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Abstract

In crystal optics and quantum electrodynamics in gravitational vacua, the
propagation of light is not described by a metric, but an area metric ge-
ometry. In this article, this prompts us to study conditions for linear elec-
trodynamics on area metric manifolds to be well-posed. This includes an
identification of the timelike future cones and their duals associated to an
area metric geometry, and thus paves the ground for a discussion of the
related local and global causal structure in standard fashion. In order to
provide simple algebraic criteria for an area metric manifold to present a
consistent spacetime structure, we develop a complete algebraic classifica-
tion of area metric tensors up to general transformations of frame. This
classification, valuable in its own right, is then employed to prove a theorem
excluding the majority of algebraic classes of area metrics as viable space-
times. Physically, these results classify and drastically restrict the viable
constitutive tensors of non-dissipative linear optical media.
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1. Introduction

Electrodynamics, as originally conceived by Maxwell, has been inter-
preted by Einstein and others to reveal a flat Minkowskian geometry of
spacetime. Soon afterwards it was realized that in order to describe light
propagation in some crystals or in the presence of gravity, the flat Minkowskian
geometry needs to be replaced by a curved metric geometry. Not all metric
geometries, however, are suitable backgrounds for electrodynamics. Of all
algebraic classes of metrics, distinguished by their signature, only Lorentzian
metrics may render the initial value problem of Maxwell theory well-posed.
This result is obtained in two steps. First, it is recognized that a necessary
condition for the initial value problem to be well-posed is that the electro-
magnetic equations are strongly hyperbolic. But then the metrics allowing



for strongly hyperbolic Maxwell equations are precisely the Lorentzian ones.
In other words, for a metric spacetime geometry one is fortunate to have
available, on the one hand, a full algebraic classification of the metrics, and,
on the other hand, a theorem linking the strong hyperbolicity of Maxwell
theory to precisely one of these algebraic classes. All this is well-known.

However, the reformulation of the original Maxwell equations as gauge
field dynamics on a metric spacetime is unnecessarily restrictive. In fact,
inspection of the Maxwell action on a Lorentzian manifold reveals that there
is no coupling to the actual metric tensor, but only to the area measure in-
duced from it. Moreover, the electromagnetic potential is a covector field so
that its coupling to a charged vector current does not depend on the back-
ground geometry at all. Thus there is no way to experimentally distinguish
whether the underlying spacetime structure is metric or area metric, unless
one discovers phenomena that are captured only by an area metric but not
a metric.

In crystals, such non-metric electromagnetic phenomena are well-known:
for instance, birefringence, i.e., the splitting of one light ray into two polar-
ized rays. Of course, from a fundamental persepctive, this is generally viewed
as an effect emerging from the quantum interaction of the electromagnetic
field with the constituent matter of the crystal. But for the effective classi-
cal wave theory, and in particular its dynamical equations, this is irrelevant.
Their properties are governed solely by the area metric tensor whose par-
ticular form is then determined by the material properties of the optical
medium.

But this observation raises a crucial question. Is there an algebraic clas-
sification of area metric tensors in analogy to that of metrics? And can these
classes similarly be linked to hyperbolicity properties of the electromagnetic
equations on such more general backgrounds? It is the purpose of this paper
to answer both questions affirmatively. In particular, we provide a full al-
gebraic classification of four-dimensional area metrics and prove a theorem
that excludes, out of a total of 23 algebraic classes, 16 classes that cannot
provide viable backgrounds. In physical terms, these results amount to a
complete classification of non-dissipative linear optical media and an iden-
tification of many formally conceivable electromagnetic constitutive tensors
which are in fact unphysical, so that materials with corresponding properties
cannot exist or be engineered.

Area metric geometry makes another appearance in standard physics
when one considers photons propgating in a vacuum gravitational field. Due
to the reaction of virtual electron-positron pairs in the dressed photon prop-
agator to the Weyl curvature of the spacetime, which has been calculated in



an influential paper by Drummond and Hathrell [1], photons do not follow
null geodesics with respect to the metric spacetime geometry, but rather
with respect to an area metric geometry defined by the metric and the Weyl
tensor. Again, the electromagnetic field equations do not care about how
the effect emerges. The well-posedness of the effective field equations and
indeed the causal structure of the spacetime geometry probed by photons to
first order quantum corrections only hinges on the induced area metric. In
homogeneous and isotropic spacetimes one may still employ standard metric
techniques to study the resulting causal structure. But for less symmetric
situations, one is thrown back to the use of the area metric geometry pre-
sented in this paper, and indeed the causal structure defined by it. We
just mention that the causal structure of spacetime seen by photons in the
early universe is changed compared to the one defined by the bare metric
to such an extent that if there are no otherwise compensating effects, the
cosmological horizon problem simply does not pose itself.

The Drummond-Hathrell result indicates that area metrics may play a
more fundamental role in the structure of spacetime. After all, most of
what we know about the large scale structure of spacetime, we know from
astrophysical observations of photons reaching us. However, at first sight
one seems compelled to discard the idea that the spacetime geometry it-
self could be generically area metric instead of metric. Too much of our
understanding of standard physics seems to hinge on the very concept of a
metric spacetime structure. In particle physics [2], the Poincare group asso-
ciated with a Lorentzian metric conveniently restricts the admissible types
of matter fields and their dynamics, as was first pointed out by Wigner
[3]. Second, dynamics for Lorentzian metrics with a well-posed initial value
problem almost inevitably [4] are those of Einstein-Hilbert theory, with the
well-known physical implications [5]: the big bang singularity, precession of
planetary orbits, gravitational lensing and an expanding universe. Together,
remarkably much of what we infer about the structure of spacetime, its mat-
ter contents, and indeed their interplay, hinges on the presumed Lorentzian
spacetime structure.

However, particularly over the last decade, disturbingly robust and di-
verse observational evidence has been accumulated that there is something
significant we currently do not understand about the matter contents of the
universe, gravitational dynamics, or both. For instance, in order to explain
the observed late-time accelerated expansion of the universe [6] and at the
same time the data collected from the lensing of light through galaxies [7],
one would have to assume that a spectacular 74% of energy and 22% of
matter in the universe are of entirely unknown origin, and do not interact



in any other conceivable way than gravitationally [8].

But while the existence of such vast amounts of dark energy and dark
matter may indeed be the correct conclusion to be drawn from the ob-
servational data, this seems not an uncontestably plausible or compelling
conclusion. Much less so because there are a number of further anoma-
lies in gravitational physics, such as the flattened galaxy rotation curves,
the anomalous accelerations of Pioneer 10 and 11, the fly-by anomaly, and
others [9]. In summary, there is an increasing list of discrepancies between
observation and theory, which in some cases hint at new particle physics [10],
in other cases at new gravitational physics [11], and one may well speculate
that some hint at both [12].

Now on the one hand, it may be the case that all of these anomalies are
mutually independent, and require a different resolution each. On the other
hand, and this is the line of thought we want to pursue here, one would
expect both, new gravitational and new particle physics, if the geometry of
spacetime turned out to be different from that of a Lorentzian metric man-
ifold. Such a generalized spacetime geometry would have to be sufficiently
general to capture various of the anomalies currently escaping explanation,
while at the same time providing feasible spacetime backgrounds for parti-
cle physics. Area metric manifolds [13] present a promising candidate for
a refinement of Lorentzian geometry addressing these issues. In particular,
one can write down a refinement of the Einstein-Hilbert action, such that
the gravitational field is encoded in an area metric. A thorough investiga-
tion of a radiation-dominated early universe displays no difference to the
Einsteinian one, but there is an accelerating solution for the late matter-
dominated universe. The results of the present paper underly a currently
conducted study of the representations of the hypersurface deformation al-
gebra in admissible area metric spacetimes, in fashion of the seminal work
of Hojman, Kuchaf and Teitelboim for Lorentzian manifolds. Thus it would
be possible to identify all well-posed area metric gravity theories in a con-
structive way.

Outline. In section 2, we start by reviewing the most important aspects
of area metric geometry, in so far as they play a role in the present work.
To get a feeling for the way in which area metric geometry presents a re-
finement of metric geometry, we in particular investigate the mathematical
properties of low-dimensional area metrics. Provided with the mathematical
definitions, and supported by the obtained physical intuition for area metric



geometry, we then turn to one of the key points of this article: we employ
Maxwell theory to define a causal structure on area metric manifolds. With
the result of this construction, we are then equipped to present the central
definitions of weakly and strongly hyperbolic area metric spacetimes. These
provide an analytic characterization of area metric manifolds that present
viable spacetime structures. Relevant global causality conditions for area
metric manifolds can then be imposed in addition, and we observe that cel-
ebrated theorems, such as the equivalence of the Alexandrov topology with
the underlying manifold topology, directly extend to area metric spacetimes.

Equipped with the basic definition and causality properties of area met-
ric manifolds, we highlight a number of physical applications of area metric
geometry in section 3. We spell out in detail how area metrics encode all
material properties of non-dissipative linear optical media, and explain how
good causality restricts the class of possible crystals. Most interestingly, the
classification of area metric backgrounds achieved in later section clearly be-
comes a classification of optical crystals. As a second application we consider
the propagation of photons on metric spacetime as calculated by Drummond
and Hathrell by taking into account quantum effects. The resulting effective
action is interpreted using area geometric methods. The causality discussion
of this paper nicely clarifies some issues of photon propagation that were not
fully resolved before. Finally we consider area metric manifolds in their own
right as gravitational backgrounds that allow the same complexity as do op-
tical crystals. We review some results on area metric gravity, and provide an
outlook on how the new results on causality will deepen the understanding
of the theory.

In section 4, we turn to an algebraic classification of four-dimensional
area metric manifolds. We obtain a complete overview of all possible area
metric manifolds and provide, as a corollary to our classification theorem,
a list of area metric normal forms. The provision of such normal forms,
together with our detailed study of the respective algebras describing the
involved gauge ambiguity, constitutes an immensely useful calculational tool,
very much like in the familiar case of pseudo-Riemannian metrics.

We combine our findings on the analytic characterization of the causal
properties of area metric spacetimes with the algebraic classification of four-
dimensional area metrics in section 5. This culminates in the proof that
a large number of algebraic classes do not present area metric spacetimes.
An even stronger version of this theorem can be obtained by focusing on
phenomenologically important cases of highly symmetric area metric space-
times.

In a conclusion, we finally place our results and the methods employed



in this article in a wider context, emphasize what has been achieved and
where the limitations of the current study lie.

2. Area metric geometry and causal structure

The central aspects of area metric geometry, as far as they play a role for
the developments in this article, are presented and discussed in this section.
As an immediate physical question the causal structure of Maxwell theory on
generic area metric manifolds is studied in some detail. These constructions
culminate in the definition of strongly hyperbolic area metric spacetimes
and present the first technical pillar of this article.

