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Sinking of a magnetically confined mountain on an accreting neutron star
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ABSTRACT
We perform ideal-magnetohydrodynamic axisymmetric simulations of magnetically confined
mountains on an accreting neutron star, with masses �0.12 M�. We consider two scenarios,
in which the mountain sits atop a hard surface or sinks into a soft, fluid base. We find that the
ellipticity of the star, due to a mountain grown on a hard surface, approaches ∼2 × 10−4 for
accreted masses �1.2 × 10−3 M�, and that sinking reduces the ellipticity by between 25 and
60 per cent. The consequences for gravitational radiation from low-mass X-ray binaries are
discussed.

Key words: accretion, accretion discs – stars: magnetic fields – stars: neutron – pulsars:
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1 IN T RO D U C T I O N

The magnetic dipole moment μ of a neutron star is observed to di-
minish in the long term as the star accretes (Taam & van den Heuvel
1986; van den Heuvel & Bitzaraki 1995), although Wijers (1997)
argued that μ may also be a function of parameters other than
the accreted mass Ma. The μ–Ma correlation has been ascribed
to a number of physical mechanisms (Melatos & Phinney 2001;
Cumming 2005). First, the magnetic field may be dissipated in
the stellar crust by Ohmic decay, accelerated by heating as the
accreted plasma impacts upon the star (Konar & Bhattacharya
1997; Brown & Bildsten 1998; Urpin, Geppert & Konenkov 1998;
Cumming, Arras & Zweibel 2004). Secondly, magnetic flux tubes
may be dragged from the superconducting core by the outward
motion of superfluid vortices, as the star spins down (Srinivasan
et al. 1990; Ruderman, Zhu & Chen 1998; Konar & Bhattacharya
1999; Konenkov & Geppert 2001). Thirdly, the magnetic field
may be screened by accretion-induced currents within the crust
(Bisnovatyi-Kogan & Komberg 1974; Blondin & Freese 1986;
Lovelace, Romanova & Bisnovatyi-Kogan 2005). In particular, the
field may be buried under a mountain of accreted plasma chan-
nelled on to the magnetic poles. When Ma is large enough, the
mountain spreads laterally, transporting the polar magnetic flux to-
wards the equator (Hameury et al. 1983; Romani 1990; Brown
& Bildsten 1998; Cumming, Zweibel & Bildsten 2001; Melatos
& Phinney 2001; Choudhuri & Konar 2002; Payne & Melatos
2004; Zhang & Kojima 2006; Payne & Melatos 2007; Vigelius &
Melatos 2008, 2009b).

Payne & Melatos (2004) computed the unique sequence of
self-consistent, ideal-magnetohydrodynamic (ideal-MHD) equilib-
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ria that describes the formation of a polar mountain by magnetic
burial as a function of Ma. They found that the accreted mountain is
confined by the equatorially compressed magnetic field, which was
unaccounted for in previous calculations, and that 10−5 M� must
be accreted to lower μ by 10 per cent. Surprisingly, mountains are
stable with respect to axisymmetric ideal-MHD perturbations; they
oscillate globally in a superposition of acoustic and Alfvén modes
but remain intact due to magnetic line-tying at the stellar surface
(Payne & Melatos 2007). The same equilibria are susceptible to
non-axisymmetric, Parker-like instabilities (specifically the gravi-
tationally driven, undular submode), but the instability preserves a
polar mountain when it saturates, despite reducing the mass elliptic-
ity by ∼30 per cent (Vigelius & Melatos 2008). Recently, Vigelius
& Melatos (2009b) considered resistive effects. They found that
the mountain does not relax appreciably for realistic resistivities
over the lifetime of a low- or high-mass X-ray binary either by
global diffusion, resistive g-mode instabilities, or reconnection in
the equatorial magnetic belt. The Hall drift, which exerts a desta-
bilizing influence in isolated neutron stars (see, e.g. Rheinhardt &
Geppert 2002), is unlikely to be important in accreting neutron stars
due to crustal impurities (Cumming et al. 2004; Cumming 2005).

The investigations outlined in the previous paragraph suffer from
two limitations. First, the mountain is assumed to rest upon a rigid
surface. Under this assumption, the accreting plasma cannot sink
into the stellar crust. This is unrealistic. During magnetic burial,
frozen-in magnetic flux is redistributed slowly within the neu-
tron star by the accreted plasma, as it sinks beneath the surface
and spreads laterally. Choudhuri & Konar (2002) showed that the
time-scale and end state of burial are tied to these slow interior
motions. Secondly, the accreted plasma is assumed to satisfy an
isothermal equation of state. This is an accurate model only for
neutron stars with low-accretion rates Ṁa � 10−10 M�yr−1; the
thermodynamics of neutron stars accreting near the Eddington limit
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Figure 1. Diagrams illustrating schematically three mountain growth scenarios. The simulation region is bounded by rmin ≤ r ≤ rmax, 0 ≤ θ ≤ π/2 (thick
lines), and represents a quadrant of the star. Boundary conditions assume symmetry about θ = 0 and reflection at θ = π/2. The surface of the star is located at
r = R�. Three subregions are identified. The fluid interior beneath the surface, containing mass Mbase, is shaded grey. The region where the mountain mass Ma

is injected into the simulation is shaded in a grey to white gradient; the grey is proportional to the injected flux (see equation 4) as a function of θ . The outer
atmosphere of the star, containing mass Matm, is unshaded. A central gravitational point source is labelled with its mass M�. For mountains grown on a fluid
base, Ma can be injected (a) at the inner boundary r = rmin or (b) at the stellar surface r = R�. For mountains grown on a hard surface, (c) there is no fluid
interior; the inner boundary is identical to the stellar surface r = rmin = R�(Mbase = 0). See the text in Section 2.3.

(∼10−8 M� yr−1) is more complicated, with a depth-dependent adi-
abatic index (Brown & Bildsten 1998; Brown 2000). The equation of
state affects the growth rate of Parker-like instabilities (Kosiński &
Hanasz 2006).

In this paper, we seek to overcome the first limitation. In Sec-
tion 2, we present a new method of computationally simulating the
growth of a magnetic mountain with Ma � 0.1 M�. In Section 3,
we compare the structure of mountains grown on hard and soft
surfaces to evaluate the role of sinking. In Section 4, the resulting
mass quadrupole moment is evaluated as a function of Ma for hard
and soft surfaces. A comparison with the results of Choudhuri &
Konar (2002) and the implications for gravitational wave emission
from rapidly rotating accretors (e.g. low-mass X-ray binaries) are
discussed in Section 5.

2 G ROWIN G A R EALISTICALLY SIZED
M O U N TA I N BY IN J E C T I O N

In order to investigate how a magnetically confined mountain sinks
into the stellar crust, we need a numerical method capable of build-
ing a stable mountain, with a realistic Ma, on top of a fluid base. The
approach we take builds upon previous work by Payne & Melatos
(2004, 2007) and Vigelius & Melatos (2008, 2009a). Here, as a
service to the reader, we briefly recapitulate the physical arguments
and key results from these previous papers, with references to the
relevant sections and equations.

