructing these configurations, the next
problem is stability. It is clear that the known results of BS
stability are not immediately applicable to MSBS.
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FIG. 2 (color online). Total gravitational mass (Mð�1; �Þ, R99ð�1; �Þ, Mð�1ð0Þ; �2ð0ÞÞ and R99ð�1ð0Þ; �2ð0ÞÞ) for initial data of
MSBS configurations with two states, the ground and the 1st excited state.
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The stability of the multistates configurations under
finite perturbations will be addressed in the next section.

IV. NUMERICAL SIMULATIONS

In this section, we present a numerical analysis of the
dynamical properties of MSBS, focusing on long-term
stability and the final state of the unstable configurations.
To this purpose, we write the Einstein-Klein-Gordon sys-
tem as a set of evolution equations for the scalar fields and
the metric components. We consider a generic spherically
symmetric spacetime with the line element

ds2 ¼ ��2dt2 þ grrdr
2 þ r2g��d�

2; (29)

where � is the lapse function and fgrr; g��g are the metric
components. Notice the explicit dependence on the factor
r2, such that the component g�� is regular at the origin.
This is a necessary condition in our implementation in
order to deal with the coordinate singularity at r ¼ 0.

The evolution equations for the geometry are obtained
by substituting the metric coefficients (29) into a particular
formulation of the Einstein equations. In this study we have
considered the Z3 formulation [41], which includes the
momentum constraint into the evolution system, by con-

sidering an additional vector Zi as an evolved field. Further
details regarding the Z3 system in spherically symmetry
can be found in [42], while the regularization of the coor-
dinate singularity r ¼ 0 is similar to the one described in
[43].
In spherical symmetry, there are independent evolution

equations only for the lapse �, the metric components
fgrr; g��g, the extrinsic curvature fKr

r; K
�
�g and the

Z-vector components fZr; Z�g. All these evolution equa-
tions are prescribed by the Einstein equations, except the
one corresponding to the lapse, which is related to the
choice of coordinates and can be specified freely. A com-
mon choice, which give rise to a hyperbolic system of
equations, is the harmonic slicing

@t� ¼ ��2trK; (30)

where trK ¼ Kr
r þ 2K�

�.

On the other hand, the evolution equations for the scalar
fields are obtained by substituting the spherically symmet-
ric metric (29) in the Klein-Gordon Eqs. (5).
A first order reduction in space can be performed by

introducing as independent quantities the spatial deriva-
tives of the metric and new fields related to the time and
spatial derivatives of the scalar field, namely
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FIG. 3 (color online). Different slices of the Mass (upper panel) and the radius R99 (lower panel) as a function of the central value of
the scalar field. On the left there are slices at �2ð0Þ ¼ constant while on the right there are �1ð0Þ ¼ constant.
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Ar � 1

�
@r�; Drr

r � grr

2
@rgrr;

Dr�
� � g��

2
@rg��; �ðnÞ

r � @r�
ðnÞ;

�ðnÞ
t �

ffiffiffiffiffiffiffi
grr

p
�

@t�
ðnÞ:

(31)

In this way, we obtain a fully first order system of
evolution equations for the geometry and the scalar fields,
with the following set of evolution variables

f�; grr; g��; Kr
r; K

�
�; Ar; Drr

r; Dr�
�; Zr; �

ðnÞ; �ðnÞ
r ; �ðnÞ

t g:
This first order system can be written in balance law form

@tUþ @k
kFðUÞ ¼ SðUÞ; (32)

which allows the use of advanced numerical methods
based on finite volume algorithms. Details about the exact
form of the evolution equations can be found in
Appendix B.

We have implemented the equations using the method of
lines, in order to separate the time and the spatial discre-
tization. The time integration is performed with a third
order strong stability preserving Runge-Kutta method [44].
The spatial discretization is based on a standard fourth
order centered finite difference scheme, plus third order
accurate dissipation [42].

A. Stability of the MSBS

The stability of MSBS configurations is a basic require-
ment for considering them suitable models of galaxy halos.
For a single boson star, the stability has been previously
studied both analytically and numerically, showing that it
is stable if �ð0Þ � �maxð0Þ. In this section, we analyze the
stability of MSBS in the range�1ð0Þ � �maxð0Þ, which are
stable for � ¼ 0, avoiding this way the too-massive un-
stable MSBS. The stability will be studied following only a
numerical approach, by perturbing the MSBS and studying
the evolution of this perturbation. Wewill restrict ourselves
to study stability against spherically symmetric perturba-
tions by using the equations described in the previous
subsection. Notice that this is only a necessary condition
for the most general case, since asymmetric perturbations
may still be unstable.