2.1. Area metric manifolds

We start with the fundamental definitions of area metric geometry [14]
in d dimensions which presents a generalization of metric geometry.

Definition 2.1. An area metric manifold (M,G) is a smooth d-dimensional
manifold M equipped with a fourth-rank covariant tensor field G with the
following symmetry and invertibility properties at each point p of M:

(i) G(X,Y,A,B)=G(A,B,X.Y) for all X,Y,A,B in T,M
(i) G(X,Y,A,B)=—-G(Y,X,A,B) for all X,Y,A,B in T,M
(i) For each p of M and X,Y,A,B in T,M the map G : A*T,M —
A2T;M, defined through G(X ANY)(A A B) := G(X,Y, A, B) by lin-
ear continuation, is invertible. Its inverse then defines a fourth-rank
contravariant tensor field G=1 called the inverse area metric.

Here A2TpM = T,M NT,M denotes the space of all contravariant antisym-
metric tensors of rank two and we will drop the hat on G where no confusion
arises.

Given a basis {e,} on T, M, the symmetry conditions can be written in
terms of the components G(eq, €p, €c, €7) = Gapeq Of the area metric:

Gabcd = chab = _Gbacd- (1)

Due to these symmetries, the indices of G may be combined to antisym-
metric Petrov pairs [ab] such that G can be represented by a symmetric
square matrix of dimension D = d(d — 1)/2. More precisely, we introduce
Petrov indices A = 1,...,d(d — 1)/2 for every antisymmetric pair of small
indices [ab]. The Petrov indices can be calculated as follows: without loss
of generality we assume a < b and calculate the Petrov index A in terms of



a and b as A = (a(2d — 3) — a?)/2 + b. If it is not clear from the indices
that we use the Petrov notation of an object I' we write Petrov(I'). In
four dimensions for instance, which is the case of direct physical interest, we
have index pairs [01], [02], [03], [12], [31], [23] with the corresponding Petrov
indices A = 1,...,6. The independent components of an area metric G in
four dimensions may hence be arranged as the 6 x 6 Petrov matrix

[ Goior Goio2 Goioz Gotiz Goizi Goizs |
Go202 Go203 Goz212 Gozs1 Go2o3

. Go303 Goziz Goszr Goszs3

Pet G) = . 2
etrov(G) " Gi212 Gi231 Gi223 2)

G331 G3123

i K G323

with the components under the diagonal filled by symmetry.

Some care has to be taken when extending the summation convention
to Petrov indices. Since the summation over Petrov indices A essentially
corresponds to a sum over ordered antisymmetric pairs of tangent space
indices, we need to multiply by a factor of 1/2 when resolving a contraction
over Petrov indices in terms of a double contraction over an unordered pair of
tangent space indices: X4Qy =1 /2X abQ) ., for antisymmetric tensor fields
X and Q of valence (2,0) and (0, 2), respectively.

The invertibility requirement (iii) implies that the Petrov matrix Petrov(G)
representing G is non-degenerate and Petrov(G~!) = Petrov(G)~!. By di-
rect calculation, we obtain that the components of the inverse area metric
G~ satisfy the identity

(GG eq = 401267, (3)

where the factor of 4 arises due to the use of the above described summation
convention and weighted antisymmetrization

Area metric geometry is a refinement of metric geometry, insofar as
every pseudo-Riemannian manifold is an area metric manifold, but not all
area metric manifolds are induced from a metric one. Nevertheless, it is
sometimes interesting to discuss the following special type of area metrics:

Definition 2.2. An area metric G is said to be metric-induced if there exists
a metric g such that

G(X,Y,A,B) = g(X,A)g(Y, B) — g(X, B)g(Y, A). (4)



For an area metric G induced in this fashion we have that G¢(X,Y, X,Y) =
g(X, X)g(Y,Y)sin?[4 (X, Y)] is the squared area of the parallelogram spanned
by vectors X,Y as measured in the underlying metric geometry. For later
use we write the metric-induced area metric in components:

Gabed = Yac9vd — Jadbe (5)

and by virtue of equation (3) we have
(G—l)abcd _ gacgbd . gadgbc. (6)

Note that for metric-induced and generic area metrics alike, any pair

of SL(2,R)-related parallelograms (X,¥) and (X,Y), i.e. X = aX + bY
and Y = ¢X 4 dY with ad — be = 1, have identical areas as measured by
the area metric, G(X,Y, X,Y) = G(X,Y,X,Y). Thus an area metric does
not distinguish parallelograms (X,Y) that describe the same oriented area
X AY. This property, together with the reproduction of the familiar notion
of area in the metric-induced case, justifies to call G an area metric.
It should be noted that a generic area metric contains more algebraic degrees
of freedom than a metric, starting from dimension four. This can be seen by
counting the independent components of the symmetric D x D Petrov matrix
representing the area metric, which amounts to D(D+1)/2 independent real
numbers. The invertibility requirement does not further reduce this number
since it is an open condition. Thus area metrics in dimensions 2, 3, 4 and 5
have 1, 6, 21 and 55 independent components, respectively.

An area metric G naturally gives rise to a scalar density |det(Petrov(G))|"/(
of weight +1. That det(Petrov(G)) transforms as a density of weight 2d — 2
under a change of frame on the underlying d-dimensional manifold,

2d—2)

det(Petrov(Gmnqu[maTn} bT[p ch] 2) = det(T7,)%~2det(Petrov(Q)),
(7)

for a transformation matrix 7', follows from the identity
det(Petrov(T* T ) = (det(T%,))* 1, (8)

which deserves a
Proof [15]. Consider a d-dimensional vector space V' and an automorphism
T: V — V. We define the induced endomorphism TAT : VAV - VAV
on the induced d(d—1)/2-dimensional vector space VAV as (T'AT)(vAw) =
T (v) AT (w) for vectors v,w € V. Choose an arbitrary vector e; € V and
first assume that

er and e;41:=T(e;), (9)



fori=1,...,d—1 defines a basis for V. The case in which this assumption
does not immediately hold is discussed further below. Clearly T'(eq) =
Zle cie; for coefficients ¢;, so that in the basis {e,}, the d x d matrix
representing 7" takes the form

00 0 0 ¢
1 0 0 0 e

T=1|0 0 0 , (10)
00 . 0
L0 0 0 1 ¢

such that one recognizes that det(T) = (—1)%"!¢; and so we have (det(7))4 ! =
(=1)>1ed=1 Now do also construct the induced basis {e, A ey}, with a < b,
on V AV, and choose the order

etNeg, ..., et NegyeaNes, ..., eaNeg,..., eq_1Neq. (11)

Using the definition of TAT', we may now calculate the d(d—1)/2-dimensional
square matrix representing 7' A T' in this basis. In four dimensions for in-
stance, the 6 x 6 matrix representing 7' A T takes the form

0 0 —cg 0 O 0
00 0 0 —c O
100 0 0 0 -
TAT=110 ¢ 0 - 0 (12)
01 ¢ 0 0 —co
L 0 0 0 1 Cyq —C3

We may then calculate the determinant det(7" A T') by recursively expand-
ing all required minors with respect to their first rows, say. Together with
the choice of basis we made, this implies that after d — 1 steps the re-
maining minor to calculate is the determinant of the (d — 1)(d — 2)/2-
dimensional unit matrix. The result of this calculation is det(T' A T) =
(—1)(d=D)(@*=2d+6)/3(_ ¢ yd—1  Gince by construction the exponent (d—1)(d2—
2d + 6)/3 is an integer and its divisibility by 2 is not affected by multipli-
cation by 3, it is always an even integer. Thus we arrive at det(T' A T') =
(=1)%1(c1)?1, which under the assumption that (9) already defines a basis
for V' concludes the proof. It remains to show that if the first k& < d basis
vectors form an invariant subspace of V, i.e. T(eg) = Zle cie; for some
k < d, the identity (8) still holds. In this case we have to choose another

10



arbitrary vector ex1 € V that is linearly independent from the e; with i < k
to construct the next basis vectors according to (9). Repeat this procedure
until a complete basis is found. Then the matrices representing 7" and T'AT
decompose into block-diagonal form and the determinant is separately taken
over every block in the same fashion as shown above. This yields the same
result, and completes the proof.

Employing the density |det(Petrov(G))|Y/(?4=2) we can define a volume
form wg on an area metric manifold:

Definition 2.3. An area metric manifold (M, G) carries a canonical vol-
ume form wgq, defined by

WGay.a, = |det(Petrov(G)) [V Ve, .., (13)
where € 1s the Levi-Civita tensor density normalized such that €y..q—1 = 1.

The volume form plays an essential role in our algebraic classification of
four-dimensional area metrics, as we will see in section 3.

Having introduced the very basic notions of area metric geometry we
analyse low-dimensional area metric manifolds in some detail, in the next
section. Apart from conveying some further intuition for area metrics, we
will discuss some particular properties of area metrics in four dimensions,
which presents the case of most immediate physical interest for this article.

2.2. Low dimensional area metric manifolds

The study of low-dimensional cases of area metric manifolds reveals two
insights. On the one hand it illustrates in what sense area metrics are a
refinement of metric geometry. On the other hand we will see that in four
dimensions area metrics play a very special role indeed.

d =1: There are no area metrics in one dimension. For from the symmetries
of the area metric tensor G it is clear that there is no non-vanishing
component of the area metric in only one dimension. Thus no such G
can be invertible.

d =2: In two dimensions an area metric G is entirely determined by a scalar
density ® = Gypeqe®e? /4 of weight +2 by virtue of

Gabed = P(€ac€bd — €ad€ie)s (14)

where €4, denotes the components of the totally antisymmetric tensor
density. This can be seen by contracting both sides with €®¢°®. The

11



only remaining component of the area metric tensor is Ggig; = ¢ and
all other unrelated components vanish. Thus in two dimensions, an
area metric is not a refinement of a metric, but rather a coarser struc-
ture. In fact, area metric geometry in two dimensions is symplectic
geometry [16] with the symplectic form ®!/2e.