In Payne & Melatos (2004), axisymmetric magnetic mountain
equilibria are computed by solving an elliptic partial differential
equation: the Grad–Shadranov equation describing hydromagnetic
force balance in axisymmetric geometry (Payne & Melatos 2004,
section 2.1 and equation 12). The calculation ensures that the mass-
magnetic flux distribution ∂M/∂ψ is treated self-consistently: the
final ∂M/∂ψ is equal to the initial ∂M/∂ψ together with the
mass-flux distribution of the accreted matter, ∂Ma/∂ψ , which is
characterized by the parameter ψ a (Payne & Melatos 2004, sec-
tion 2.2 and equation 13). In the limit of small Ma, the final equilib-
rium flux solution is characterized by the ratio Ma/Mc, where the
characteristic mass Mc ∝ M�R

2
�B

2
� is the accreted mass required

to halve μ (Payne & Melatos 2004, section 3.2 and equation 30;
Payne & Melatos 2007, section 2.2 and equation 3). The character-
istic mass contains the dependence of the equilibrium solution on

the parameters of the neutron star, in particular the magnetic field
strength B�. The Grad–Shafranov equilibria are computed using
an iterative numerical solver (Payne & Melatos 2004, section 3.3);
this approach only converges numerically for low accreted masses
Ma ≤ Mc ≈ 10−4 M� (Payne & Melatos 2004, section 3.4), and
it fails to accommodate a fluid interior within its fixed-boundary
framework.1

In Payne & Melatos (2007) and Vigelius & Melatos (2008),
Grad–Shafranov equilibria are loaded into ZEUS, a multipurpose,
time-dependent, ideal-MHD solver (Stone & Norman 1992a,b;
Hayes et al. 2006), and further evolved in axisymmetric (Payne
& Melatos 2007) and three-dimensional geometries (Vigelius &
Melatos 2008). The characteristic mass Mc is used to reduce the
length-scales of the simulated neutron star to circumvent numeri-
cal difficulties and render the simulations computationally tractable
(Payne & Melatos 2007, section 3.3; Vigelius & Melatos 2008,
section 2.3 and equation 6, and section 4.6). Two approaches are
explored to augmenting the mass of a Grad–Shafranov mountain,
up to Ma � 5.6Mc: in the first approach, additional matter is in-
jected through the outer boundary along the polar flux tube 0 ≤ ψ ≤
ψ a (Payne & Melatos 2007, section 4.2); in the second approach,
the density of the mountain is uniformly increased at every point,
while the magnetic field is preserved (Payne & Melatos 2007, sec-
tion 4.4). A plausible attempt to extend this latter approach to in-
clude sinking is outlined in Appendix A; ultimately, this attempt
proved unsuccessful, and was abandoned. Instead, the method pre-
sented in this section uses ZEUS-MP (Hayes et al. 2006) to build
magnetic mountain equilibria from scratch; this approach was first
proposed in Vigelius & Melatos (2009a).

2.1 Outline of the method

The setup of the simulations presented in this paper is de-
scribed schematically in Fig. 1. Three numerical experiments are

1 In Payne & Melatos (2004), the Grad–Shafranov equation is solved subject
to Dirichlet and Neumann conditions at fixed boundaries. Mathematically,
one can formulate a well-posed boundary-value problem for the Grad–
Shafranov equation in the presence of a free boundary, e.g. the sinking base
of a mountain; in practice, however, this is an extremely difficult problem
to solve.
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performed: growing on to a hard surface, growing on to a soft surface
by injecting matter from below, and repeating the latter experiment
by injecting matter at some altitude.

To simulate accretion, we inject matter from below, through the
inner boundary of the simulation at r = rmin. One might expect a
realistic simulation of accretion to add matter from above, through
the outer boundary r = rmax. The two scenarios are, however, equiv-
alent in ideal MHD; the magnetic field is frozen into the fluid, which
is thus constrained to move along lines of magnetic flux. Provided
that the simulation reaches equilibrium, it becomes inconsequential,
with respect to ideal MHD, through which end of a flux tube matter
is added. This is because matter cannot cross flux surfaces in ideal
MHD, so the mass column dM(ψ) between ψ and ψ + δψ adjusts
to reach the same hydrostatic radial profile in equilibrium, whether
it enters slowly from below or falls slowly from above. In the pres-
ence of gravity, which (in the case of a sinking mountain) induces
steep density gradients in the fluid base, the results to be presented
in Section 3.3 confirm that this situation remains true; two different
injection scenarios (described below) give ellipticities consistent to
within 10 per cent. There remains, however, the subtle and difficult
question of irreversible magnetic reconnection at the grid corners,
which remains unresolved (see the discussion in Section 3.4).

In practice, it is advantageous to add matter through the inner
boundary, because we wish to inject along particular flux tubes,
and this is easiest to do at r = rmin, where the magnetic footprints
are fixed in place (unlike at r = rmax). This constraint, known as
magnetic line tying, contributes to the stability of the mountain
(Goedbloed & Poedts 2004; Vigelius & Melatos 2008). It is well
justified physically, provided that rmin lies deep enough within the
star, so that the fluid base (and frozen-in magnetic flux) remains rel-
atively stationary, and is not significantly perturbed by the spreading
and sinking of the mountain. This is the case if the mass Mbase of the
fluid base, initially in the region rmin < r < R�, is much greater than
Ma. To confirm that the mountain does not greatly push the crustal
material, we first calculate the fraction of Mbase contained in each
grid cell, and then determine the change in this quantity between
the initial and final times of the simulation; this gives the change
in the spatial distribution of Mbase over the simulation, as a function
of the grid cell. For all simulations with sinking, the median change
in Mbase, over all grid cells, is on average ∼10 per cent. Thus, the
distribution of the fluid base does not change much during accretion.
Recent molecular dynamics simulations of crystalline neutron mat-
ter, which predict a high breaking strain ∼0.1 (Horowitz & Kadau
2009), also support the line-tying hypothesis.

When a mountain is grown on to a fluid base Mbase, a difficulty
arises. ZEUS-MP models a single fluid, with a unique velocity field
(Hayes et al. 2006); there is no facility for simulating the movement
of one fluid, the injected mountain, with respect to another fluid,
the stationary crust.2 We are left with two alternatives: to assign the
same velocity to the injected mountain and the crust (the behaviour
of ZEUS-MP’s ‘inflow’ boundary condition) or to assign a negligi-
ble or zero velocity to the injected mountain, in order to keep the
base stationary. In the first case, ZEUS-MP fails catastrophically
for desirable values of the injection velocity (�5 per cent of the
escape velocity). In the second case, which we study in Section 3,
mountains remain subterranean and never rise to the stellar surface
r = R�. As a check, therefore, we examine two scenarios: injection

2 ZEUS-MP can track the concentrations of comoving components within
the same fluid; we exploit this in Section 2.3.

at r = rmin and r = R�. We show in Section 3.3 that the results in
both scenarios are quantitatively alike, confirming their robustness.