In order to study numerically the stability of the MSBS
configurations, we perform the following steps:

(i) Construct different initial data sets for MSBS with a
given �1ð0Þ, by varying the Noether fraction �.

(ii) Add a real scalar field far outside the radius R99 of
the MSBS, which will be coupled to the MSBS only
through gravity. The energy density corresponding to
the scalar field is only 0.01% of the total energy
density of the MSBS, so it will act just as a small
perturbation with negligible errors in the form of
constraint violations.

(iii) Perform evolutions of the Einstein-Klein-Gordon
system and study the behavior of the MSBS. The
scalar field perturbation will fall into the MSBS and
later disperse to infinity. The gravitational interac-
tion during that time is expected to excite the un-
stable modes, if any. In this way, the modes are
excited sooner than only by numerical errors.

(iv) Bracket the MSBS which lead to significant expo-
nential growing modes. For the stable MSBS con-
figurations, the perturbations will only oscillate
without growing. We expect that the MSBS with
low � will be stable, since the major contribution
to the complete configuration comes from the stable
ground state, while those with high � will corre-
spond to unstable MSBS.

(v) Fit the growth rate of the unstable MSBS for each set
of stars with the same �1ð0Þ by varying �.
Extrapolate to find the maximum allowed Noether
fraction�max which separates the stable and unstable
states. This procedure allows us to obtain reliable
estimations, without evolving every configuration in
order to obtain �max. Moreover, it might be difficult
to distinguish stable from unstable configurations
when they are close to �max, since the exponential
growth is very low in that region.

We are going to restrict the numerical stability analysis
to only three different values of �1ð0Þ ¼
f0:0143; 0:0197; 0:0423g. Figure 4 displays the total mass
and the radius R99 for these configurations, as a function of
�. In the simulations with � � 1:2, we did not detect any
unstable exponentially growing mode, or they were diffi-
cult to measure for some families of solutions. The results
indicate as the upper bound �max < 1:2.
In Fig. 5, we show the typical behavior for one of these

simulations, corresponding to stable and unstable MSBS.
The perturbation has an exponentially growing behavior
only for the unstable MSBS. The maximum of the scalar
field �2ðr ¼ 0Þ can be fitted with a function of the type

A expð�tÞ cosð!tþ ’Þ; (33)

which allows us to compute the exponential growth rate �.
We performed fits for the unstable MSBS perturbations

with � � 1:2, marked with filled geometrical shapes in
Fig. 4. The results for � are represented in Fig. 7, with the
extrapolation to the �max, which in principle could be a
function of �1ð0Þ. The three different families of solutions
point to �max � 1.
In order to show the robustness of these results we have

repeated the simulations with more resolution and with a
different amplitude of the perturbation. The results are
almost identical, as shown in Fig. 6. The only significant
difference is the unstable case with larger perturbation
amplitude. The perturbation seem to interact nonlinearly
with the star, and the unstable exponentially growing mode
is excited later. In spite of this delay, the growth rate is
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identical to the other cases with smaller perturbation and
higher resolution.

B. Fate of the unstable states

Another question which arises from the previous stabil-
ity analysis, refers to the final fate of the unstable MSBS
with �> �max. We address this issue by performing long
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FIG. 5 (color online). Maximum of the central value of the
scalar field in the excited state �2, for two different values of �
with �1ð0Þ ¼ 0:0197. The MSBS with � ¼ 0:4 is in the stable
branch and the induced perturbations do not grow. The MSBS
with � ¼ 1:6 is clearly unstable and the perturbations exhibit an
exponential growth.
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evolutions of unstable MSBS configurations, until they
reach a stationary state. In order to accelerate the growth
of the unstable modes, we perturbed the MSBS with a
massless scalar field located far from R99. As explained
in the previous section, this scalar field interacts gravita-
tionally with the MSBS, perturbing it slightly and exciting
the unstable modes. These modes grow exponentially,
starting with a small amplitude, result that can be obtained
also from a linear perturbation analysis. When the ampli-
tude of these perturbations is larger, the nonlinear effects
become important and the evolution can only be followed
numerically in order to discern the final state of the MSBS.

