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Abstract

While there exist now formulations of initial boundary value problems for
Einstein’s field equations which are well posed and preserve constraints and
gauge conditions, the question of geometric uniqueness remains unresolved.
For two different approaches we discuss how this difficulty arises under gen-
eral assumptions. So far it is not known whether it can be overcome without
imposing conditions on the geometry of the boundary. We point out a nat-
ural and important class of initial boundary value problems which may offer
possibilities to arrive at a fully covariant formulation.

1 Introduction

This article is concerned with the general principle of geometric uniqueness in the context
of the initial boundary value problem for Einstein’s field equations. Because Jürgen Ehlers
had always been attracted by problems of principle and he took a certain interest in the
initial boundary value problem ([11]) I devote this article to his memory.

The Cauchy problem for Einstein’s field equations has a long history ([8]). It was put
on a solid basis when Choquet-Bruhat proved the first local existence result ([12]) and its
basic principles are now considered as well understood. In contrast, the systematic and
general study of the initial boundary value problem for Einstein’s field equations started
only recently and there are still basic open problems. There are two reasons for this.

The PDE theory of initial boundary value problems is technically more involved than
that of the Cauchy problem and it has been developed in sufficient generality only in the
last few decades (cf. [5], [18] for references). On the other hand, there seem to be only
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a few applications in general relativity whose geometry asks naturally for an analysis in
terms of initial boundary value problems. Examples for this are the solutions of Anti-de
Sitter type. They can be studied by prescribing for Einstein’s vacuum field equations with
negative cosmological constant data at space-like and null infinity, which is represented in
terms of the conformally rescaled and extended space-time by a time-like hypersurface J ,
and by prescribing Cauchy data on a space-like initial hypersurface S which extends to
J . The study of this problem in [14] gives the first analysis of an initial boundary value
problem for Einstein’s field equations which is general in the sense that no symmetries are
required. Remarkably, the problem to be addressed in the following does not occur.

The main interest in initial boundary value problems in general relativity stems from
numerical relativity. The need to perform numerical calculations on finite grids suggests to
introduce artificial time-like hypersurfaces as boundaries of the grid. The general picture
is then that the metric g is calculated on a manifold M with boundary S ∪ T and edge
Σ = S ∩ T . Here S and T are hypersurfaces which are space- and time-like respectively
for g and intersect in the space-like surface Σ, the set M\ S is lying in the future of S.
Such a space-time (M, g) will be referred to as an ST -space-time and it will be called an
ST -vacuum-space-time if it solves Einstein’s vacuum field equations Rµν = 0. In some of
the following remarks one will have to assume that (M, g) satisfies some suitable version
of ‘global hyperbolicity’. We will not discuss this any further here.

To simplify the discussion we assume all fields to be smooth. In the applications Σ will
usually be compact but this will not be important in the following. Because hyperbolic
problems can be localized we can focus our attention on some neighbourhood of a given
point p ∈ Σ. We shall mainly be concerned with evolutions local in time that cover some
neighbourhood of S (which includes a neighbourhood of Σ in T ). Problems arising in long
term evolutions will be addressed only if they shed light on the need to control geometric
uniqueness.

Given an ST -vacuum-space-time, one may ask which data need to be given on S and T
to reconstruct the space-time uniquely by solving the field equations. A first answer to this
question is given in [16], where it is shown that Einstein’s field equations admit well-posed
initial boundary value problems. One of the main difficulties overcome in this work is
to ensure that gauge conditions and/or constraints are preserved. For reasons discussed
below this task is more subtle here than in the case of the Cauchy problem.

In the subsequent years there was a certain activity concerned with ‘constraint pre-
serving’ formulations of initial boundary value problems in numerical relativity (cf. [1] for
some of the references). In the present article we shall consider besides the formulation of
[16] only the one proposed recently by Kreiss, Reula, Sarbach, and Winicour (cf. ([19] and
references to earlier work given there). It is based on a general and systematic analysis of
well posed initial boundary value problems for systems of wave equations. Though the ap-
plication to Einstein’s field equations is not completely analysed yet, the approach appears
to be very flexible and it may offer chances to clarify a question which I consider a main
open problem of the subject. While being pointed out at various occasions ([15], [16]) it
has largely been ignored so far. Analysing in local evolution problems the preservation
of constraints and gauge conditions is obviously a task which needs to be solved before
geometric uniqueness can be addressed.

The space-time structures underlying the general theory of relativity are isometry
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classes of space-times. A general discussion of boundary value problems of some sort for
Einstein’s field equations should thus produce solutions gµν which, considered as geometric
objects, should not depend on any extraneous structures such as background metrics, frame
fields, gauge source functions, gauge conditions, coordinates, etc. which are introduced
to formulate suitable PDE problems. It should depend only on the ‘isometry class of the
data’.