Throughout this paper, we adopt the viewpoint that the accreted
matter and the mountain are one and the same; the accreted mass
and the mass of the mountain are identical and are both denoted by
Ma. This is a matter of terminology, not physics. There is no ‘hard
edge’ to the mountain; matter is accreted on all flux surfaces 0 ≤
ψ ≤ ψ� (see equation 4 in Section 2.3), not just on the polar cap 0 ≤
ψ ≤ ψ a, which contains ∼63 per cent of Ma. Under the assumption
of ideal MHD, matter cannot spread across flux surfaces, i.e. there
is no Ohmic diffusion. We also do not model the accreted matter
once it has sunk beyond the crust, as do e.g. Choudhuri & Konar
(2002); see the discussion in Section 5.

2.2 Initial setup

The initial setup of our simulations closely follows Payne & Melatos
(2007) and Vigelius & Melatos (2008). The setup of ZEUS-MP3 is
through a set of parameters which control: the geometry of the prob-
lem, the physical phenomena to be modelled (e.g. MHD, gravity),
the simulation grid and its boundary conditions, the equation of
state, and the choice of time-step. Appropriate values for these
parameters are given in Payne & Melatos (2007), section 3 and
appendix A1, and in Vigelius & Melatos (2008), sections 2.2–2.3
and appendix A.

To avoid numerical difficulties with steep magnetic field gradi-
ents, we simulate a scaled-down neutron star, where the mass M�

and radius R� are artificially reduced, while the hydrostatic scale-
height h0 = c2

s R
2
�/GM� is kept constant (Payne & Melatos 2007).

The down-scaling transformation preserves the equilibrium shape
of the mountain exactly in the small-Ma limit (Payne & Melatos
2004, 2007) and has been validated approximately for Ma �
20Mc (Vigelius & Melatos 2008). We use dimensionless units
within ZEUS-MP, setting the isothermal sound cs and gravitational
constant G to unity, and adopting h0 as the unit of length. Table 1
explains how to convert between an astrophysical neutron star, the
scaled-down model, and dimensionless ZEUS-MP units.

The simulations are performed on an axisymmetric rectangular
grid with Nr cells spaced logarithmically in r, and Nθ = 64 cells
spaced linearly in θ . The logarithmic spacing in r is determined
by the ratio �rNr−1/�r0 of the maximum to minimum radial grid
spacing (see Appendix B). This ratio is chosen large enough to
concentrate on grid resolution near the inner boundary, but small
enough to ensure reasonable run times. We set rmax = 1.2R� = 60
h0 to give the mountain ample room to expand without meeting
the outer boundary, and stipulate reflecting boundary conditions at
θ = 0 and θ = π/2, ‘inflow’ boundary conditions at r = rmin,
and ‘outflow’ boundary conditions at r = rmax; more details can be
found in Payne & Melatos (2007). The magnetic field is initially
that of a dipole, and B� is its magnitude at the polar surface.

A gravitational point source M� is placed at r = 0, and self-
gravity is ignored. The density field is initialized to be the static
atmosphere of an isothermal fluid with no self-gravity,

ρ(t = 0, r) = ρR�
exp

[
GM�

c2
s

(
1

r
− 1

R�

)]
. (1)

Ideally, the region r > R� should start evacuated, but ZEUS-MP
requires the density to be non-zero everywhere, so we set Matm =
5 × 10−6 M� (approximately 4 per cent of the mass of the smallest

3 Version 2.1.2, available from http://lca.ucsd.edu/portal/codes/zeusmp2.
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Table 1. Conversion of physical quantities into dimensionless variables in the simulations. Physical quantities are first converted to their values in the scaled-
down model by multiplying by [a(Simulation)/a(Astrophysical neutron star)]n, where a = R�/h0 parametrizes the curvature down-scaling, and n is listed in
Column 4. Scaled-down physical quantities are then re-expressed in the dimensionless units of ZEUS-MP according to Column 6. The table is divided into
three horizontal parts containing: stellar parameters (Payne & Melatos 2004), simulation control parameters (see Fig. 1) and simulation outputs.

Quantity Symbol Astrophysical Down-scaling Simulation ZEUS-MP dimensionless unit
neutron star index n

Scaling ratio a 1.9 × 104 None 50 None

Stellar mass M� 1.4 M� 2 10−5 M� M0 = c2
s h0/G = 8.1 × 1024 g

Stellar radius R� 106 cm 1 2.7 × 103 cm h0 = c2
s R

2
�/GM� = 54 cm

Stellar magnetic field B� 1012 G None B0 = c2
s /G

1/2h0 = 7.2 × 1017 G
Isothermal sound speed cs 108 cm s−1 None cs

Critical mass Mc 1.2 × 10−4 M� 4 6.1 × 10−15 M� M0

Inner boundary rmin 1 see Table 2 h0

Outer boundary rmax 1 1.2R� h0

Accreted mass Ma 4 see Table 2 M0

Mass of outer atmosphere Matm 4 5 × 10−6 M� M0

Mass of fluid base Mbase 4 10Ma M0

Mountain density ρXa 1 ρ0 = M0/h
3
0 = 5.2 × 1019 g cm−3

Magnetic field B None B0

Ellipticity ε 2 None
Time t None t0 = h0/cs = 5.4 × 10−7 s

Table 2. Simulations of magnetic mountains presented in this paper. The accompanying parameters are: the target
accreted mass Ma, in units of Mc and M�; the number of grid cells in the r direction Nr; the radius of the inner radial
boundary rmin; the ratio of the maximum to minimum radial grid spacing �rNr−1/�r0; the injection radius rinj; the
injection velocity vinj; the injection time Ta and the total (successfully completed) simulation time tmax.

Simulation Ma
Mc

Ma
M� Nr

rmin
h0

�rNr −1
�r0

rinj
vinj
cs

Ta
t0

tmax
Ta

H(1) 1 1.2 × 10−4 64 50.0 200 rmin = R� 10−4 5 × 103 1.5
H(10) 10 1.2 × 10−3 64 50.0 200 rmin = R� 10−4 5 × 103 1.5
H(102) 100 1.2 × 10−2 64 50.0 200 rmin = R� 10−4 5 × 103 1.5
H(103) 1000 1.2 × 10−1 64 50.0 200 rmin = R� 10−4 5 × 103 1.5

S(rmin, 1) 1 1.2 × 10−4 96 44.7 306 rmin 0 5 × 103 1.5
S(rmin, 10) 10 1.2 × 10−3 112 42.8 344 rmin 0 5 × 103 1.5
S(rmin, 102) 100 1.2 × 10−2 120 41.1 378 rmin 0 5 × 103 1.5
S(rmin, 103) 1000 1.2 × 10−1 128 39.5 410 rmin 0 5 × 103 1.5

S(R�, 1) 1 1.2 × 10−4 96 44.7 306 R� 0 5 × 103 1.5
S(R�, 10) 10 1.2 × 10−3 112 42.8 344 R� 0 1 × 104 1.5
S(R�, 102) 100 1.2 × 10−2 120 41.1 378 R� 0 2 × 104 1.5
S(R�, 103) 1000 1.2 × 10−1 128 39.5 410 R� 0 8 × 104 0.35

mountain; see Table 2). Integrating equation (1) over the region r >

R� (see Fig. 1) fixes the density at the stellar surface ρR�
in terms of

Matm. In contrast, we require the mass of the fluid base Mbase (when
a soft surface is being modelled) to be much larger than the mass
of the mountain, as discussed in Section 2.1. In all runs, we choose
Mbase/Ma ≈ 10. Integrating equation (1) over the region containing
Mbase then fixes rmin.