: An area metric in three dimensions has six independent components,

just like a metric. This is more than a coincidence. We can even show
that every area metric G in three dimensions is metric-induced, with
the inducing metric

ijk pqr

1
Gab = ng WG Gariijqkb~ (15)

Indeed, one easily verifies that g, = gp, and
0 # det(Petrov(G)) = det(Petrov(ga.gap)) = (det 9t (16)

again using the identity (8), proves that ¢ is indeed a metric. What
remains to be shown is that the area metric G is in fact induced by
this metric g. For that purpose we write the area metric in Petrov

notation
Goior  Goio2 Goiiz
Petrov(G) = | Goioz Goz02 Go2i2 (17)

Goii2 Goz2i2 Gi212

and the components of the inverse area metric volume form wg read
wdk = |det(Petrov(G))| "/ A€k, (18)

where the determinant is taken over the matrix (17). We now show
the proposition for the component Ggig1 of the area metric. We need
to calculate the components ggg, g11 and go1. According to equation
(15) these are

goo = |det(Petrov(G))|Y3(Go101Go202 — Go102Go102),
g1 = |det(Petrov(@))|"%(Go101Gi212 — Go112Go112),
gor = |det(Petrov(G))| " ?(Go212Go101 — Go102Goni2)-

Inserting this into equation (5) and using the determinant of the matrix
(17) proofs the equality

googi1 — (9o1)* = Gouor- (19)

12



Repeating this calculation for the other components of G completes
the proof. This means area metric geometry in three dimensions is
metric geometry, and vice versa. Thus the three-dimensional area
metric geometry may be viewed as metric or area metric, with no way
to distinguish one from the other. This result is implicit in Cartan’s
treatise [17]

d =4: In four dimensions, an area metric has 21 independent components,
whereas a metric has only 10. Thus an area metric contains more
algebraic degrees of freedom than a metric. It is intuitively clear that
using a GL(4) transformation, at most 16 of the 21 parameters of
the area metric at a point can be brought to zero. A generic area
metric can therefore be expected to locally determine up to five GL(4)-
scalars. That this is indeed the case will be an essential result in the
algebraic classification in section 3. This classification will rely on the
remarkable feature that in four dimensions, the canonical volume form
defined by (13) is an area metric in its own right.

One may justifiedly wonder whether one could consider even more refined
structures than an area metric, such as a 3-volume metric Vigye)(des)s & 4-
volume metric, and so on. However, while a 3-volume metric would indeed
be a refinement of area metric geometry on manifolds of dimension six or
higher, one easily verifies that in dimension four, a 3-volume geometry is
actually coarser than an area metric geometry. Essentially this is clear by
dualizing the antisymmetric triple [abc| using the volume form. Similarly for
higher forms in higher dimensions. In this sense area metric geometry is the
most refined geometric structure in the above sequence, when we consider
the physically immediately relevant case of four dimensions.

The four examples presented here shall be sufficient to get a feeling
for how area metric geometry differs from metric geometry. We now start
addressing the crucial issue of the causal structure defined by such back-
grounds, which will finally lead to analytic criteria underpinning our defini-
tion of area metric spacetimes.

2.8. Causal structure of area metric manifolds

In the following we want to study the causal structure of four-dimensional
area metric manifolds. To this end we must carefully consider what causality
means and how statements about the causal structure of area metric mani-
folds can be deduced from first principles. It is very important to understand
that causality is not an intrinsic property of an underlying background ge-
ometry, but rather the effect of an interplay between fundamental matter

13



propagating on the manifold and the geometric properties of the latter [18].
That is, the analysis of the causal structure of any manifold is deeply related
to the causal analysis and well-posedness of the field equations that govern
the evolution of some particular matter field on the manifold.

In the familiar vacuum Maxwell electrodynamics on a metric manifold,
the causal structure is encoded in the Lorentzian cones [19]. Remarkably,
open convex cones also arise naturally as the causal structure of electro-
dynamics on area metric manifolds. To make this statement precise is the
purpose of this and the following section.

Maxwell electrodynamics on a generic four-dimensional area metric man-
ifold (M, @) [13] has the action

1
S[A] = —8/d4$|det(Pet7"ov(G))|1/6FabFCdGabcd. (20)

The definition of the field strength F = dA in terms of a gauge potential
A and variation of the above action with respect to the latter lead to the
electromagnetic equations of motion for the field strength F' and induction
H,

dFF=0 and dH =0, (21)

with the electromagnetic induction H being related to the field strength F
through

1
Hyy = 4 |det(Petrov(Q))| 1/6€abmnGmnquPq : (22)

The causal structure of Maxwell theory on an area metric manifold is of
course fully contained in the field equations (21), which may be written in
components as

(wgh)¥eddyFug = 0, |det(Petrov(G))| /68y (|det(Petrov(G))| Y G F ) = 0,
(23)

with the inverse area metric volume form wél defined according to (3), which

is applicable since in four dimensions the volume form (13) is itself an area

metric.

For a complete description of the initial value problem of Maxwell elec-
trodynamics we further have to specify initial data. We introduce coor-
dinates z® = (t,z®) such that our initial data surface ¥ is described by
t = 0 and we define the electric and magnetic fields as E, = F (0, 0a)
and B® = wél(dt, dz®, F'), respectively. Now observe that the system (23)
provides eight equations for six fields (E,, B), however, two of these eight
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equations are constraint equations. Indeed, in the chosen coordinates, the
t-components of the two equations (23) do not contain any time derivatives:

C1 = (wg") " OpFea =0, (24)
Cy = |det(Petrov(G))|~ /58y (|det(Petrov(G))|Y/SGPF,y) = 0.(25)

Thus they constrain the initial data one may provide for the fields (E,, B).
Using the remaining evolution equations one finds that

9,C12 = —C) 20, In|det(Petrov(G))|/S, (26)

so that the constraints are preserved under evolution in time.
The evolution equations themselves now are of the general form

where vV = (E,, B®) and the four 6 x 6 matrices A

A = [ ‘i } A% = [ =26 = (w6 )ouns GO (28)
0 5# ) (wal)o;uzoz 0

From the theory of partial differential equations [20], it is known that the
local causal behaviour of such a system of differential equations is encoded
in the so-called characteristic polynomial P(k) = det(A%k,) defined over
transversal (ko # 0) covectors k. Casting this expression into manifestly
covariant form (conveniently rescaling ko to be unity), one finds for a four-
dimensional area metric manifold

P(k) = —|det(Petrov(G))| /3G (k, k, k, k), (29)
where the quartic Fresnel polynomial G(k, k, k, k) is defined as

Gk, k, k, k) = _i(“’@)mnm (W@ st G @GPl G ke kg . (30)

The tensor G and its physical interpretation has been first obtained by
Rubilar [21] in the context of pre-metric electrodynamics [22], by studying
the propagation of electromagnetic field discontinuities. Our derivation here
is a complementary one, which we choose since it directly leads to the related
causality theory.

Furthermore, the theory of partial differential equations shows that a
necessary condition for electromagnetic fields to propagate through an area
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P(k) = P(k) = P(k) 0

c)

Figure 1: some quartic null cones in cotangent space

metric manifold at all, is that the characteristic polynomial (29) admits non-
vanishing null covectors, P(k) = 0. Using the definition of the characteristic
polynomial this condition reduces to the Fresnel equation

Gk, k,k k) = 0. (31)

i From the linearity of the Fresnel polynomial, it follows that the null cov-
ectors constitute a cone L, in each cotangent space TyM, i.e. a subset
L, C T,y M such that AL, C L, for any real positive A. Physically speaking,
this statement on the admissible wave covectors k is one on the geometric-
optical limit of Maxwell theory.

For a metric-induced area metric (5), the quartic Fresnel equation (31)
factorizes to the bi-quadratic equation (g*kqk)? = 0, which in turn re-
produces the familiar notion of covector null cones in Lorentzian geometry.
However, the generic case of an area metric manifold leads to more elab-
orate local null structures (see figure 1 for examples). Going beyond the
geometric-optical limit of Maxwell theory one observes that the polarization
of light determines which sheet of the surface in cotangent space defined by
the quartic condition (31) is chosen [23].

2.4. Convex causal future cones and their duals

Once we ensured that the field propagates at all, we may turn to the
question of well-posedness of the initial value problem for Maxwell theory.

16



Figure 2: Illustration of a) a timelike covector k and b) a covector k that cannot be
timelike

To this end we need to ensure that there are initial data surfaces X, which
can only in the case if there are covectors k normal to X, i.e. k(X) =0, and
for which P(k) # 0 and P(n — Ak) has only real roots A for any covector
1. Any such covector k on a four-dimensional area metric manifold is called
timelike. Geometrically, a covector k is timelike if any line in the direction
of k intersects the surface of null covectors four times. This is illustrated in
figure 2. We see that timelike covectors exist in the example from figure la
but there are no timelike covectors in the example from figure 1c.

With the help of the characteristic polynomial P(k) it is also possible to
distinguish between future and past with respect to a given time orientation,
which is chosen in terms of an everywhere timelike covector field 7: we
define the future timelike covector cone Cj at a point p € M as the set of
all covectors § € Ty M such that the roots A of P(n — A§) for any covector
n € Ty M are positive with respect to the time orientation 7. It can be
shown that the future timelike covector cone is a convex cone [24], [25], i.e.
for any covector v € Cj we have v € Cj for any A € R™ and for any
two covectors v,w € Cj it is true that v +w € C}. Furthermore, C} is
open. These two properties and the fact that any two covectors v,w € C
satisfy the inverse triangle inequality P(v + w) > P(v) + P(w) [26] render
the concept of the future timelike covector cone on an area metric manifold
a true generalization of Lorentzian geometry.

It should be noted that once one has identified future timelike covectors
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it is also possible to define future timelike vectors, and to relate them in a
one-to-one fashion. To this end, we define the cone C), of future timelike
vectors at a point p, which itself is open and convex, as the set C, = {v €
Tp,M|k(v) > 0 for all k € Cy}, which is the dual cone to C}. Note that a
general feature of the relation between a cone and its dual is that given two
cones C} and C5 with C} C C5 we have Cy C C) for the dual cones C; and
C5. Thus there is an inversion of the inclusion relation when considering
two cones and their respective dual cones.

It also turns out that the duality map between future timelike covectors
and future timelike vectors is given in terms of the Fresnel tensor G, whose
components may be computed by differentiation of the Fresnel polynomial
(30) with respect to the components of the covector k.

Theorem 2.1. Let (M,G) be a four-dimensional area metric manifold. Let
C, C Ty M be the future timelike covector cone at a point p € M. Then for
any k € Cy there is a bijection to the cone Cy of future timelike vectors,

Cp=Cp, k—Glkkk,-). (32)

Proof. The proof uses the fact that the mapping Cj — R defined through
T+ —InG(r,7,7,7) is the so-called self-concordant barrier functional. Ac-
cording to [27], see theorem 27 of [25], it follows that the mapping C; — C,
defined as k +— DInG(k,k, k, k) is a bijection. Now it is easily checked that

g(k:7 k? k? T)
G(k,k,k, k)

(33)
for any 7 € €. Since the denominator never vanishes on the future timelike
covector cone Cy, one finds that also k +— G(k, k, k, -) is a bijection C;; — Cy,
which concludes the proof.