Figure 8 displays the number of particles in different
states and the total number of particles for two MSBS with
the same �1ð0Þ ¼ 0:0197 with a fraction given by � ¼ 3
and � ¼ 0:4. The total Noether charge remains almost
constant in the stable case � ¼ 0:4, showing the accuracy
of the numerical code within a 0.004% error in this quan-
tity. The unstable case � ¼ 3 exhibits scalar field radiation
during the evolution, producing a decrease of around 18%
in the total Noether charge, as it can be seen in the con-
vergence test presented in Fig. 9. This radiation translates
into a small change in the amplitude of the scalar fields.
Taking a closer look at the maximum value of the scalar
fields in the center and the frequencies, displayed in
Fig. 10, one can notice a change in the position of the
node; the excited state has decayed to a ground one, while
the ground one has jumped to the first excited state. With
this ‘‘flip-flop’’ of the scalar fields, the final � is in the
stable domain. A similar behavior is observed for all the
unstable MSBS configurations included in the study, which
indicates that this could be a common feature of their
evolution. The time required by an unstable MSBS to settle
down into a stable configuration, increases as the fraction
gets closer to �max.

The previous statements can be seen graphically in
Fig. 11. The figure shows the collection of initial configu-
rations, each one characterized by the number of particles
in the ground state N1, and the number of particles in the
excited state N2. Every pair ðN1; N2Þ corresponds to a
configuration with a pair of eigenvalues ð!1; !2Þ, although
only !1 is shown in the figure. On the top of these collec-
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FIG. 8 (color online). The number of particles in the ground
state and in the excited state for the fraction � ¼ 3, together with
the total number of particles for the fraction � ¼ 3 and � ¼ 0:4.
There is a significant loss of the number of particles in the
unstable configuration, while the stable only looses 0.004% due
to numerical dissipation.
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tion of initial configurations, we have plotted the time
evolution of the previous simulations. The red dot corre-
sponds to the configuration labeled with fraction � ¼ 0:4
and the blue dots represent the time evolution for the
configuration labeled with fraction � ¼ 3:0. Applying
the same perturbation for the two different states, we can
discern two different behaviors: the fraction � ¼ 0:4 is
stable and remains static, while the configuration with � ¼
3:0 is unstable and evolves far from the original configu-
ration (that lies on the sheet of static configurations) to a
‘‘forbidden’’ region. The jump is due to the flip of
ground state ! excited state and vice versa. Then, it starts
to lose scalar field [i.e., evolves in ðN1; N2Þ] and slowly
approaches an equilibrium configuration on the sheet of
equilibrium configurations.

The final state of the MSBS with � ¼ 3 can be inferred
from the central value of the amplitude of the scalar fields
(top panel Fig. 10). It is important to remind that now, due
to the switch of the frequencies, the new ground state
corresponds to �2ð0Þ while the new excited state corre-
sponds to �1ð0Þ. The amplitudes oscillate around a central
value, namely

�1ð0Þnew ¼ �2ð0; tfinalÞ ¼ 0:058� 0:004

�2ð0Þnew ¼ �1ð0; tfinalÞ ¼ 0:016� 0:004:
(34)

Using these values as initial conditions for the new equi-
librium configuration we can compute the eigenvalues and

the number of particles shown in Table I. In the same table
are displayed the values obtained from the evolution of the
MSBS configuration with � ¼ 3. There is a remarkable
agreement in the eigenvalues, but they still differ in the
number of particles. This means that the system will still
loose particles at a slow rate during the evolution, as
corroborated by Fig. 11. The slow loss of particles has
been observed in finite perturbed system of excited states
and even tough the final state has been inferred in the same
way as we have done here [33,38].

V. DARK MATTER HALOS

In previous sections we have constructed MSBS with
two states, a ground and a first excited state, and shown
their stability. In this section, we come back to our initial
motivation and we will illustrate how MSBS can lead to
RCs which are in better agreement the RCs of galaxies in
the context of SFDM. A detailed analysis of fitting the RC
of galaxies including baryonic matter and experimental
data is out of the scope of the present work. Instead, we
will just present a comparison between the behavior of a
test particle immersed in the gravitational potential pro-
duced by a MSBS and a single BS, showing that there is an
improvement in the sense that the MSBS has a flatter
profile far from the center. Neglecting the baryonic con-
tribution is a reasonable assumption in some galaxies such
as the low surface brightness galaxies.
For the static spherically symmetric metric considered

here (29), the circular orbit geodesic obeys [45],

v2
’ ¼ r�@r�: (35)

As an illustrative example, the top panel of Fig. 12
presents a comparison between two rotational curves ob-
tained for a single state boson star with �1ð0Þ ¼ 0:0197
(ie, a MSBS with � ¼ 0) and for a MSBS with the same
amplitude �1ð0Þ ¼ 0:0197 of the ground state scalar field,
and the same number of particles in the first excited state
(ie, � ¼ 1). The region with a flat plateau is larger, sug-
gesting that for higher excited states (or MSBSwith several
higher states) the region with constant rotational velocities
could be extended to larger radii.
In order to understand this behavior, it will be helpful to

see the mass density profile defined as

TABLE I. Expected eigenvalues and number of particles for the ‘‘new’’ equilibrium configu-
rations. The values obtained from the late time evolution of the configuration with � ¼ 3 is
shown for comparison.