2.3 Injection procedure

ZEUS-MP’s ‘inflow’ boundary condition permits injection at the
edge of the simulation volume. To enable injection at r = R�, as in
Fig. 1(b), we implement a more flexible custom procedure, and use
the built-in ‘inflow’ condition only to tie the magnetic flux at r =
rmin. We describe the procedure briefly below; further details are in
Appendix C.

We inject mass Ma into an injection region r inj < r < r inj +
δr inj, 0 < θ < π/2, over a time interval 0 < t < T a. (We set δr inj =
0.1 h0 throughout.) The flux of accreted matter at time t entering a
point (r , θ ) in the injection region is given by

∂3Ma

∂t∂r∂θ
(t, r, θ) ∝ Ṁa(t)

∂Ma

∂ψ
(r, θ ), (2)

where we choose

Ṁa(t) ∝ t2(Ta − t)2 , (3)

and

∂Ma

∂ψ
(r, θ ) ∝ exp(−bR�r

−1 sin2 θ ) . (4)

The normalization of equation (2) is chosen so that, for each simu-
lation, the mass of the mountain is equal to Ma at time t = T a, i.e.
Ma(t = T a) ≡ Ma. After time t = T a, no further mass is added, but
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Figure 2. Left-hand panel: the accretion rate Ṁa(t), given by equation
(3). Right-hand panel: the initial mass-flux distribution ∂M/∂ψ , given by
equation (4). Contours are at (right- to left-hand panels) 0.05, 0.1, 0.3, 0.5,
0.7 and 0.9 of the maximum.

we evolve the system up to t = tmax = 1.5T a to test the stability of
the mountain obtained.

Equation (3) determines the rate of accretion; it is plotted in
Fig. 2 (left-hand panel). The functional form was chosen to ensure
numerical stability in ZEUS-MP, and has no particular astrophysical
justification, except to ensure that a mountain builds up to its target
mass smoothly over the time-scale Ta. For this reason, it is a smooth
bell-shaped function, designed to avoid any discontinuity in the
accretion rate, which might excite undesired oscillations in the fluid
or provoke numerical instabilities.

Equation (4) gives a mass-flux distribution consistent with that of
Payne & Melatos (2004); it is plotted in Fig. 2 (right-hand panel). It
does not attempt to model the interaction of the accreted matter with
the magnetosphere, from which the mass-flux distribution would
originate; instead, it is chosen such that the majority (∼63 per cent)
of the accreted matter falls on the polar cap 0 ≤ ψ ≤ ψ a. The param-
eter b =ψ�/ψ a = 3 determines the polar cap radius R� sin−1 (b−1/2).
It is determined astrophysically by disc-magnetosphere force bal-
ance, and is related to the stellar magnetic field via b ∝ ψ� ∝ B�

(Payne & Melatos 2004). In this theoretical paper, however, we
treat b (and therefore B�) as a free parameter, and do not attempt
a self-consistent solution of the disc-magnetosphere system (see,
e.g. Romanova, Kulkarni & Lovelace 2008). With this freedom, b
is chosen unrealistically large to preserve numerical stability (Payne
& Melatos 2004).

We use ZEUS-MP’s multispecies tracking facility (Hayes et al.
2006) to record, throughout the simulation, the fraction of the den-
sity, 0 ≤ Xa(t , r , θ ) ≤ 1, that originates from accretion (i.e. added
at t > 0 via the injection procedure), as opposed to from the initial
configuration at t = 0. This allows us to track the spread of the
mountain independently of the motion of the remaining (displaced)
stellar matter.

We require that the mountain grows quasi-statically, in the
sense that the accretion time-scale Ta is always much greater
than tAlfvén, the characteristic pole-equator crossing time of an
Alfvén wave. Following Vigelius & Melatos (2008), we com-
pute the crossing time at t = 0, r = R�: from the Alfvén speed
vAlfvén = B�/(4πρR�

)1/2 ≈ 0.2cs (see Table 1), we obtain tAlfvén =
πR�/(2vAlfvén) ≈ 400t0. The condition tAlfvén 	 Ta is verified by
comparison with the values for Ta listed in Table 2. The condition
also implies that the magnetostatic limit always holds: the ratio
B�Ma/Ṁa 
 π3/2R�ρ

1/2
R�

≈ 2 × 108 G s, and from Tables 1 and 2,
B�Ma/Ṁa ≈ B�Ta � 3 × 109 G s.

For mountains grown on a hard surface, we additionally set the
velocity v(t , r , θ ) within the injection region, such that the accreted
matter is always given a fixed speed vinj = 10−4 cs parallel to the
magnetic field B(t , r , θ ). The value of vinj should be a small fraction
of the escape speed vesc ≈ 4.1cs, so there is negligible mass lost

Table 3. List of important physical parameters of accreting neutron stars
(top part), and a summary of the results of the simulations presented in this
paper (bottom part).

Quantity Value/Range Reference

Accreted mass 10−4–0.8 M� 1, 2, 4
Accretion time-scale 104–106 yr 1, 7
Density of crust 109–1014 g cm −3 5, 10
Depth of crust ∼1000 m 5, 10
Initial magnetic field 1012–1013 G 3, 8, 9
Temperature 108–109 K 6, 10

Ellipticity 5 × 10−5–2 × 10−4 11
Effect of sinking ε reduced by 25–60 per cent 11

References: 1. Taam & van den Heuvel (1986); 2. van den Heuvel &
Bitzaraki (1995); 3. Hartman et al. (1997); 4. Wijers (1997); 5. Brown
& Bildsten (1998); 6. Brown (2000); 7. Cumming et al. (2001); 8.
Arzoumanian, Chernoff & Cordes (2002); 9. Faucher-Giguère & Kaspi
(2006); 10. Chamel & Haensel (2008); 11. This work.

Figure 3. Radial component of the magnetic field Br along θ = 0: for
simulation S(R�, 102) (left-hand panel), at t = 0.45T a (solid) and t =
0.85T a (dotted); and for simulation S(R�, 103) (right-hand panel), at t =
0.24T a (solid), and its time of failure t = 0.35T a (dashed).

through the outer boundary (see Section 3.2). We find that setting
v carefully is critical to stability.