(DInG(k,k,k, k))(T) = % Oln G(k+tr, k+tr, k+tr, k+tT) =4
=

Thus Theorem 2.1 describes the area metric spacetime analogue of rais-
ing and lowering indices on timelike vectors and covectors in Lorentzian
geometry. It will also be useful to have the

Definition 2.4. Let (M,G) be an area metric spacetime. A vector X €
T,M s called a future causal vector if X lies in the closure C), of the future
timelike vector cone C.

It should be noted that vectors X lying on the boundary dC, of the
closure C), are indeed null vectors, but (in contrast to the special case of
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Lorentzian metric manifolds) not every null vector lies on this boundary.
We will have opportunity to return to this definitions when we discuss the
global causal structure of area metric spacetimes. Note that (given a time
orientation) past timelike vectors and past causal vectors may be defined
accordingly.

2.5. Area metric spacetimes

We now turn to the definitions of area metric spacetimes, which include
conditions of various strength, beyond the mere area metric manifold struc-
ture.

Definition 2.5. Let (M,G) be a four-dimensional area metric manifold.
We call (M,G) a weakly hyperbolic area metric spacetime if there exists a
time orientation in terms of an everywhere timelike covector field T.

The so defined weakly hyperbolic area metric spacetimes are only nec-
essary, but not sufficient to ensure a well-posed initial value problem for
Maxwell theory described by the action (20). Indeed, it will be instructive
to formulate a notion of strongly hyperbolic area metric spacetimes, which
in fact guarantees that the initial value problem for Maxwell theory is well
posed, at least locally. To this end, we rewrite the first order PDE system
(27) in the form

douM = c M 9,uN + DMyulN, (34)

where C% = —(A% 1A% and D = —(A%)~!B. Now, consider the matrix
C(k) = C%q, where k, are the components of some purely spatial covector
k. The matrix C'(k) plays a key role in the definition of strongly hyperbolic
area metric spacetimes.

Definition 2.6. Let (M,G) be a four-dimensional area metric manifold.
We call (M,G) a strongly hyperbolic area metric spacetime if

1. the matriz C(k) = C%k,, is diagonalizable for all spatial covectors k
and has only real eigenvalues \; and

2. the diagonalisation of C(k) is well-conditioned: if S(k)C(k)S(k)™! =
diag(X;) then suppege = ||S(R)7H| |IS(R)]] < oo.

The first requirement simply reformulates the weak hyperbolicity re-
quirement of Definition 2.5, but the second requirement in this definition
deserves some further comment. A solution of equation (34) may be ob-
tained by performing a Fourier transformation on the spatial components to
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get rid of the spatial derivatives. The resulting ordinary differential equation
does only contain time derivatives of the transformed fields 4 and may be
solved in standard fashion. To obtain the solution of the original system (34)
we need to perform an inverse Fourier transformation of the fields uy. The
second condition in the definition ensures that the 4y are square integrable
which means that the inverse Fourier transformation is indeed possible.

It can now be shown that a strongly hyperbolic area metric spacetime
renders the initial value problem for Maxwell theory locally well-posed [20].
This proposition only holds locally since we were investigating the field equa-
tions (34) in a sufficiently small neighborhood of a point p € M such that
the coefficients in (34) may be assumed constant, but this suffices for our
purposes. In the next section, we develop an algebraic classification of area
metric manifolds which will be related, in section 5, to the purely analytic
characterisation of area metric spacetimes we gave here in Definitions 2.5
and 2.6.

Global causality conditions for area metric spacetimes may now be im-
posed, exactly following the lines known from Lorentzian geometry [28],
employing the technical machinery developed above. Recall that future
timelike vectors are vectors X that lie in the future timelike vector cone C),
while future causal vectors lie in the topological closure C,, of Cp. A curve
v: I CR — M is said to be timelike (causal) if its tangent vectors at every
point p € M are timelike (causal). We call an area metric spacetime chrono-
logical if it does not contain any closed timelike curves. Physically speaking,
this means that no one is able to meet himself in the past. The proof of the
theorem that any compact area metric spacetime contains closed timelike
curves and thus fails to be chronological follows the same lines as the proof
in the analogous theorem in Lorentzian geometry. An area metric spacetime
(M, G) is called causal if there exist no closed causal curves. This definition
is a little more restrictive then (M, G) being chronological. Again physically
speaking, this means no one is able to communicate with himself in the past.
One may then also define the chronological future of a point p € M as the
set I (p) of all points ¢ for which there exist a future directed timelike curve
~ from p to ¢. It may be shown that I (p) is an open set. The causal future
JT(p) of a point p is defined analogously with the only difference that the
curve connecting p and ¢ has to be causal. In contrast to I*(p), the set
JT(p) is neither open nor closed. Accordingly, the chronological past I~ (p)
and the causal past J~(p) of a point p may be defined.

With the above notions, one may define even stronger causal require-
ments for area metric spacetimes by extending the attention to entire neigh-
borhoods U(p) of some point p. An area metric spacetime is called strongly
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causal if no causal curve that leaves a sufficiently small neighborhood U (p)
of a point p ever returns. Remarkably, one may prove that for a strongly
causal area metric spacetime (M,@G), the Alexandrov topology (which is
generated by all diamonds of the form I (p) NI~ (¢) with p,q € M) agrees
with the given topology of the manifold M. Again the proof follows the same
line of arguments as the proof of the analogous proposition in Lorentzian
geometry.

Clearly, we were only able to touch on the very basics of the global
causality theory for area metric spacetimes here. As in the case of Lorentzian
manifolds, it should be interesting to push this study further, to see which
of the other well-known metric theorems directly extend to the area metric
case, and what further physical conclusions can be drawn.

3. Applications in physics

Equipped with the basic notions of area metric geometry, we now pause
the formal developments of this paper to present three physical applications
where area metric manifolds emerge naturally. More precisely, we consider
crystal optics, the propagation of photons in gravitational vacua, and grav-
itational dynamics for an area metric manifold.

The fundamental role played by area metrics in these applications, how-
ever, raises a pressing issue. As we discussed in the previous section, an
area metric manifold needs to satisfy hyperbolicity conditions in order to
not prohibit a causal propagation of light. But it is difficult to directly ap-
ply the causality criterion provided by strong hyperbolicity. This problem
is remedied by sections 4 and 5, where we identify entire algebraic classes
that cannot possibly serve as physically consistent backgrounds. But now
we turn to the concrete physical applications where these results will have
a concrete impact.

8.1. Crystal optics

Maxwell electrodynamics in linear optical crystals is governed by the
following constitutive relations between the electromagnetic field strength
vectors E, B and the electromagnetic induction vector densities D, H,

D = ¢E+aB, (35)
H = BE+u'B. (36)

The matrices € and p encode the permittivity and permeability of the mate-
rial, while the matrices o and (3 are responsible for magneto-electric effects.
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If the observer measuring these relations is described by a frame eq, e1, €9, €3,
the fields and inductions, and the constitutive relation, give rise to a space-

time two-form F,p, a bivector density H*® = HI%®l and a tensor density
abed _ X[ab} [ed]

X . In Petrov notation this simply amounts to
E D
Petrov(F) = [ B ] , Petrov(H) = { 1% ] , (37)
Petrov(x) = [ ; M(fl } . (38)
With these identifications, the covariant form of the constitutive relation
reads ,
Hab _ §Xadech ) (39)

Due to its two Petrov indices, each of which may take six values, the ten-
sor density x in this relation has 36 algebraic components; these decompose
further as 36 = 21 & 15 into symmetric and antisymmetric representations.
The antisymmetric 15 has been termed the skewon part, e.g. in [29], but
cannot be obtained from an action for the electromagnetic field. Indeed, in
order to produce a linear relation of the type (39), the action [ d*xz L must
feature a Lagrangian scalar density quadratic in F,

L= % X Foy . (40)
Here the 15 representation in y does not contribute. The standard definition
H® = 0L/OF,, gives (39), and variation yields the Maxwell equations.
Making use of an action means restricting attention to the important
class of optical media governed by non-dissipative, reversible electromag-
netic processes. The reason for this is that the diffeomorphism invariance
of the action results in an equation of energy momentum conservation. The
symmetries of y in the remaining 21 representation are now precisely the
symmetries of an area metric. In this case we have symmetric &, u and
B =a’. A comparison of the Lagrangian (40) with that of electrodynamics
on area metric backgrounds in (20) identifies

x4 = | det(Petrov(@))|/6Gabet . (41)

So all non-dissipative linear optical media are fully described by area metric
backgrounds, and the relevant electrodynamical equations are those of area
metric electrodynamics.
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Let us return to the equations (35) and (36). Within the experimental
bounds of accuracy our measurements in vacuum tell us that o« =0, § =0,
and € = gpll =, u = ppll. Hence, in Heaviside units and with respect to an
observer’s frame,

Pet _| 0 42

erov(x)—[o ]l] (42)

This form of x corresponds to the simple case of a metric-induced area

metric, as becomes clear by inserting definition (6) into (41) and using a
metric orthonormal frame.

But there exist a whole number of non-dissipative optical media with
anisotropic €, u, and also with magnetoelectric effects mediated by «, see
references in [30]. As backgrounds for electrodynamics, these require a full
area metric description. The causality analysis of this paper tells us from
first principles which crystal backgrounds may appear in Nature, by plac-
ing restrictions on the allowed relations y, and hence on ¢, y, and a. The
algebraic classification of area metrics performed in the following sections
thus becomes a geometric classification of optical materials. Through rela-
tion (41) each optical material will be associated with a unique normal form
of its area metric; this completes the program of [31].

3.2. Photons in curved spacetime

Drummond and Hathrell calculated the one-loop effective action for pho-
ton propagation on a curved metric background, by taking into account the
production of virtual electron-positron pairs in the framework of quantum
electrodynamics [1]. In a gravitational vacuum, i.e., where the Lorentzian
spacetime is Ricci flat, they obtain the effective electromagnetic action

WIA] ~ / d 2y —g(g?gB + ANCPN Fy Fuy + O(N2), (43)

~

where C' denotes the Weyl curvature tensor of g and A = «/(907mm?) =
3,85 fm? (with electron mass m and fine structure constant ) is the char-
acteristic scale of the interaction.

The field equations arising from the effective action above are modified
at O(X\). It is important to realize that this affects their geometric optical
limit, and hence the spacetime trajectory of photons. Precisely how photon
trajectories change is easily answered for conformally flat spacetimes where
the Weyl tensor vanishes. Then the action and field equations are reduced
to the metric case, so that photons propagate on null geodesics. The same
question is more difficult to answer if the Weyl tensor is non-zero; now the

23



propagation is non-trivially modified. This is in stark contrast to the view
that the Lorentzian cone of the metric has a physical meaning independent
of the one defined by the propagation of light, which leads to a number of
unexpected subtle results [32, 33].