In the case of the Cauchy problem this is guaranteed by a geometric uniqueness theorem
which shows that Cauchy data which are isometric in a suitable sense develop into solutions
of Einstein’s field equations which are unique up to isometries if the solutions are required
to be globally hyperbolic and maximal with this property ([6], [21]). In concrete cases it
may not be easy to decide whether two Cauchy data sets are isometric but at least there
is a well defined concept available. In the case of the initial boundary value problem the
situation is not so clear.

It should perhaps be emphasized that geometric uniqueness is not just a problem of
academic interest. As long as it has not been clarified it may not be clear what do in
analytical studies of initial boundary value problems if the gauge threatens to break down
in the course of a development and requires a redefinition. Also, by just comparing their
initial boundary data two numerical relativists may not be able to decide, before they start
their calculations, whether they can expect to obtain isometric solutions. As shown below
the comparison may require the knowledge of the complete development in time of their
solutions near the boundary and the subsequent calculation of a gauge transformation on
the boundary.

It is the purpose of this article to illustrate the difficulties to arrive at an appropriate
concept of geometric uniqueness in the context of general initial boundary value problems.
Whether they will find a natural resolution or whether we will have to live with them
remains an open question. At the end of the article we discuss a natural and important
class of initial boundary value problems which seem to offer a chance for a positive answer.

2 Some observations

The following flat, linear model problem is the prototype of an initial boundary value
problem for a hyperbolic equation. In terms of coordinates xµ on Minkowski space in
which gµν = ηµν ≡ diag(−1, 1, 1, 1) we consider the wave equation

gµν φ, µν = f on M = {t ≥ 0, |x| ≤ R},

where t = x0, R = const. > 0, and |x| =
√

∑3
a=1(x

a)2. We prescribe initial conditions

φ = φ0, ∂t φ = φ1 on S = {t = 0, |x| ≤ R},

and boundary conditions

Bµ φ, µ = h on T = {t ≥ 0, |x| = R}, (2.1)

which are defined in terms of the vector field

B = (1 + e)T∗ + (1 − e)N, (2.2)
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on T , where T∗ denotes the future directed time-like unit vector field ∂t tangential to T ,
N the outward directed unit normal to T , and

e ∈ C∞(T ,R), |e| ≤ 1, (2.3)

is a given function. The initial data φ0, φ1, the boundary data h, and f are given real-
valued functions which are assumed to be smooth.

The authors of [19] consider more general boundary conditions. They require |e| < 1
in (2.1) but admit arbitrary future directed, unit time-like vector fields T tangential to
T instead of T∗ and allow for right hand sides of much more general form. The problem
posed above suffices to illustrate the points we wish to discuss.

Clearly, it can only have a solution which is smooth if the data satisfy certain consis-
tency conditions along the edge

Σ = {t = 0, |x| = R} = S ∩ T .

The wave equation and the initial data imply on S the relations

∂2 k
t φ = ∆k φ0 +

k−1
∑

l=0

∆l ∂
2(k−1+l)
t f |t=0, (2.4)

∂2 k+1
t φ = ∆k φ1 +

k−1
∑

l=0

∆l ∂
2(k−1+l)+1
t f |t=0, k = 0, 1, 2, . . . ,

where ∆ denotes the flat Laplacian. The boundary condition implies on Σ

k
∑

j=0

(

k

j

)

{

∂jtB
t ∂k−j+1
t φ+

3
∑

a=1

∂jtB
a (∂k−jt φ), a

}

= ∂kt h, k = 0, 1, 2, . . . . (2.5)

For our initial boundary value problem to admit smooth solutions, conditions (2.4) and
(2.5), read for given function f as conditions on the data φ0, φ1, and h, must be satisfied
on Σ. We consider two special situations.

i) The intended applications requires a fixed boundary datum h and thus fixed values of
∂kt h on Σ. Inserting the time derivatives of φ given by (2.4) in the relations (2.5) then
results in a sequence of conditions on the space derivatives of the data φ0 and φ1 on Σ.
Depending on the function e the construction of such data may be fairly complicated.

ii) The application requires us to use some prescribed initial data φ0, φ1. Inserting the
time derivatives of φ given by (2.4) in (2.5) determines then the values of ∂kt h on Σ.
Finding functions h on T whose time derivatives assume on Σ these values leaves a large
freedom for h in the future of Σ. If, for a given function f , this procedure if it is carried
out for all possible data φ0, φ1, all admissible initial and boundary data are obtained.

If the conditions above are satisfied our initial boundary value problem admits a unique
smooth solution. Obviously, this result needs to be largely generalized before it can be
applied to Einstein’s field equations. Two quite different such applications will be discussed

4



in the next chapters. Here we use the example above to draw some general conclusions
concerning initial boundary value problems for Einstein’s vacuum field equations.