3 C O M PA R I N G M O U N TA I N S G ROW N
O N H A R D A N D SO F T BA S E S

Table 2 lists the parameters of the simulations presented in this
paper. Mountains grown on a hard surface are labelled H(Ma/Mc).
Mountains grown on a fluid base are labelled S(rinj, Ma/Mc), where
the injection radius rinj may be either rmin or R�. The parameters of
each run are chosen to grow a mountain with a particular target mass,
Ma. We choose four values for Ma in the range 10−4–10−1 M�.
These values are chosen to demonstrate the ability of the injection
procedure to generate stable mountains over a wide range of masses.
This range also encompasses the range of Ma of real accreting
neutron stars (see Table 3). The main source of uncertainty is the
accretion efficiency (van den Heuvel & Bitzaraki 1995), which may
be as low as ∼5 per cent (Tauris, van den Heuvel & Savonije 2000);
this is reflected in the chosen range of Ma.

The CPU time required for each run was, on average, ∼10−2 s
per grid cell per unit t0 of simulation time. For S(R�)-type simula-
tions, one must scale Ta with Ma to prevent numerical instabilities.
Even so, run S(R�, 103) does not complete; ZEUS-MP aborts at t

≈ 0.35T a, when the adaptive time-step shrinks below its allowed
minimum. Fig. 3 shows that this behaviour arises when Br diverges
at r � r inj along the boundary θ = 0: for Ma = 102Mc, Br threatens
to break out for t � 0.5T a but ultimately settles down to the equi-
librium configuration before t = T a, whereas for Ma = 103Mc, it
grows uncontrollably up to the time of failure.
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Figure 4. Accreted mass Ma(t) and masses in the stellar atmosphere
Matm(t) and fluid base Mbase(t), plotted in black, for Ma/Mc = 1 (dot-
ted), 10 (dot–dashed), 102 (dashed) and 103 (solid). The injected mass from
equation (3) is overplotted in grey. The labels beneath each panel indicate
a hard-surface (H) or soft-surface [S(rmin) or S(R�)] run; see Table 2. The
short solid line at the bottom of Fig. (f) is from the aborted run S(R�, 103).

3.1 Verification

We first check that, for each mountain (i) we accumulate the correct
total mass Ma, with minimal loss through the outer boundary; (ii)
the mass above the surface, Matm, remains much smaller than Ma

and (iii) for mountains with sinking, the mass in the fluid base,
Mbase, remains large compared to Ma, so that the magnetic line-tying
condition at r = rmin is a good approximation. Figs 4(a), (c) and (e)
show Ma(t) = ∫

V
dV ρXa integrated over the simulation volume V

at time t. We see that the mountains achieve their target mass, which
remains in the simulation for t > T a. The injected mass Ma(t)/Ma,
found by integrating equation (3) with respect to time, is plotted
alongside in grey; the two curves overlap. Fig. 4(b) shows Matm

for the hard-surface experiment; it is always small. Figs 4(d) and
(f) show Mbase for the soft-surface experiments; it always exceeds
≈10Ma, as desired. For all simulations where Mbase > 0, the total
fraction of Mbase lost through the outer boundary is 	0.01 per cent,
consistent with Vigelius & Melatos (2008).

We next check that accretion takes place in the magnetostatic
limit, i.e. that the total kinetic energy Ek = ∫

V
dV ρ|v|2/2 is small

compared to the total magnetic energy Em = ∫
V

dV |B|2/(8π).
Fig. 5 shows the ratio of Ek to Em as a function of time. We see that
Ek/Em tends to increase with Ma but typically never rises above
1 per cent, except in H(103) and the incomplete run S(rmin, 103).
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Figure 5. Kinetic energy Ek(t), normalized by the magnetic energy Em(t),
for Ma/Mc = 1 (dotted), 10 (dot–dashed), 102 (dashed) and 103 (solid).
The labels beneath each panel indicate a hard-surface (H) or soft-surface
[S(rmin) or S(R∗)] run; see Table 2.
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Figure 6. Contours of the absolute, normalized divergence of B of mountain
H(103) at t = T a. Contour levels are at 5 × 10−2 (solid), 10−2 (dashed),
5 × 10−3 (dotted).

After accretion stops, at t = T a, Ek/Em typically falls to less than
10−4.

Magnetic field transport in ZEUS-MP is divergence-free by con-
struction (Hayes et al. 2006), but it is worth checking whether this
property is preserved by the injection algorithm. We find that the
mean value of |∇ · B|/ ∑

i(|Bi |/dxi) is initially �6 × 10−3, and in-
creases by a factor of 3.5 at most over the run. Fig. 6 shows contours
of the normalized |∇ ·B| for an illustrative mountain.

3.2 Illustrative example

We choose mountain H(102), grown on a hard surface with Ma =
102Mc, to illustrate the general evolution of a magnetic mountain
during accretion. The top row of Fig. 7 shows contours of the
mountain density ρXa, normalized by the initial surface density
ρR�

, at four different times. The lower row shows the magnetic
flux ψ , normalized by ψ� = B�R

2
�/2, at the same times. Matter

is added predominately at the pole, as determined by dM/dψ . In
the early stages of accretion (t = 0.1T a), the magnetic field is only
slightly disturbed. As accretion progresses, the mountain spreads
towards the equator, dragging the frozen-in magnetic field with
it. The angular span of the ψ contours is compressed from ∼70◦

[Fig. 7(e)] to ∼20◦ [Fig. 7(f)]. At the half-way point (t = 0.5T a),
the flux is significantly displaced from its initial configuration, but
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Figure 7. Hydromagnetic structure of hard-surface mountain H(102) at times t/T a = 0.1, 0.5, 1.0 and 1.5. (Top row) Contours of accreted density ρXa/ρR� ;
the maximum is indicated with a small arrow and labelled in bold. (Bottom row) Contours of magnetic flux ψ/ψ�, at the labelled times (solid), and at t = 0
(dashed). The dotted contours meet their solid equivalents on the left vertical axis. Note that the scale of the r axis differs between Figs (a) and (d). The change
in the contour scale between Fig. (e) and Figs (f)–(h) is due to the difference in ψ between t = 0, where the magnetic field is dipolar, and subsequent times
when the magnetic field is distorted.

remains anchored to the inner boundary at r = rmin, demonstrating
magnetic line tying. We see, in the ψ/ψ� = 1.2 × 10−2 contour,
the early formation of the magnetic ‘tutu’ configuration, observed
in Payne & Melatos (2004, 2007) for Ma = 10−5 M�.

At t = T a, the mountain reaches its target mass (Ma = 102Mc

in Fig. 7). Despite sliding towards the equator, the accreted matter
still exhibits a notable variation in density with respect to θ ; a polar
mountain is formed. The tutu configuration of the magnetic field
is clearly visible; see for comparison figs 2 and 4(a) of Payne &
Melatos (2004). This equilibrium state remains largely unchanged
when we run the simulation for an additional 0.5T a, during which
no further mass is added.