These effects are nicely explained from the area metric perspective. We
observe that, to leading order in A, one may view the Drummond-Hathrell
effective action as Maxwell theory on an area metric manifold with area
metric Gpg = ¢g®® + AC%d  In other words, the first order quantum
corrections of Maxwell theory in vacuum on a curved metric spacetime may
be absorbed into an area metric structure [34]. The causality discussion of
the previous section then identifies the causal cones relevant for the prop-
agation of fields, and clarifies why superluminal propagation with respect
to the metric must be expected. The metric simply is no longer the rele-
vant structure to describe the quantum corrected background. As discussed
in detail in [23] photons now propagate along null Finsler geodesics with
respect to a Finsler norm given by the Fresnel tensor of the area metric.

Already Drummond and Hathrell [1] remarked on the fact that the Weyl
curvature modification in their effective action would lead to an opening of
the light cones in the early Universe, which addresses the horizon problem
by potentially creating much larger causally connected regions before the
surface of last scattering. This calculation was possible because of the high
degree of symmetry in Robertson-Walker cosmologies. The Weyl curvature
effect then can be absorbed into a conformal factor of the spacetime metric,
and the relevant cones could be understood in standard fashion.

The technology presented in this paper now allows for an understanding
of the general causal cones in arbitrarily modified area metric backgrounds.
In the case of Drummond-Hathrell electrodynamics this means the change
of causal cones can be discussed on arbitrary backgrounds; for instance for
inhomogeneous cosmologies.

3.3. Refinement of Finstein-Hilbert gravity

From the perspective of a metric vacuum spacetime, crystal optics ap-
pears as a complex phenomenon, and we have seen that its description re-
quires the more refined geometry and causality of area metrics. Interestingly,
the results of Drummond and Hathrell on photon propagation tell us that
also the notion of a metric vacuum must be modified if quantum effects are
taken into account. This may be seen as evidence for a more complex struc-
ture of the spacetime vacuum: area geometry which only reduces to metric
geometry in simple physical situations. In other words, one might won-
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der, whether spacetime is as complicated as a crystal, whether gravitational
lenses exist with the properties of optical lenses.

Taking this point of view serious requires a dynamical theory for area
metrics in their own right: area metric gravity. One would like to write down
second order differential equations for area metrics that in the metric case
reduce to Einstein’s equations. Moreover, the equations should not involve
any tunable scales that could be used to render departures from Einstein-
Hilbert gravity so small that the theory could no longer be predictive.

Based on the construction of an area metric curvature scalar R, we have
developed such a theory in [14], where we refer the reader for full detail. The
action takes the simple form

S[G] = / d*z| det(Petrov(@))|Re, (44)

and reduces to the Einstein-Hilbert action in case the area metric is metric-
induced. All requirements on the theory as formulated above are met in
applications to cosmology and spherical symmetry (the solar system), and
these applications lead to potentially very promising results [12, 35, 36]. In
particular, an area metric G with Robertson-Walker symmetries is metric-
induced by a Robertson-Walker metric, but contains an additional cosmo-
logical scalar field that controls the totally antisymmetric part Ggpeq. We
have shown in [12] that this scalar field modifies the standard Friedmann
and acceleration equation of the Universe, and may indeed provide an ex-
planation for the accelerating late Universe.

The relevance of the results of this paper on the causal structure of area
metric spacetime will be the fundamental basis for a deeper understanding
of area metric gravity. This applies not only to the mathematically precise
definition of area metric observers, but also to the gravity dynamics. The
causal structure is the key ingredient in a rederivation of area metric gravity
from the deformation algebra of hypersurfaces in area metric spacetime, in
analogy to the metric calculation of [4].

We now resume the formal developments of this paper.

4. Algebraic classification of four-dimensional area metrics

In this section we present the algebraic classification of area metrics in
four dimensions. Besides our discussion of causal cones, this classification
constitutes the second technical pillar on which the results to be derived
in section 5 rest. In essence, the here obtained classification amounts to
46 continuous families of distinct algebraic classes of four-dimensional area
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metrics. These may be conveniently grouped into 23 metaclasses, which we
explicitly display at the end of this section, and which play an important role
in deciding which algebraic classes of area metrics can constitute spacetimes
(or physically valid optical backgrounds).

4.1. Formulation of the problem

We first need to decide according to which criterion we want to classify
area metrics. Since we are interested in the area metric data that are inde-
pendent of a choice of frame, we choose to locally identify area metrics that
contain the same information up to a change of the local frame. Therefore
we will classify area metrics according to the following

Definition 4.1. We call two area metrics G and H on the same d-dimensional
manifold M strongly equivalent, G ~ H, if for every point p € M there exists
a GL(d)-transformation t such that

Gabcd = tmatn btp th denpq . (45)

Clearly, the relation ~ is an equivalence relation. The problem of clas-
sification can now be stated as follows: identify the algebraic classes of area
metrics as the equivalence classes with respect to the equivalence relation
~. In other words, two area metrics G and G* which cannot be pointwise
related by a change of frame, according to (45), belong to different algebraic
classes.

Once the equivalence classes are identified, it is convenient to pick a
particularly simple representative of each algebraic class, which we will refer
to as the normal form of this class.

In two dimensions, area metric geometry is essentially symplectic geome-
try, as we have seen in section 2. Therefore the classification of area metrics
in two dimensions is obtained by virtue of Darboux’s theorem for symplec-
tic vectors spaces [16]. It states that up to frame transformations, there
is only one symplectic form. In three dimensions, area metric geometry is
essentially metric geometry. Consequently, the classification of area metrics
in three dimensions can be carried out with the help of Sylvester’s theorem
[37] for symmetric bilinear forms. From the fact that one needs to employ
rather different classification theorems in two and three dimensions, namely
Darboux’s theorem on the one hand and Sylvester’s theorem on the other
hand, one may expect that yet another theorem must be found to classify
area metrics in four dimensions. In this section, we will show that this is
indeed the case. The classification in dimensions higher than four currently
remains an open problem.
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4.2. Weak classification of area metrics

As a first step towards the classification of four-dimensional area metrics
with respect to the equivalence relation ~, we will first consider a weak
classification of area metrics in arbitrary dimensions d. We will then use the
insights of these considerations two solve our original classification problem.

From the symmetries of the area metric GG, it is immediately clear that
equation (45) takes the form

Gavea = " P 4T H (46)
Let us now use Petrov notation to write equation (46) in the form

Gap =T\ TNy Hyrw, (47)

where TMA is the Petrov matrix associated to the tensor 2t[nztn]b,

T = Petrov(2t™",). (48)

Although we introduced T" as a transformation induced by t € GL(d),
one may also read (47) as an equation for an arbitrary T € GL(d(d —
1)/2). It is clear that such a T is generally not induced from a t € GL(d).
Hence the requirement that two area metrics be related by a GL(d(d—1)/2)
transformation as in (47) is weaker then the requirement (45). This gives
rise to the following definition:

Definition 4.2. We call two area metrics G and H on the same d-dimensional
manifold M weakly equivalent, G =~ H, if for every point p € M there exists
a GL(d(d = 1)/2)-transformation T' such that equation (47) holds.

Obviously, the relation ~ is also an equivalence relation with respect to
which we may classify area metrics. It is also clear that two area metrics
G and G* that are strongly equivalent are automatically weakly equivalent
since any t € GL(d) induces a T' € GL(d(d — 1)/2) as we have seen above.
However, the converse does not hold. Classification of area metrics with
respect to strong equivalence ~ rather amounts to weak classification under
the constraint of picking only those T € GL(d(d — 1)/2) that are indeed
induced by at € GL(d). Finding a condition in four dimensions that ensures
that T is of the form (48) is the task solved in the next section.

The classification of d-dimensional area metrics with respect to the weak
equivalence relation = itself can be achieved easily by applying Sylvester’s
theorem, since the area metric in equation (47) defines a symmetric bilinear
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form on R¥4-1)/2 Sylvester’s theorem states that the GL(d(d — 1))/2-
signature of such an inner product is the only frame-independent informa-
tion. We can therefore classify area metrics in d dimensions according to
their GL(d(d — 1)/2)-signature. This amounts to d(d — 1)/2 + 1 possible
algebraic classes.

4.83. Strong classification of area metrics in four dimensions

We may now formulate a condition for a transformation 7' € GL(6) to
be induced by a GL(4) transformation to refine the weak classification to
the algebraic classification we actually aimed for. In four dimensions, there
indeed is such a condition, using the fact that the canonical area metric
volume form (13) which in Petrov form reads

Petrov(wg) = |det(Petrov(G))|1/6

_ o O O O O
O O O OO
OO R O OO
SO o= OO
[l elall =)
SO oo o

is an area metric in its own right. With this in mind, we have the following

Theorem 4.1. Let G and H be two area metrics on an orientable four-
dimensional manifold M . If the weak equivalences G = H and wg ~ wg hold
simultaneously with the same GL(6) transformation, then we have either the
strong equivalence G ~ H or G ~ X'HY, where the components Egg of the
endomorphism ¥ are numerically the same as €qpeq With €g1oz = 1.

Proof. With the help of the inverse identification of the capital Petrov
indices with antisymmetric pairs of indices [ab] over some given frame {e,}
of R*, the weak equivalences may be expressed as

Gabed = iT:g”Tfmenpq, 4|det(Petrov(GH ™M) %eqpeq = o T e mnpg -

(50)
The second condition can be read as a restriction on the six bivectors
{TSh, TS, Tob, T TSP, T$%}: we must have vanishing To; AToa, Toe ATps and
Tos A'Tp1 and all Ty, must be wedge products of two vectors which is equiva-
lent to have vanishing T, A T, (no sum). The first three conditions can be
solved in two inequivalent ways: either Ty, Tp2 and T3 have a direction in
common, or they pairwise intersect. But this precisely corresponds to either
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T% = £l 4" gor T% = gl 2% in terms of some GL(4) transformation

with det(¢) > 0 [38], [39]. Since M is orientable we can consistently restrict
our attention to this case, which concludes the proof.

The result of this theorem deserves some further comments. The corre-
spondence between the weak and the strong equivalence involves an ambi-
guity in the order of frame on R® by means of the Y-symbols. This only
implies that once we have found suitable normal forms of the simultaneous
weak classification of G and wg, we must be careful with the interpretation
of the Petrov matrix representing the normal forms. We will return to that
point later.

Fortunately, the remaining step in obtaining the desired strong classifi-
cation of the area metric G now reduces to the problem of the simultaneous
weak classification of the area metric G and its associated area metric volume
form wg. The solution to this problem is known, and we cite the relevant
theorem without proof [40] in a form that is congenial for our purpose.