To formulate such problems one has to provide in a first step suitable initial data hab,
κab on a space-like initial hypersurface S with boundary Σ = ∂S for Einstein’s vacuum
field equations. The fields hab and κab are supposed to be isometric to the intrinsic metric
and the second fundamental form induced by the prospective space-time solution g on the
embedded hypersurface S. They will thus have to satisfy the constraints implied by the
field equations on space-like hypersurfaces. There are known now fairly general methods
to construct solutions to the vacuum constraints ([4], [17], [20]).

The consistency conditions to be satisfied on Σ may create difficulties though. If the
intended application requires us to follow the procedure (i), the data will need to satisfy
differential relations at any order on Σ (the order will be finite if the differentiability
requirements on the solutions are relaxed). Such data cannot be constructed by the
conformal standard method, in which the problem of solving the constraints is immediately
reduced to one of solving elliptic equations. More recent methods show more flexibility in
exploiting the underdeterminedness of the constraints ([7], [9], [10]). But even if they turn
out to be useful in analytical studies of the present problem there may remain challenges
for the numerical relativist.

If the intended application allows us to follow the procedure (ii), it turns out that
things are easier also in the case of Einstein’s field equations. In the formulation discussed
in the next chapter there arises no problem at all, in the second formulation this question
has apparently not been analysed in detail but it also appears to be simpler.

If we want to analyse the freedom to prescribe boundary data for Einstein’s field
equations on the boundary T ∼ R

+
0 × Σ, the first observation to be made in the model

problem above is that the freedom to prescribe data on the boundary is only half as
large as the freedom to prescribe initial data. Let us consider Einstein’s equations as
equations of second order for the metric coefficients. In wave coordinates, characterized
by the conditions

0 = �g x
µ = −Γµ = −gλρ Γλ

µ
ρ, (2.6)

the field equations take the form of a system of wave equations (referred to as the ‘reduced
system’) for which only ten boundary conditions can be given. This leads to various
complications. To get an idea what has to be achieved by the initial and the boundary
conditions, we do some simple function counting.

On the space-like initial hypersurface S = {t ≡ x0 = 0} the Cauchy data gµν and ∂tgµν
have to be given. The functions g0ν and ∂tg0ν are used to remove the gauge freedom and
to satisfy the gauge conditions. The remaining metric coefficients can be identified with
the metric hab and the remaining time derivatives are related to the second fundamental
form κab = κ∗ab+ 1

3 κhab with h-trace free part κ∗ab and mean extrinsic curvature κ. Three
of the six functions hab can locally be disposed of by removing the freedom to prescribe the
coordinates xa and a further condition is imposed by the Hamiltonian constraint. Of the
six functions κab the mean extrinsic curvature can be thought of as fixing the shape of the
embedding of S into the solution space-time while the trace free part κ∗ab is restricted by
the three momentum constraints. In both cases there remains a freedom of two functions
which corresponds to the two degrees of freedom of the gravitational field.
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While these considerations gives some insight into the structure and the role of the
data it should be said that they are in fact very crude. For instance, it is known that a
prescribed mean extrinsic curvature (and possibly a space-like surface Σ) can be used to
determine an embedded space-like hypersurface (with boundary Σ) in a space-time which
is given ([2], [3]). In an initial value problem the embedding of the initial hypersurface
is constructed, however, simultaneously with the space-time and the roles of the different
parts of the data and the constraints cannot be seperated from each other so clearly.
Nevertheless, we shall discuss the boundary data in a similar way to illustrate what has
to be achieved.

The boundary conditions and data must control the evolution of the boundary. In [16]
this is achieved by prescribing on the boundary T its prospective mean extrinsic curvature
and on the edge Σ a direction tangential to T and transverse to Σ. The coordinate x3 is
then defined so that T = {x3 = 0}. In [19] this has not been completely analysed yet.
We note that an understanding of the mechanism which controls the boundary becomes
important if the boundary developes a tendency to form cusps or selfintersections.

The boundary conditions have to be given such that constraints and/or gauge condi-
tions are preserved. This requirement, which is taken care of in quite different ways in
[16] and [19] poses considerable difficulties. In an approach based on wave coordinates an
obvious choice would be to require

Γµ = 0 on T . (2.7)

In such an approach equations (2.6) are implicit in the reduced evolution system. Thus
three of the boundary conditions for the reduced system must be given so that they com-
prise suitable boundary condition for the wave equations (2.6) which govern the develop-
ment of the coordinates. This leaves us with the freedom to specify two conditions which
control the two degrees of freedom in the gravitational field. Because of the vagueness of
the concept of ‘gravitational degrees of freedom’ it is far from obvious how this to be done.
The main difficulty, however, is how these requirements can be met so that they result
in a well-posed initial boundary value problem for the reduced equations. The operators
acting on the gµν in (2.7) are already fairly complicated and impose severe restrictions on
the remaining choices.