3.3 Sinking

We next compare the hard-surface equilibrium state, illustrated in
Figs 7(c) and (g), with the two experiments where we include sink-
ing. Fig. 8 shows contours of ρXa and ψ in each of the three
scenarios, with Ma = 10Mc. The hard-surface mountain [Fig. 8(a)]
spreads appreciably, and the magnetic flux [Fig. 8(d)] is significantly
displaced towards the equator. The density contour ρXa/ρR�

= 10
begins a distance ∼4h0 = 215 cm (see Table 1) above the injection
radius r = rmin = R� at the pole and sinks below the equator to
∼75 per cent of the polar height of the mountain. In contrast, the
same contour of the sinking mountain grown at r = rmin [Fig. 8(b)]
begins ∼0.6h0 above the injection radius r = rmin at the pole and
sinks below the equator to just ∼19 per cent of the polar height of
the mountain. From the ρXa/ρR�

= 10−3 contour, we see that the
accreted matter is confined to r − rmin � 0.7h0 above the inner
boundary at the pole and r − rmin � 0.15h0 at the equator.

In short, the sunk mountain grown at r = rmin hugs the inner
boundary and pole, and resembles the initial mass distribution seen
in Fig. 7(a). This is not surprising. Matter is fed in at r = rmin with
zero velocity, as discussed in Section 2.1. It expands outward due
to the pressure gradient created as matter piles up at the injection

radius; since we are injecting quasi-statically, the pressure gradient
is small. On the other hand, the weight of the massive overburden
(Mbase ≈ 10Ma) presses down on the added material. The magnetic
flux is displaced [Fig. 8(e)], but much less than for the hard moun-
tain. Field lines remain tied to the inner boundary, bending away in
its immediate vicinity (because the slug of injected matter does not
rise). Above this layer, the field lines of the initial and final states
remain largely parallel.

The structure of the sunk mountain grown at r =R� [Fig. 8(c)] dif-
fers from the other two cases. The contour ρXa/ρR�

= 10, tracked
above, starts at the pole, remains virtually flat at ∼2h0 below the
injection radius, bends sharply inward near the equator, moves di-
rectly towards the inner boundary, then curves back towards the
pole, crossing it again at ∼6h0 below the injection radius. For the
previous two mountains, grown from r = rmin, the angular vari-
ation in density increases with altitude. Here, the reverse is true:
the angular variation density decreases with increasing r, up until
r � R�, with the greatest variation within ∼4h0 of the inner bound-
ary. While the two sinking scenarios differ in their final distributions
of accreted (as opposed to total) density, their final distributions of
magnetic flux [Figs 8(e) and (f)] are very similar.

The mountain sinks three times further into the fluid base at the
pole than at the equator. This is consistent with how mass is injected
according to equation (4); the input flux is ∼20 times greater at the
pole than at the equator. In addition, the magnetic field guides
accreted matter sideways as field lines flatten across the surface
towards the equator, whereas matter at the pole can sink inward
readily along almost vertical flux tubes [e.g. the contour ψ/ψ� =
6 × 10−2 in Fig. 8(f)].

The density contours bunch together along the underside of the
mountain, spanning five orders of magnitude; the injected matter
does not sink below this boundary. The lowest of the bunched den-
sity contours, ρXa/ρR�

= 10−3, never reaches the inner boundary;
the mountain is floating in isostatic equilibrium with the surround-
ing fluid base. The contour rises to only ∼1h0 above R� at the
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Figure 8. Comparison of the hydromagnetic structure of hard- and soft-surface mountains. Contours of accreted density ρXa/ρR� (top row) and magnetic flux
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Figs (a) and (c), and between Figs (d) and (f).
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Figure 9. Shaded contours of the absolute, normalized difference in total
density ρ between S(rmin, 10) and S(R�, 10), overlaid with the ρXa (ac-
creted only) contours of Figs 8(b) and (c) (solid and dashed, respectively).
The minimum and maximum density differences are indicated with small
arrows and labelled in bold.

equator and ∼3h0 at the pole; in contrast it reaches R� − r �
6h0 at the pole. The path of this contour, if overlaid on Fig. 8(a),
would trace densities between 2 × 10−3 and 50ρR�

. Finally, note
that 0.3 per cent of the mountain mass is above the stellar surface.
Compared to the other two scenarios, the structure of S(R�, 10) is
perhaps more reminiscent of an ‘iceberg’.

Ultimately, we are interested in the final distribution of the to-
tal mass, that is, the accreted matter, ρXa, plus the fluid base
it displaces, ρ(1 − Xa). Does injection at rmin or R� make a
difference? Fig. 9 displays the absolute, normalized difference
|ρrmin − ρR�

|/|ρrmin + ρR�
| between the total densities in the two

sinking scenarios as a grey-scale plot. The largest differences occur

at r > R�, where there is little mass, and are therefore unimportant.
For r < R�, the difference peaks near the pole but remains less than
∼0.8 per cent. In other words, despite the difference in the final dis-
tribution of ρ X a between the two injection scenarios (emphasized
by the overlaid contours), the final distribution of ρ is essentially
the same. Injecting at rmin or R� makes no difference because the
soft base readjusts in each case to yield the same overall equilibrium
state. This is an important result. It confirms the robustness of the
injection method and the argument presented in Section 2.1: in ideal
MHD, the equilibrium state is independent of precisely where mat-
ter is initially injected. In practice, injection at rmin seems preferable
because it reduces the simulation time (see Table 2) and improves
numerical stability, as illustrated by the failure of run S(R�, 103).

3.4 Magnetic line tying

Finally, we investigate the assumption of magnetic line tying. In
Fig. 10, we plot the angle β(r , θ ) = sin−1(Bθ/|B|) between the
magnetic field B and the radial unit vector as a function of θ at
r = rmin and r = R�. We also plot β at the inner boundary of a
Grad-Shafranov mountain with Ma = Mc (Payne & Melatos 2004),
and β for a dipole (independent of radius). The S(R�) mountains
give the same results as S(rmin).

The hard-surface mountains in Fig. 10(a) behave like the Grad–
Shafranov mountain at low Ma but become increasingly dipolar
as Ma increases. This is expected; at low Ma, the accreted mass
stays close to the pole and distorts the magnetic field there. As
Ma increases, the mountain spreads over a greater volume, and
the magnetic field is distorted less at any particular point. The
sign inversion close to the equator may be caused by numerical
reconnection, or by the reflective boundary condition at θ = π/2;
further tests with a resisitive ideal-MHD solver are needed to make
sure.
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Figure 10. Angle between the magnetic field B and the radial unit vector,
plotted versus colatitude θ at (a) r = rmin = R�, (b) r = R� and (c) r = rmin,
for Ma/Mc = 1 (dotted), 10 (dot–dashed), 102 (dashed) and 103 (solid).
Results from this paper are plotted in black. Plotted in grey are β(r , θ ) for
a Payne & Melatos (2004) Grad–Shafranov mountain (dotted), and for a
dipole (solid).