Theorem 4.2. Let G and wg be two symmetric bilinear forms on RS. Then
there exists a basis on RS such that the matrices that represent G and wg
take the following block diagonal form:
Petrov(G) =R; @&...® Ry ®Cpt1 D ... BC,,
Petrov(wg) =1 P1® ... Pen P ®Ppi1 @ ... BP,,

where blocks with the same index have equal size and the matrices represent-
ing the blocks R, are of the form

0 - 0 XN

: 1
Rp()‘p) = ) )

o . . 0

Ap 10 0

with real numbers N\, (which incidentally correspond to the (real) eigenvalues
of the endomorphism J = w&lG), whereas the Cy take the form

[0 0 0 0 —74 o4]
0 0 0 0 o4 7y
Cylog,7q) = 00 _ ' o1
0o 0 . 10
14 0q 0 1 0
L og ¢4 1 0 0 0 ]




with real numbers o4 and 1, (corresponding to the (complex) eigenvalues
o x4t of J) with 7, > 0. Finally, we have the signs e; = £1 and

0 0 1
P = X

0o .

1 0 0

This theorem now applies to our problem as follows. Given an area
metric G and its associated volume form wg in Petrov notation we use the
theorem to bring G and w¢g to the stated simultaneous normal forms by a
GL(6) transformation. After that we still need to apply a further change
of basis to bring wg to the form of equation (49) so that we can apply our
Theorem 4.1. Such a change of basis on RS is always possible if the matrix
provided by the theorem that represents wg has GL(6) signature (3, 3), since
we know that the signature is the only local frame-independent information
for such a symmetric bilinear form. The change of basis has to be simulta-
neously applied to the area metric G, and the resulting matrix then is the
desired normal form of the area metric. Thus all GL(6)-inequivalent pairs
(G,w¢g) appearing in Theorem 4.2 for which wg has GL(6)-signature (3, 3)
represent a different algebraic class of the area metric G. Distinguishing the
different sign characteristics of the blocks in w¢, a simple counting reveals
that there are 46 distinct algebraic classes.

There is another subtlety in the application of the theorem. To make sure
that the obtained pair of normal forms (G,wq) is a pair of an area met-
ric and its associated volume form we need to require |det(Petrov(G))| =
—det(Petrov((wg)) = 1 which follows directly from the definition of the
volume form. This requirement constraints the scalars in the normal form
of the area metric G. The theorem itself determines up to six scalars and
the extra condition on det(Petrov(G)) renders only five of them indepen-
dent. This confirms our intuitive claim from section 2 where we suspected
a four-dimensional area metric to determine up to five GL(4)-scalars.
Before we continue, we illustrate the above-described procedure for obtain-
ing the normal form of a given area metric G.
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Example. Consider the following possible pair of matrices provided by
Theorem 4.2 that represent two bilinear forms G and wg

0100 O0O0
1 00 0 0 O
000100
Petrov(wg) = 00100 o0l (51)
00 0 0 01
(000010,
[ —T1 O1 0 0 0 0 T
o1 T 0 0 0 0
. 0 0 —T2 092 0 0
Petrov(G) = 0 0 o5 ™ 0 0 (52)

0 0 0 0 —T3 03
0 0 0 0 o3 73]

To recover wg in the form (49) (which is possible in the first place since
Petrov(wg) indeed has signature (3,3)), we interchange the first and fifth
basis vector on R® which amounts to a change of the first and fifth row and
column in Petrov(wg) and Petrov(G). Then we also exchange the second
and fifth basis vector. The matrix representing G then takes the normal
form

-r1 0 0 0 0 o1
0 —173 0 0 g3 0
0 0 —m o2 0 O

Petrov(G) = 0 0 022 7_22 o o |- (53)

0 o3 0 0 =5 0

01 0 0 0 0 1

We have to keep in mind that the six scalars in Petrov(G) have to satisfy
the condition |det(Petrov((G))| = 1.

We should emphasize an important point. The scalars in Petrov(G)
locally determine the area metric completely. Actually every different set of
scalars in any of the 46 distinct algebraic classes provided by Theorem 4.2
determines a separate algebraic class for area metrics. In other words, there
are infinitely many algebraic classes of four-dimensional area metrics.

Having reduced the Petrov matrix Petrov(G) of a given area metric G
to its normal form according to Theorem 4.2 we can apply Theorem 4.1
to find the actual normal forms of the area metric G with respect to ~.
We only need to be careful with the mentioned ambiguity by means of the
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Y-symbols in Theorem 4.1 when we identify the entries of Petrov(G) with
components Gpeq of the area metric G. Both Gapeq and Grppg XS04 are
the components of distinct normal forms of the area metric G.

It proves useful to group the infinitely many normal forms in four dimen-
sions into coarser classes labeled by the Segré type of the endomorphism J
appearing in Theorem 4.2. We introduce these metaclasses in the following
section and then display the resulting families of normal forms.

4.4. Metaclasses and normal forms

A convenient way to group the possible normal forms of the area metric
G is a division into metaclasses labeled by the Segré type [41] of the endo-
morphism J defined in Theorem 4.2. The Segré types of the endomorphism
J only take into account the size of the Jordan blocks [37] in .J, and whether
the eigenvalues of the corresponding block are complex or real. That is, a
Segré type is given by a symbol [AA ... BOD] where A, B, C, D are positive
integers. If an integer A in the label is followed by A, the endomorphism
J contains a Jordan block of size A with a complex eigenvalue and a block
with the same size and the complex conjugate eigenvalue. Otherwise the en-
domorphism contains a real Jordan Block of size B, C' and D. For example,
the normal form Petrov(G) in (53) is of Segré type [11 11 11] because the
corresponding endomorphism J has six distinct complex eigenvalues where
three of them are simply the complex conjugates of the other three, and the
Jordan block for every eigenvalue has size one.

The metaclasses of area metrics, labeled as defined by the various Segré
types, disregard both the signs €; as they appear in Theorem 4.2, and the
actual eigenvalues of the endomorphism J. This gives rise to 23 different
metaclasses of area metrics:

e three metaclasses where the Jordan blocks of the corresponding endo-
morphism J only have complex eigenvalues o; & ¢7;

I=[11111), II=[122), III=33)],

e four metaclasses with real Jordan blocks in J of at most size one

IV =[11111), V=[2211], VI=[111111], VII = [111111]

e 16 metaclasses with at least one real Jordan block in J of size greater
or equal to two.
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These metaclasses prove very useful. Indeed, in the next section we
will present a powerful theorem that renders the 16 metaclasses VIII-XXIII
(which feature real Jordan blocks of size greater or equal to two) as unphys-
ical since these do not define strongly hyperbolic area metric spacetimes as
defined in the previous section.

Now that we have introduced the metaclasses of area metrics labeled by
the Segré types of the endomorphism J, we may present a complete list of
normal forms of these metaclasses.

Theorem 4.3. Let (M, G) be a four-dimensional area metric manifold. Then
at each point p € Mthere exists a frame {e,} in which the Petrov matriz
Petrov(G) of G takes one of the following forms.

metaclass I [11 11 11] metaclass I1 [22 11]
[ —m7 0 0 0 0 o] 0 0 0 0 -7 oy
0 0 —m o9 0 O 0 0 —m» o9 O 0
0 0 oo T 0 0 0 0 o9 m™ O 0
0 g3 0 0 T3 0 —7T1 O1 0 0 0 1
| o1 0 0 0 0 7 | | o1 71 0 0 1 0 |
metaclass 11T [33]
[ 0 0 0 0 —T1 O1 1
0 0 0 0 o1 7
0 0 —T71 O1 0 1
0 0 o1 7 1 0
—-mn o3 O 1 0 0
L on 11 0 0 |
metaclass IV [11 11 11] metaclass V [22 11]
[—7 0 0 0 0 o1 0 0 0 0 -7 o1 ]
0 —1T9 0 0 ()] 0 0 0 0 0 01 1
0 0 X X 0 O 0 0 XX X 0 O
0 0 X XA 0 O 0 0 X X O 0
0 oo 0 0 71 O -1 o1 0 O 0 1
L O1 0 0 0 0 T ] | 01 T1 0 0 1 0 |
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metaclass VI [11 11 11] metaclass VII [11 11 11]

[—71 0 0 0 0 o1 ] (X 0 0 0 0 X
0 A3 0 0 XN O 0 A3 0 0 X O
0 0 X A 0 O 0 0 X X 0 O
0 0 X XA 0 O 0 -0 X X 0 O
0 X 0 0 X3 O 0 X 0 0 A3 O
L O1 0 0 0 0 T ] L )\6 0 0 0 0 /\5 |

The remaining 16 metaclasses involve a choice of signs €; that take the
values +1. Any combination of these signs denotes a different algebraic

class.

metaclass VIII [6] metaclass 1X [42]
0 0 0 0 0 A [0 0 0 0 0 M ]
0O 0 0 0 XA 1 0 0 0 0 XA 1
0O 0 0 X 1 0 0 0 0 X 0 O
0 0 X e 0 O 0 0 X e 0 O
0 4 1 -0 0 O 0 A 0 0 e O
M 1 0 0 0 0| A 1 0 0 0 0|
metaclass X [4 11] metaclass XI [411]
[0 0 0 0 0 M ] [0 0 0 0 0 XA |
0 0 0 0 X 1 0 0 0 0 XN 1
0 0 —T1 O1 0 0 0 0 )\3 )\2 0 0
0 0 01 1 0 0 0 0 )\2 )\3 0 0
0 /\1 0 0 €1 0 0 )\1 0 0 €1 0
M 1 0 0 0 0| M 1 0 0 0 0|
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metaclass XII [22 2]

0 O
0 0
0 O
0 0
—-T1 01
01 T1

o O O o O

>
it

o O O O O

>
et

0

—Ty

0
0
g2
0

0
0
0
A1
0
0

0
0
-7
01
0
0

0
0
A1
€1
0
0

0 0 XN\
0 X O
cp 0 O
T1 0 0
0 0 0
0 0 ¢

1 01
o1 T

o O O

=

O = O O

0 A
oo 0
0 O
0 0
T2 0
0 e

metaclass XIII [222]

0 0 0 0 0 X
0 e 0 0 X O
00 0 0 X3 0 O
0 0 X3 e 0 O
0 X 0 O 0 O
A0 0 0 0 ¢

metaclass XV [2211]

0 0 0 0 0 X\
0 e2 0 0 X O
0 0 X3 XM 0 O
0 0 X X3 0 O
0 X 0 0 0 O
A 0 0 0 0 g

metaclass XVII [211 11]

0 0 0 0 0 X\
0O —m» 0 0 o9 O
0 0 X A3 0 O
0 0 X3 X 0 O
0 ()] 0 0 T2 0

M 0 0 0 0 g

metaclass X VIII [21111]

A1 0

A4

[\

0
0
A

ot
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metaclass XIX [51]

))
o
< < o
)
oo *+ | ) o
1\_AI. —
= >
iy gl <
o
)) %
SN ~
~< = M
-~
oo | +1720 >
< < S
(/\IA\
Slen —~iew

metaclass XXI [321]

N
Lo oo oo
o oo oo
—~
[5e]
2L <
o~g+ oo
_
=<
—Ie gl
N~
5]
< 2
o
odS L T oo
=
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metaclass XXII [31 11]

—T1 0 0 0 0 01
€ 1
0 0 ﬁ ) 7 A O
0 % F(—X) atd) 0 0
0 % %()\1 + )\2) 651(/\1 =~ /\2) 0 0
0 A 0 0 0 O
L 01 0 0 0 0 n i
metaclass XXIII [3111]
[ A3 0 0 0 0 Mg ]
0 Fu-X) & 0 5\ 1+ A2) 0
€1
0 0 A0 0 0
0 %()\1 + )\2) % 0 %()\1 — )\2) 0
| A\ 0 0 0 0 A3 |

With the above theorem guaranteeing the existence of a frame such that
an area metric takes one of the listed 23 normal forms, it only remains to
study whether such a frame is uniquely determined or, if not, how it is
related to other such frames. This question is addressed by the following
theorem, already anticipating the result from the next section that the meta-
classes VIII to XXIII must be discarded as physically not viable area metric
spacetimes, see section 4.1.