!1 !2 Nð1Þ Nð2Þ
Equilibrium 0.87 0.94 0.604 0.126

Evolved �x ¼ 0:020 0:864� 0:004 0:936� 0:006 0.71 0.16

Evolved �x ¼ 0:015 0:862� 0:003 0:934� 0:010 0.706 0.126

Evolved �x ¼ 0:010 0:872� 0:010 0:940� 0:005 0.696 0.124
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FIG. 11 (color online). ‘‘Stable’’ and ‘‘unstable’’ states.
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	ðrÞ ¼ 1

r2
dMðrÞ
dr

; (36)

and it is shown in the bottom panel of Fig. 12 for the same
configurations mentioned above. We can see that for the
single BS (� ¼ 0) the density decays exponentially as r !
1, making it difficult to fit the flat rotational curve profiles
present in most galaxies. However, the MSBS configura-
tions with large Noether fractions have a radius which is
significantly larger than the one corresponding to the single
ground state, with an exponential decay only in the tail of
the excited state.

Another issue related with boson stars as dark matter
models, was the lack of degrees of freedom to match the
different sizes and masses of the observed galaxies. For a
single boson star without self-interaction, the only free
parameters are the mass of the boson particle m and the
central value of the scalar field �ðr ¼ 0Þ, which deter-
mines the compactness of the object (ie, ratio of total
mass over radius) in adimensional units. There have been
several attempts to fit these parameters [24–28] with differ-
ent levels of success. By allowing more general MSBS,
there are extra free parameters coming from the different

fractions between the ground and excited states. These
parameters change not only the total mass, but also the
compactness of the final object. The extra degrees of free-
dom may allow a better fit of the models to different
galaxies.

VI. CONCLUSIONS

We have constructed generalized boson-star configura-
tions, where two coexisting states of the scalar field are
present. Our initial data construction is based on two main
quantities that describe them: the gravitational massM and
the radius R99. We have shown that these boson stars are
stable under small radial perturbations, for a certain range
of the fraction (�< 1) between the Noether charges. These
results may sound counter-intuitive, given the known fact
that single BS in excited states are unstable under finite
perturbations. Nevertheless, the addition of an extra scalar
field allows for an infinite number of new equilibrium
configurations. The known plot of M vs �1ð0Þ for ground
state or excited state single BSs is now extended, getting a
different curve for each fixed value of�2ð0Þ ¼ constant, as
it is shown in the Fig. 13. The single BS in the ground state
corresponds to the case �2ð0Þ ¼ 0, which only has an
extreme at the maximum allowed mass. The configurations
on the right of that point (marked with a triangle) are
unstable. For low values of �2ð0Þ these curves contain
now two extremes. In addition to the maximum allowed
mass, there is a minimum close to the fraction � � 0:5.
Although the presence of a new extreme in the curves
could suggest a change in the stability around the fraction
� � 0:5, our numerical stability analysis presented in the
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FIG. 13 (color online). Mass as a function of �1ð0Þ for differ-
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fraction �max, displayed with squares, is found numerically on
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section IVA indicates that the dynamical stability regime is
extended beyond this point up to �max � 1. Furthermore,
we have found also stable and unstable configurations in
regions with no extremes in the Fig. 13. This supports the
idea that simple stability arguments from the single boson-
star case are not valid in this case and that a more detailed
future study is necessary in order to confirm and under-
stand completely this problem.