The soft-surface mountains in Fig. 10(b) are dipolar at r = R�, as
expected, but at r = rmin [Fig. 10(c)] they more closely resemble the
Grad-Shafranov mountain. One might expect β to closely match a
dipole at r = rmin, given that the magnetic field lines are tied there,
and we choose Mbase 
 Ma in order to minimize sideways fluid
displacements at the bottom of the soft base. It is unclear whether the
magnetic distortions are artificial, because the injected slug matter
enters from below and cannot expand upwards to match accretion
from above (see Section 5 for further discussion). Alternatively,
kinks in the magnetic field may be communicated rapidly down to
arbitrary depths by Alfvén waves, even though the Alfvén speed ∝
ρ−1/2 decreases rapidly with depth. If so, the high breaking strain
of the solid, conducting crust (Horowitz & Kadau 2009) assumes
even greater importance in enforcing line tying.

We argued, in Section 2.1, that the final equilibrium state of the
mountain is independent of rinj. In general, a given total Ma and
injected mass flux ∂Ma/∂ψ does not define a unique ideal-MHD
equilibrium. Matter injected from above spreads sideways faster
than it sinks, like a layered cocktail drink, while a slug of matter in-
jected from below forces the base sideways without much movement
at the surface [compare Figs 8(c) and (b)]. Conceivably, therefore,
ZEUS-MP may converge on different equilibria depending on rinj.
The results of Section 3.3 engender confidence that the mountain
structure does not depend on rinj; the issue is not definitively settled,
however, for the following subtle reason.4

Consider a polar field line in the bottom row of Fig. 7. As accretion
proceeds, it bends towards the equator until it touches the corner
(r , θ ) = (rmax, π/2). At that point, it instantaneously snaps through
some nonzero angle, from Br �= 0 (free boundary at r = rmax) to Br =
0 (reflecting boundary at θ = π/2). Effectively, this corresponds
to a dissipative, reconnection-like event occurring just outside the

4 Sterl Phinney, private communication.

Figure 11. Ellipticity as a function of time, for Ma/Mc = 1, 10, 102, 103

(top left to bottom right), and for mountains H (solid), S(rmin) (dashed) and
S(R�) (dotted).

simulation volume, artificially pinching off magnetic loops.5 Such
a process is irreversible. Furthermore, it acts differently on the
sequence of quasi-static equilibria that ZEUS-MP hypothetically
passes through during slow accretion from above and below because
sideways spreading happens at different altitudes in the two cases.

In the runs presented in this paper, the density in the vicinity
of the corner (rmax, π/2) is tiny, as is the mass efflux through the
boundary r = rmax (see Section 3.1). One can therefore argue plau-
sibly that the irreversible dissipation at (rmax, π/2), while it exists
in principle, does not significantly affect the final state. There is
a chance, however, that if one adds material slowly from above,
reconnection (where numerical or real) pinches off one small mag-
netic loop after another at the equator, as in the Earth’s magnetotail.
Resisitive MHD simulations by Vigelius & Melatos (2009b) do
not show such behaviour, but they mostly started from preformed
Grad–Shafranov equilibria instead of growing the mountain from
scratch. A more careful consideration of this issue is required for
future simulations.

4 MA S S QUA D RU P O L E MO M E N T

The distorted hydromagnetic equilibria in Section 3 have an as-
sociated mass quadrupole moment, with principal axis along the
pre-accretion magnetic axis, which is quantified in terms of the
ellipticity

ε = π

Izz

∫ rmax

rmin

dr r4

∫ π/2

0
dθ sin θ (3 cos2 θ − 1) ρ(t, r, θ ) , (5)

with I zz = 2M�R
2
�/5. Fig. 11 shows ε with respect to time as

the mountain grows. All mountains achieve a non-zero ellipticity
at t = T a, which decreases negligibly thereafter, confirming the
mountains are stable. The time taken for the hard-surface mountains
to converge to their equilibrium values of ε decreases with Ma, from
∼T a(Ma = 1Mc) to ∼0.1T a(Ma = 103Mc); this is consistent with

5 The effect can be magnified in ZEUS-MP by increasing the cell size close
to r = rmax; eventually ZEUS-MP aborts when Br diverges close to the
(rmax, π/2) corner.
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Figure 12. Ellipticity as a function of Ma, at time t = T a, for mountains H
(circles), S(rmin) (triangles) and S(R�) (squares).

the decreased confinement of the mountain by the magnetic field, i.e.
its increased ability to spread. The ellipticities of the soft-surface
mountains for the two injection scenarios are virtually identical;
even the incomplete run S(R�, 103) closely follows S(rmin, 103)
up until failure. As in Section 3.3, the final density distribution is
independent of the injection procedure.

The origin of the uneven behaviour of the ellipticity of H(103)
[Fig. 11(d)] is unknown. We note, however, that its functional de-
pendence on t is similar to that of Ṁa (equation 3 and Fig. 2), and
therefore it is likely that the rise and fall of the ellipticity is due
to the reconfiguration of the H(103) mountain in response to the
changing accretion rate. We note similar undulations in the kinetic
energies [Figs 5(b) and (c)] and, to a lesser degree, in the ellipticity
of H(10) [Fig. 11(b)].

Fig. 12 shows ε (in black) at t = T a as a function of Ma. The
ellipticity of the hard-surface mountains rises by a factor of ∼2.5
as Ma increases from 1 to 10Mc and flattens thereafter, rising by a
further 5 per cent as Ma increases from 10 to 103Mc. Importantly,
accreting further matter does not reduce ε; the mountain does not
smooth itself out. The ellipticities of the soft-surface mountains
rises by ∼60 per cent per decade in Ma.

Fig. 12 clearly quantifies the effect of sinking: ε decreases, rel-
ative to the hard-surface scenario, by ∼50 per cent at Ma = 1Mc,
∼60 per cent at Ma = 10Mc, and ∼25 per cent at Ma = 103Mc.

5 D ISCUSSION

In this paper, we simulate the growth of magnetically confined
mountains on an accreting neutron star, with realistic masses Ma �
0.12 M�, under the two scenarios where the mountain sits on a hard
surface and sinks into a soft, fluid base. In the latter scenario, we
confirm that the final equilibriun state is independent of the altitude
where matter is injected. We find that the ellipticity of a hard-surface
mountain does not increase appreciably for Ma � 10Mc, saturating
at ∼2 × 10−4, whereas the ellipticity of a soft-surface mountain
continues to increase from Ma = 10 to 103Mc. Sinking reduces the
ellipticity by up to 60 per cent relative to the hard-surface value.

Choudhuri & Konar (2002) developed a kinematic model of ac-
cretion, which treats sinking in a different (but complementary) way
to this paper. An axisymmetric magnetic field is evolved under the
influence of a prescribed velocity field, which models the flow of
accreted matter from pole to equator, where it submerges and moves
towards the core (see their fig. 1). Ohmic diffusion is included, but,
for a subset of the results (where the resistivity η = 0.01), it is
negligible, permitting a direct comparison with this paper.

Fig. 5 of Choudhuri & Konar (2002) shows the evolved config-
uration of an initially dipolar field which permeates the entire star.