Theorem 4.4. Let (M, G) be a four-dimensional area metric manifold with
an area metric falling into one of the metaclasses I to VII. Then the frame in
which the Petrov matriz Petrov(G) representing G takes the form displayed
in theorem 4.8 is determined up to a transformation obtained by exponentia-
tion of the algebras presented in table 1. The elements of the possible gauge
algebra of metaclass Il area metrics are of the form

= (54)

o O o O
— o O O
o O O O
o O O
o O o
o O o o
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metaclass local gauge algebra... ...in presence of degeneracies
I o(1,1) ® o(2) w.lo.g. o1 =092, 71 =T
0(1,3) all 0; =04, Ty = Tj
II see generators (54) 71 =72 and 01 = 03
IIT no symmetries
I\ 0(2) m=MAand o, =X, i =1Vi=2
o(1,1) ® o(2) 71 = 79 and o1 = 09
o(1,1) @ o(2) ® 0(2) ® 0(2) 71 =T = A1 and 0] = 09 = A9
v no symmetries
VI 0(2) 71 =M and 01 = Xy or 71 = A3 and 01 = \4
0(2) & 0(2) A1 = Az and Ao = Ny
0(2) @ 0(2) & 0o(2) B o(2) =AM =AXand o; = X2 = \g
VII 0(2) D 0(2) w.l.o.g. A\ = Az and Ay = My
0(4) )\1 = )\3 = )\5 and )\2 = /\4 = )\6

Table 1: Local gauge algebras for metaclass I-VII area metrics

Proof. The requirement that the Petrov matrix Petrov(G) representing G
stay invariant under a change of the local frame can be expressed in a given
basis {e,} as

7"yt  Ginpg = Gabed- (55)

Without loss of generality, we may assume that G is given in normal form,
and anticipating the unphysicality of metaclasses VIII-XXIII shown in sec-
tion 5.1,we restrict attention to metaclasses I to VII. Focusing on the con-
nected component of the identity of the invariance group, we consider in-
finitesimal transformations of the form t*, = ;' 4+ hw®, with infinitesimally
small h and generators w® ;. Equation (55) then reads

0= wmaGmbcd + meGamcd + wmcGabmd + u}deabcm . (56)

These are 21 equations for the sixteen components w®, of the generator.
This system can now be analyzed for the various metaclasses I to VII. We
illustrate the procedure of calculating the generators w for metaclass I area
metrics (53).

For a metaclass I area metric G in normal form (53) the 21 equations (56)
decouple into two sets of equations, nine for the diagonal elements of the
generators w, and 12 for the off-diagonal elements. The nine coupled homo-
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geneous equations for the diagonal elements w* ; are

03(w00+w11+w22+w33) = 0,

Tl(woo +w1 1) :0, Tl(w22+w3 3) 0,
W’y +w?3) =0, mw'i+w’,) =0,
0.

3w’ +w?y) =0, T3(w'i+uwts)

If the area metric is non-degenerate, i.e. o, # 0 and 7, # 0, only four
of these nine equations are independent, and then imply that all diagonal
elements vanish.

Further there are 12 coupled homogeneous equations for the 12 unknown
off-diagonal elements w® ;. We may write these equations as a matrix equa-
tion A - x = 0 for the vector

0 1 0 2 0 3 1 2 1 3 2 3
T= (W ,Ww 0w 9,w W 3,w 0w 9,w 1w 3,w’ W 3,w )

and the matrix

T2 —T3 032
T3 T2 032
T —Ti 021
T T2 021
T3 —T1 013
A— T =73 J13 7
031 T3 T1
013 T T3
012 T2 T
021 T2
023 T2 T3
032 T3 T2

where we used the shorthand o;; = 0; — 0. The symmetry generators are
obviously the non-trivial solutions of the system A-x = 0. Such solutions do
only exist if det(A) = 0. Now we observe that if for all pairs (o;, ;) # (05, 75)
for i # j the matrix A has full rank and thus w? ; = 0forall 4,j. In this
case the area metric has no gauge symmetries at all.

Let us now have o1 = 09 and 71 = 7. Then we have non-trivial solutions
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for w? 5, w¥,, w3, and w! ;. We may write the two resulting generators w;
and wy in matrix form,

o O O

wy = wo (57)

o~ oo
coc oo
oo o~
coc oo
I
oo oo
oloco o
oo o

In like fashion we find the generators ws and wy if 01 = 03 and 7 = 73:

000 1 00 0 0
000 0 00 —1 0
““loooo | ““Tlo1 o0 o (58)
100 0 00 0 0
Finally if 09 = 03 and 7 = 73 we obtain the generators w5 and wsg:
0100 000 0
100 0 000 0
“S=loooo | “T1oo o0 -1 (59)
000 0 001 0

We may identify the generators wi, ws and ws as boost generators whereas
wo, wyg and wg describe spatial rotations if eg is timelike. That this is indeed
the case one can verify following the construction presented in section 2.4.
In the three cases presented above the area metric has the local gauge group
o(1,1) ® o(2).

It is clear now that if (o1,71) = (02, 72) = (03, 73), the area metric features
full Lorentz symmetry and the local gauge algebra is o(1, 3).

Exactly along the same lines, one calculates the symmetry generators for the
other metaclasses, depending on the possible degeneracies. This concludes
the proof.

Finally, we remark that a direct calculation shows that an area metric
that is induced by a metric with Lorentzian signature lies in metaclass 1.
This is not surprising since metaclass I area metrics are the only ones where
the Lorentz group is one of the possible gauge groups. Similarly, one finds
that area metrics induced by a Riemannian metric lie in class VII.

With the results of this section at hand, we now afford a complete al-
gebraic overview over four-dimensional area metrics. The question whether
this classification can be employed in deciding if an area metric manifold
defines a spacetime is answered in the affirmative in the following section.
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5. Algebraic criteria for hyperbolicity

As an application of the algebraic classification of four-dimensional area
metrics, we discuss the various metaclasses with respect to their physical vi-
ability. The developments in the present section draw heavily on the causal
structure of area metric spacetimes developed in section 2, and the alge-
braic classification obtained in section 3. In particular, we prove a theorem
that excludes 16 of the 23 metaclasses of four-dimensional area metrics as
viable spacetimes. An even stronger exclusion theorem is then obtained for
spherically symmetric area metric spacetimes.

5.1. Metaclasses containing no spacetimes

With the explicit normal forms of an area metric at hand, we can dis-
cuss the families of area metrics contained in the various metaclasses with
respect to their physical viability. We would like to know which area met-
rics provide possible spacetime backgrounds for dynamical systems such as
Maxwell electrodynamics. The crucial ingredients to solve this question
have been reviewed in section 2 and 4. We now present a rather powerful
theorem that excludes 16 of the 23 metaclasses as feasible backgrounds for
physical theories since they do not provide strongly hyperbolic area metric
spacetimes.

Theorem 5.1. Let (M,G) be a four-dimensional area metric manifold of
metaclass VIII to XXIII. Then the Cauchy problem for Mazwell electrody-
namics s not well-posed.

This theorem can be proven with the help of two lemmata. First note
that J—! = wgG~! has the same Segré-classification as J.

Lemma 5.1. Let (M,G) be a four-dimensional area metric manifold of
metaclass VIII to XXIII. Then there exists a plane 0 A 0% of null covec-
tors.

Proof. The endomorphism J~' has a real Jordan block of at least di-
mension two with eigenvalue A. Then there exist 4, € AQT];k M with
J7I = Ay and J 1Oy = Q1 + AQy. Now J ! is symmetric with respect
to the bilinear form wél. Expanding w&l(J_]'Ql,QQ) = wal(Ql,J_l(Zg)
shows that wél(Ql,Qg) = 0, and hence €7 is simple, i.e. there exist cov-
ectors #7 and @ such that 2, = 01 A 05. To show that this is a null plane
consider ¢ € (91, 0%). Then we have EAJ (01 A6?) = 0. Using the definition
of J~! this may be rewritten as G1(&, -, 0,62) = 0. This condition implies
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tk G71(¢,-,€,-) < 3. By definition of the Fresnel polynomial (30) it follows
that all £ € (6%, 62) are null covectors: G(&,&,€,€) = 0, which concludes the
proof.

We will use the result of this lemma in the proof of

Lemma 5.2. Let (M,G) be a four-dimensional area metric manifold of
metaclass VIII to XXIII. Then for every time space splitting there always
exists a spatial covector k such that the matriz C(k) = C%k,, defined in (34)
1s not diagonalizable.

Proof. Choose an arbitrary time component ¢ with corresponding ini-
tial data surface of gradient dt. Without loss of generality assume that
G(dt,dt,dt,dt) # 0.

To show that there exists a covector k such that the matrix C(k) is not
diagonalizable we compare the geometric and algebraic multiplicities of the
zero eigenvalues of C'(k).