The unstable configurations evolve and settle down into
stable configurations. MSBS allow to obtain a flat region in
the velocity rotational curves, as shown by the examples in
this paper. We considered cases with only two different
states of the scalar field. As future work, we are planning to
construct MSBS where several states are coexisting. These
models allow more degrees of freedom, and could be used
to fit accurately the rotational curves within the observa-
tional data.
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APPENDIX A: EQUIVALENCE OF REAL
QUANTIZED SCALAR FIELD AND MULTI BOSON

STARS

The many boson-system is described by a second quan-
tized free scalar field

�̂ ¼ X
nlm

b̂nlm�nlmðt;xÞ þ b̂ynlm�
	
nlmðt;xÞ; (A1)

with an energy-momentum tensor operator given by

T̂ ab ¼ @a�̂@b�̂� 1

2
gabðgcd@c�̂@d�̂þ�2j�̂j2Þ; (A2)

where � is the scalar field mass and the convention @ ¼
c ¼ 1 has been adopted. The gravitational field is treated as
a classical field, so the source in the right-hand side (rhs) of
the Einstein equations has the expectation value of (A2)
over a state of the system of many particles jQi, namely

Gab ¼ 8�hQjT̂abjQi: (A3)

The operators in the quantized field expansion of

Eq. (A1) can be interpreted as creation b̂nlm and annihila-

tion b̂ynlm quantum operators. These operators satisfy the

following commutation relations:

½b̂nlm; b̂yn0l0m0 � ¼ 
nn0
ll0
mm0 ; (A4)

½b̂nlm; b̂nlm� ¼ ½b̂ynlm; b̂yn0l0m0 � ¼ 0: (A5)

The coefficients of the scalar field operator in Eq. (A1)
must satisfy the Klein-Gordon (KG) equation in a curved
space time Eq. (5).
Using the relations (A4), one can construct the states

jQi ¼ jNnlm; Nn0l0m0 ; Nn00l00m00 ; . . .i: (A6)

These states are orthonormal and represent particle states,
each composed of N scalar particles distributed in sets of
Nnlm particles of mass �, with angular momentum @li and
azimuthal momentum @mi. The n subindex labels the
energy eigenstate. Then the expectation value of the
energy-momentum operator in (A3) can be calculated as

hT̂abi � hNnlm; Nn0l0m0 ; . . . jT̂abjNnlm; Nn0l0m0 ; . . .i: (A7)

The orthonormality of the quantum states ensures that this
expectation value is given as a superposition of the expec-
tation values of the energy-momentum for each state. Then
(A3) is given by

Gab ¼ 8�
X
nlm

cnlmhNnlmjT̂abjNnlmi; (A8)

where cnlm are normalization coefficients [23]. Therefore,
in the case where more than one state is populated, the
source of the Einstein equations is equivalent to the super-
position of many uncoupled scalar fields. Each field gen-

erates its own stress-energy tensor hNnlmjT̂abjNnlmi.

APPENDIX B: THE Z3 SYSTEM IN SPHERICAL
SYMMETRY, NORMAL COORDINATES, AND

REGULARIZATION

The line element of a generic spherically symmetric
spacetime can be written as

ds2 ¼ ��2dt2 þ grrdr
2 þ r2g��d�

2; (B1)

where we made explicit the singular factor r2, such that the
metric components are regular. However, this change
amounts to a transformation of the variables

~g �� ¼ r2g��; ~Dr�
� ¼ Dr�

� þ 1

r
;

where the quantities marked with tilde are the variables
typically used in spherical symmetry. In order to ensure the
stability of the implementation, one has to deal with the
factors 1=r in the fluxes and 1=r2 in the sources.
A regular system of evolution equations can be obtained,

by ensuring a cross-cancellation between the singular
terms. We take advantage of the way the momentum con-
straint was built into the system and redefine the variable
Zr in order to obtain the desired cross-cancellation,

~Z r ¼ Zr þ 1

4r

�
1� grr

g��

�
:

We can eliminate this way the singularities from the evo-
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lution variables and the numerical errors caused by the
geometrical factors in the fluxes and sources. One can
notice that the sources contain terms like 1=r times other
variables which are radial derivatives of the metric coef-
ficients. But these terms do not create problems at r ! 0,

as the radial derivatives of any differentiable function
vanish at the origin. However, due to finite differencing,
we can not use a grid point at r ¼ 0.
The final set of equations for the regularized Einstein-

Klein-Gordon system in first order form is:

@tgrr ¼�2�grrKr
r; @tg�� ¼�2�g��K�

�; @tAr ¼�@r½�ftrK�; @tDrr
r ¼�@r½�Kr

r�; @tDr�
� ¼�@r½�K�

��;
@tZr ¼�@r½2�K�

��þ2�

�
ðKr

r�K�
�Þ
�
Dr�

�þ1

r

�
�Kr

r

�
Zrþ 1

4r

�
1� grr

g��

��
þArK�

�þ 1

4r

grr
g��

ðK�
��Kr

rÞ�4��

�
;