We compare to Figs 8(e) and (f) of this paper. In both models, the
magnetic field is distorted significantly by accreted matter spread-
ing towards the equator (rm < r < r s in Choudhuri & Konar; the
entire simulation in this paper). In Choudhuri & Konar’s work, the
magnetic field is completely submerged beneath the surface and
confined to the zone where the submerged accreted matter flows
back towards the pole. In this paper, magnetic field lines still pene-
trate the surface, implying less effective screening. Within the core,
Choudhuri & Konar’s magnetic field remains relatively undisturbed.
Magnetic line-tying is not enforced, but the prescribed radial flow
within the core naturally restricts the sideways displacement of the
magnetic field there. If there were sideways motion of the matter
within the core, it would modify the degree of magnetic screening,
but neither our simulations nor the results of Choudhuri & Konar
show evidence for such motion. Extending our simulations deeper
into the star to include the core and explore this possibility prop-
erly would be a technical challenge; for instance, we would need to
incorporate a more realistic equation of state and track even more
disparate equilibrium time-scales.

To explain the narrow range in the rotation frequencies of low-
mass X-ray binaries (Chakrabarty et al. 2003), it is proposed that
the stars radiate angular moment in gravitational waves at a rate
which balances the accretion torque (Wagoner 1984; Bildsten 1998).
Magnetic mountains are one of a number of physical mechanisms
proposed for the associated permanent quadrupole; see Vigelius
& Melatos (2009a) and references therein. The relationship be-
tween ε and the rotation frequency f predicted by torque balance is
f ∝ ε−2/5. Thus, the 25–60 per cent reduction in ε due to sinking
calculated in this paper increases f by 12–44 per cent, all other things
being equal. This goes some way towards bringing magnetic moun-
tain ellipticities down to a level consistent with the data, but there
is still a long way to go. Observations to date have found 45 Hz <

f < 620 Hz for burst oscillation sources and 182 Hz < f < 598 Hz
for accreting millisecond pulsars, implying 6.6 × 10−9 � ε � 4.6 ×
10−6 and 7.2 < 10−9 � ε � 1.4 × 10−7, respectively. Conversely,
the ellipticities of sunk mountains calculated in this paper, 3.5 ×
10−5 � ε � 1.5 × 10−4, imply 11 Hz � f � 20 Hz. Clearly, other
relaxation mechanisms, like Ohmic diffusion, must also be playing
an important role in reducing ε, as the observed f require.

The reduction in ε by sinking also reduces the gravitational wave
strain (e.g. Abbott et al. 2007), h ∝ εf 2, by 6–17 per cent. This is
unlikely, by itself, to rule out the detection of gravitational waves
from low-mass X-ray binaries by ground-based interferometric de-
tectors; assuming the signal can be coherently integrated, the loss
in h can be compensated for by an increase in the observation time
∝ h−2 of 13–45 per cent. Other difficulties associated with the de-
tection of gravitational waves from low-mass X-ray binaries, such
as poorly known orbital parameters and accretion-induced phase
wandering (Watts et al. 2008), are likely to be more important.
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APPEN D IX A : MATCHING A FLUID BASE
TO A G R A D – S H A F R A N OV MO U N TA I N IN
ZEUS-MP

We attempted to incorporate a fluid base into the framework of
Payne & Melatos (2007) and Vigelius & Melatos (2008) in the fol-
lowing ad hoc manner. Starting with a Grad–Shafranov equilibrium
loaded into ZEUS-MP, we extend the inner simulation boundary,
initially at r = R�, inwards to create a region rmin < r < R�,
containing the fluid base. The magnetic field B in this region is
initialized to a dipole. At r = R�, Br matches perfectly, but Bθ is

discontinuous (see, e.g. fig. 2 of Payne & Melatos 2004). The ini-
tial density ρ(t = 0, r , θ ) is chosen to match the Grad–Shafranov
density ρGS(r , θ ) at r = R�, and to match an isothermal, non-self-
gravitating profile within r < R�. A number of ad hoc choices of
ρ(t = 0, r , θ ) were tried, e.g. the maximum of ρGS(R�, θ ) and
ρ ′

R�
exp[GM�(r−1 − R−1

� )/c2
s ], with ρ ′

R�
= minθ ρGS(R�, θ ). When

the combined Grad–Shafranov mountain and fluid base are evolved
in ZEUS-MP, the results are undesirable. Except when R� − rmin 	
h0, the fluid base is sufficiently far from equilibrium to completely
disrupt the Grad–Shafranov mountain, which collapses over a short
time-scale ∼t0.

A P P E N D I X B: LO G A R I T H M I C R A D I A L
GRID SPAC ING

The logarithmic grid spacing in r is determined as follows. The
Nr + 1 radial cell boundaries rmin = r0, r1, r2, . . . , rNr

= rmax are
given by rn+1 = rn + �rn, where

Nr−1∑
n=0

�rn = rmax − rmin , (B1)

�rn+1

�rn

=
(

�rNr−1

�r0

)1/(Nr−1)

, (B2)

and �rNr−1/�r0 is the ratio of the maximum to minimum radial
grid spacing. The values of �rNr−1/�r0 used in the simulations
presented in this paper are given in Table 2.

APPENDI X C : CUSTO M INJ ECTI ON

We add a new subroutine to ZEUS-MP which is called at the begin-
ning of each time-step δ t . Within the subroutine, the density ρ(t ,
r , θ ), mountain concentration Xa(t , r , θ ), and velocity v(t , r , θ ) of
a grid cell within the injection region (at point (r , θ ) with size δr ×
δθ ) are updated, as follows

ρ(t + δt, r, θ ) = ρ(t, r, θ) + δρ(t, r, θ ) , (C1)

Xa(t + δt, r, θ ) = ρ(t, r, θ )Xa(t, r, θ ) + δρ(t, r, θ)

ρ(t + δt, r, θ )
, (C2)

v(t + δt, r, θ ) = vinj
B(t, r, θ )

|B(t, r, θ )|Xa(t + δt, r, θ )

+ v(t, r, θ)[1 − Xa(t + δt, r, θ )] .
(C3)

The density increment is given by

δρ(t, r, θ) = Ma

2πδrδθ
I(t, r, θ) ; (C4)

the factor of 2π comes from the size of the grid cell in the φ

dimension. The function

I(t, r, θ ) = 1

N

∫ t2

t1

dt

∫ r2

r1

dr r2

∫ θ+δθ

θ

dθ sin θ
∂3Ma

∂t∂r∂θ
(t, r, θ )

(C5)

integrates the injected flux given by equation (2); the constant

N =
∫ Ta

0
dt

∫ rinj+δrinj

rinj

dr r2

∫ π/2

0
dθ sin θ

∂3Ma

∂t∂r∂θ
(t, r, θ ) (C6)
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ensures the correct normalization. The times

t1 = min(t, Ta) , (C7)

t2 = min(t + δt, Ta) , (C8)

give the intersection of the current time-step with the injection time
interval, and the radii

r1 = min[max(r, rinj), rinj + δrinj], (C9)

r2 = min[max(r + δr, rinj), rinj + δrinj], (C10)

give the intersection of the grid cell with the injection region.
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