We choose the covector basis (0 = dt, 6,62, 63) where 6! A 62 is the dis-
cussed null plane. The eigenvalues \ of the matrix C(k) can be calculated
according to

det( AL — C%n) = A2 G(Ndt + kadz®, ... Adt + kqdz®) =0 (60)

for any spatial covector k. We now examine the particular covector ol =
6! + ab? for some a # 0. Then equation (60) implies together with

GAdE+ 07, Adt + 1) = A1GO000 4 4\3G000T 4 6)2G00IT (g1

that at least four of the six eigenvalues of the matrix C(#') are zero. Here
we used that G111 vanishes since 0! is a null covector and G911 = 0 since
GY(&,-,0%,6%) = 0 for any & € 0 AH? as we have seen in the proof of lemma
5.1. For the geometric multiplicity of the zero eigenvalues we have to find the
number of eigenvectors (u,v)! corresponding to the zero eigenvalues of C(6').
Finding the eigenvectors of C(#') corresponding to the zero eigenvalues is

equivalent to solving the system Ru = 0 and Pu + Qv = 0 with matrices

0 0 a 0 0 0
R=|0 0 -1/, P= 0 0 01,
—a 1 0 G2331 —|—aG2332 G3131 + aG3132 0
(62)
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0 0 (G0131 + 2aG0(13)2
Q= 0 0 2G4 G022 | | (63)
G0131 + 2aG0(13)2 2G0(23)1 + aG0232 2G0331 4 2aG0332

for vectors u and v. We now observe that the choice of ' never gives rise
to four eigenvectors, unless u € (ug = (1, a,0)!), Pug= 0 and Q = 0. If the
area metric is such that this cannot happen the proof is already complete.
An additional step is only needed for area metrics with vanishing G233!,
G?332 @331 oIl ~GO232 and G931 = GU123_In this case we change the
spatial covector to #' = @' + b3, Along similar lines it can now be shown
that the geometric multiplicity is always lower than the algebraic multiplic-
ity. Hence, there always exists a spatial covector k such that the matrix
C(k) is not diagonalizable. Since the coordinate choice of time ¢ was arbi-
trary this completes the proof.

,From these two lemmata we immediately see that the proposition of
theorem 5.1 holds. This theorem is quite a strong restriction on physically
viable area metric backgrounds. That means we can restrict our further
analysis of the normal forms to the physically viable metaclasses I to VII.
Within these classes there may still be area metrics that do not admit a well-
posed initial value problem for Maxwell electrodynamics. Since we have not
been able to prove general theorems on metaclasses I to VII, their hyperbol-
icity properties have to be decided case by case. In the following section we
present such a treatment for the case of spherically symmetric area metric
manifolds.

5.2. Highly symmetric area metric spacetimes

Invariance of an area metric tensor field G under its flow along some
vector field K identifies a symmetry of the area metric manifold and is con-
veniently formulated as a vanishing Lie derivative L G, in complete analogy
to pseudo-Riemannian geometry. Under the assumption of sufficiently high
symmetry, we now further refine our study of the hyperbolicity properties of
classes I to VII, on which the theorem proven in the previous chapter makes
no statement.

In particular, we now examine spherically symmetric area metric space-
times in some detail and comment on the simpler case of homogeneous and
isotropic symmetry. We will see that the symmetries alone do not yet deter-
mine a unique metaclass. However, requiring that the area metric manifold
is strongly hyperbolic will reveal that only metaclass I is physically viable.
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To make these statements precise, note that the inverse G~! of some
area metric tensor lies in the same metaclass as G, and we make the

Definition 5.1. An area metric manifold (M, G) is called spherically sym-
metric if the area metric G possesses three Killing vector fields spanning
an so(3) algebra such that the orbit of any point under the corresponding
isometries is topologically a two-sphere.

A slight modification of the calculation in [23] now reveals the canonical form
of the inverse G~! of a spherically symmetric area metric G. In a suitable
local covector frame {0}, the Petrov matrix Petrov(G~!) takes the form

13 0 0 0 0 20+ 71 ]
0 €9 0 0 —o+T 0
_ 0 0 €9 —oc+T 0 0
Petrov(G 1) — 0 0 \ . 0 0 ,
0 —o0+T 0 0 €1 0
| 2047 0 0 0 0 e
(64)

where £, o and 7 are functions of ¢ and r, and the €1, €3, €3 are signs of
possible values 0, £1. ;From the exclusion theorem 4.1 it is clear that not
every combination of signs €1, €2, €3 can possibly give rise to an area metric
spacetime. The allowed combinations of signs are summarized in table 2.

€1 1 | £1 | £1 | £1 ] O

€2 Fl|F1 | £1 | £1] O

€2 1111 ]1

sign(§) -+ =]+ | +
metaclass | I | IV | VI | VII | VII

Table 2: possible combination of signs for spherically symmetric area metrics

We now calculate the Fresnel polynomial G(k, k, k, k) for some covector

k with components k;, i = t,7,0,¢. Up to a power of det(Petrov(G)) we
obtain

Gk, k, k k) ~ &u? + (ere2 + &€ — 907 uv + €1e2e30?, (65)

where u = e2k? + e1k? and v = k3 + k‘i Now observe that there can not
be future timelike covectors k if & = 0, since then G(k, k, k, k) ~v. If £ £ 0
we may factorize the Fresnel polynomial into two real quadratic factors,
Gk, k,k, k) ~ (u+ (To)(u+ ¢ v) with

¢t = 21£<€162 +&—90% £ \/(er162 + € — 902)2 — 451625)' (66)
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The Fresnel polynomial now has the form G(k, k, k, k) ~ ((g7)®kaks)((97)kaks)
for two inverse metrics gt = diag(es, €1, ¢, (). For a weakly hyperbolic
area metric spacetime both g™ and ¢~ need to have Lorentzian signature
which requires that €; and €5 have opposite sign. According to table 2 this
rules out the metaclasses VI and VII. Without loss of generality we assume

€1 = 1 and e = —1. One may now calculate the future timelike covector
cone C for the metaclasses I and IV. It turns out that the future timelike
covector cone of metaclass IV is empty while C} for metaclass I is

Co={k € T;M| -k} + k} + (kg + k3) < 0}. (67)

Thus we see that spherically symmetric area metrics spacetimes do only exist
in metaclass I. The same result is obtained for homogeneous and isotropic
manifolds in four dimensions [14]. With these insights we conclude our
demonstration of the various ways in which the algebraic classification of
area metrics can be employed in order to decide on the hyperbolicity prop-
erties of area metric manifolds, and thus their ability to serve as a refined
spacetime structure.

6. Conclusions

The key achievement of the present work is the identification of those
four-dimensional area metric manifolds that qualify as viable spacetimes or
optical backgrounds. These are distinguished by enabling causal evolution
for classical matter fields in general, and at the very minimum for Maxwell
theory. Indeed, remarkably much can be learnt from the application of
standard constructions within the theory of partial differential equations to
abelian gauge fields on an area metric manifold. The entire causal structure
of an area metric manifold is revealed this way.

In this context, the central insight consists in the observation that the
naturally emerging future timelike cones are open and convex, and that their
topological closure defines causal vectors. Based on these notions, we were
able to provide analytical definitions for weakly and strongly hyperbolic
area metric spacetimes, such that the known theorems concerning the well-
definition of initial value problems directly extend from the familiar special
case of metric manifolds. Indeed, we were able to rigorously develop all
concepts needed to address global causality conditions, leading for instance
to the area metric version of the equivalence of the Alexandrov topology
with that of the underlying manifold whenever the area metric spacetime is
strongly causal.

45



The second major technical part of this article, namely the complete alge-
braic classification of four-dimensional area metric manifolds, was prompted
by the desire to obtain simple algebraic criteria for the above analytic charac-
terization of strongly hyperbolic area metric spacetimes. Since four-dimen-
sional area metric manifolds contain more algebraic degrees of freedom at
each point than could possibly be trivialized by a change of the local frame,
the algebraic classification results in continuous families of normal forms.
Grouping these into 23 metaclasses allows to prove a remarkable theorem,
linking our analytical conditions for a strongly hyperbolic area metric space-
time to the obtained algebraic classification: 16 of the 23 metaclasses of area
metrics cannot provide strongly hyperbolic spacetime geometries.

It is important to note that the algebraic classification of area metrics
directly translates into a classification of all non-dissipative linear optical
media, as we have argued in our application section. This result should
be of great experimental value. In this context the requirement of good
causality simply excludes all classes that cannot exist.

We wish to emphasize that currently we have comparatively little to say
about the hyperbolicity properties of the remaining seven algebraic meta-
classes, unless further assumptions, such as the existence of sufficiently many
Killing symmetries, are made. That this does not necessarily present a prob-
lem in practice, we demonstrated by scrutinizing spherically symmetric area
metric spacetimes as a concrete example of phenomenological interest. Here
we were indeed able to give a full algebraic classification of all strongly hy-
perbolic spherically symmetric area metric spacetimes. The same holds for
homogeneous and isotropic area metric spacetimes. In both cases, strong
hyperbolicity is equivalent to the respective area metrics being of algebraic
metaclass L.

Let us briefly muse on what we have learnt beyond the immediate techni-
cal details when studying the physical viability of an area metric spacetime
structure.

First and foremost, the questions discussed here for the particular case
of area metric manifolds must be posed for any candidate geometry aspiring
to replace the Lorentzian spacetime structure underlying general relativity
and our current fundamental theories of matter. That indeed area metric
geometry passes key criteria one must expect a spacetime geometry to satisfy
provides further evidence toward the viability of the area metric hypothesis
at a fundamental level.

Second, the treatment given here immediately includes the corresponding
findings in the metric case, in which all constructions recover what is often
merely postulated, but rarely emphasized to be intimately linked to other
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assumptions made in the theory. A case in point is the physically somewhat
incomplete (though mathematically elegant) discussion of the causal struc-
ture of spacetime purely in terms of the geometry, but without pointing out
the relation to (and indeed logical origin in) the hyperbolicity properties of
distinguished matter fields. Thus, what might appear to be a more intricate
treatment of these questions in area metric geometry actually only highlights
the conceptual steps to be followed also in the familiar metric case.

Third, area metric spacetimes provide a now well-understood example
for a geometry where local Lorentz invariance may be gradually broken (see
section 4.4) while, and this is a mathematically and physically important
point, their causal structure is still given by convex cones. It is this lat-
ter property, which ultimately renders for example the decay of massless
particles into massive ones kinematically impossible.

Naturally, the developments of the present article are of greatest value
particularly for the further pursuit of the programme to study the physical
implications of an area metric spacetime structure. This holds especially
with regard to area metric gravity theory which can be formulated as a
refinement of metric Einstein-Hilbert gravity as reviewed in the application
section. The future cones, for instance, are of central relevance in defining
local observers, and thus for the extraction of precise physical predictions
from the theory. The normal forms, and particularly those that could be
identified as providing strongly hyperbolic backgrounds, are of obvious value
for actual calculations, and useful for a number of constructions that are
not possible for non-hyperbolic area metric spacetimes. Work that has been
enabled by these and other results obtained in this article is currently under
way and should eventually lead to a much deeper understanding of area
metric gravity on a fundamental level.
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