@tKr
r ¼�@r

�
�grr

�
Arþ2

3
Dr�

��4

3
Zr

��
þ�

�
ðKr

rÞ2þ2

3
K�

�ðKr
r�K�

�Þ�grrDrr
rArþ 1

3r
½grrðDrr

r�Ar�4ZrÞ

þg��ðDr�
��ArÞ�þ2

3
grr

�
Zrþ 1

4r

�
1� grr

g��

��
ð2Drr

r�2Dr�
��ArÞ�2

3
grr

�
Dr�

�þ1

r

�
ðDrr

r�ArÞ

þ8�

�
�

6
�Sr

r

2
þS�

�

��
;

@tK�
� ¼�@r

�
�grr

�
�1

3
Dr�

�þ2

3
Zr

��
þ�

�
1

3
K�

�ð�Kr
rþ4K�

�Þþ 1

6r
½grrðAr�2Drr

r�4ZrÞþg��ðAr�2Dr�
�Þ�

�2

3
grr

�
Zrþ 1

4r

�
1� grr

g��

��
ðDrr

r�Dr�
��2ArÞþ1

3
grr

�
Dr�

�þ1

r

�
ðDrr

r�4ArÞþ8�

�
�

6
�Sr

r

2
þS�

�

��
;

@t�¼�
ffiffiffiffiffiffiffi
grr

p
�t; @t�r ¼@r½�

ffiffiffiffiffiffiffi
grr

p
�t�; @t�t ¼ @r½�

ffiffiffiffiffiffiffi
grr

p
�r�þ�

ffiffiffiffiffiffiffi
grr

p ½2ðDr�
�þ1=rÞ�rþ2

ffiffiffiffiffiffiffi
grr

p
K�

��t�m2grr��:
The complex scalar field can decomposed as

� ¼ �R � i�I; �� ¼ �R þ i�I;

where �R is the real part, �I the imaginary part and �� its complex conjugate.
The matter terms can be explicitly written in terms of the components of the scalar field:

� ¼ 1

2
fgrr½ð�I

t Þ2 þ ð�R
t Þ2� þ grr½ð�I

rÞ2 þ ð�R
r Þ2� þM2½ð�IÞ2 þ ð�RÞ2�g þ 1

2
grr½ðc tÞ2 þ ðc rÞ2�;

Sr ¼
ffiffiffiffiffiffiffi
grr

p ð�I
t�

I
r þ�R

t �
R
r Þ þ

ffiffiffiffiffiffiffi
grr

p
c tc r;

Sr
r ¼ 1

2
fgrr½ð�I

t Þ2 þ ð�R
t Þ2� þ grr½ð�I

rÞ2 þ ð�R
r Þ2� �M2½ð�IÞ2 þ ð�RÞ2�g þ 1

2
grr½ðc tÞ2 þ ðc rÞ2�;

S�
� ¼ 1

2
fgrr½ð�I

t Þ2 þ ð�R
t Þ2� � grr½ð�I

rÞ2 þ ð�R
r Þ2� �M2½ð�IÞ2 þ ð�RÞ2�g þ 1

2
grr½ðc tÞ2 � ðc rÞ2�;

where c is the scalar field perturbation.
The charge density can be computed as

~N ¼ �J0 ¼ 1ffiffiffiffiffiffiffi
grr

p ð�I�R
t ��R�I

t Þ:

The space volume integral of ~N can be interpreted as the
number of bosonic particles

N ¼
Z ffiffiffi

h
p

~Ndx3 ¼ 4�
Z

r2 ~N
ffiffiffiffiffiffiffi
grr

p
g��dr:

We compute both the ADM and the Tolman masses in
order to check our numerical evolutions. The ADMmass is
defined as

MADM ¼ 1

16�
lim
r!1

Z
gpq½@qgpk � @kgpq�NkdS;

where Nr ¼ ffiffiffiffiffiffiffi
grr

p

r

r is the unit outward normal to the
sphere. In our coordinates, it can be translated into

MADM ¼ �r2
ffiffiffiffiffiffiffi
grr

p
Dgr�

�: (B2)

The Tolman mass can be calculated as

MTol ¼
Z
ðT0

0 � Ti
iÞ ffiffiffiffiffiffiffi�g
p

dx3

¼ �4�r2�
ffiffiffiffiffiffiffi
grr

p
g��ð�þ Sr

r þ 2S�
�Þ:
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