We close this discussion by pointing out two basic differences between initial and
boundary data.

i) The choice of the local coordinates on the initial hypersurface S is rather arbitrary and
of little consequence for the space-time development local in time. In contrast, the gauge
along the boundary T is tightly related to the evolution process.

ii) Together with the reduced equations the Cauchy data on S give us control on the
geometry at all orders on S. In contrast, only very little direct information on the geometry
of the boundary T is provided by the boundary data and conditions. In general, neither
the induced metric nor the second fundamental form is available there before the solution
has been determined.

The difficulties of controlling the preservation of constraints and gauge conditions
which result from these properties have been overcome. There remains, however, the
problem of geometric uniqueness.
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3 An approach based on the Bianchi equation

To illustrate the nature of the difficulties with geometric uniqueness we need to consider
the initial boundary value problem for Einstein’s vacuum equation in some detail. We
concentrate on those features which are specific to the treatment of the boundary.

3.1 Formulation of the PDE problem

In the approach of [16] the Einstein equations are expressed in terms of the following
unknows

− the coefficients eµ k of a frame {ek}k=0,1,2,3 in suitable coordinates xµ, µ = 0, 1, 2, 3,
where the frame satisfies1 g(ej, ek) = ηjk = diag(−1, 1, 1, 1),

− the coefficients Γk
i
j of the Levi-Civita connection in the frame ek, which satisfy with

the covariant derivative operator ∇ defined by g

∇k ej ≡ ∇ek
ej = Γk

i
j ei,

− a tensor Ci jkl with the algebraic properties of a conformal Weyl tensor, which is given
in the frame ek.

The field equations are represented by the first structural equation

[ei, ej ] = (Γi
k
j − Γj

k
i) ek, (3.1)

the second structural equation with the assumption that the Ricci tensor vanishes

e[k(Γl]
i
j) + Γ[k

i
|m|Γl]

m
j − Γ[k

m
l] Γm

i
j = 1/2 Ci jkl, (3.2)

and the Bianchi equation
∇i C

i
jkl = 0, (3.3)

which must be satisfied by the conformal Weyl tensor of a vacuum solution.

The coordinates and the frame field have to be restricted by gauge conditions to obtain
a useful PDE problem. For simplicity we assume in this chapter the normal to S to be
tangential to T (the general analysis is found in [16]). We focus our attention to some
neighbourhood of a given point p ∈ Σ. A type of gauge as described below will be referred
to as admissible

It holds x0 = 0 on S and x1, x2, x3 are local coordinates near p with x3 ≥ 0 and x3 = 0
on ∂S = Σ. The fields eA, A = 1, 2, are tangential to Sc = S ∩ {x3 = c = const. ≥ 0}.

On M ∼ [0, T [×S the time-like unit vector field e0 is future directed, tangential to
T = [0, T [×∂S, and orthogonal to Sc. The coordinate x0 is a natural parameter on
the integral curves of e0 and the other coordinates are dragged along with e0 so that
e0(x

µ) = δµ 0. The fields eA are D-Fermi-transported in direction of e0 on Tc = {x3 = c},
where D denotes the covariant derivative defined by the metric induced on Tc. The field
e3 is normal to Tc and inward pointing on T = T0.

1In [16] the signature (1,−1,−1,−1) is used.
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In this gauge we have

eµ 0 = δµ 0, Da eb = Γa
c
b ec, χab ≡ Γa

3
b = Γb

3
a, χ ≡ gab χab, a, b, c = 0, 1, 2,

with χab the second fundamental form and χ the mean extrinsic curvature on Tc,

Γ0
A
B = 0, De0 e0 = Γ0

A
0 eA, De0 eA = −gAB Γ0

B
0 e0, A,B = 1, 2, (3.4)

where the summation convention applies to both groups of indices.
As discussed in [16], the three functions Γ0

A
B, Γ0

A
0 play the role of gauge source

functions on M (cf. [13]) and can be chosen arbitrarily. The first of these functions has
been disposed of here in a convenient way, choosing the other two functions represents the
usual gauge problem in the interior of M but it is delicate task on the boundary. The
function χ, which can also be prescribed, plays the role of a gauge source function in the
interior of M and the role of a boundary datum on T .

With this gauge it is easy to extracted from the complete, overdetermined system (3.1),
(3.2), (3.3) a ‘reduced system’ for the unknowns (that are not gauge source functions)
which is symmetric hyperbolic and for which well-posed initial boundary value problems
can be formulated. But in general the resulting evolution will not preserve the constraints
so that not all of equations (3.1), (3.2), (3.3) will be satisfied.

The main theorem of [16] shows, however, that there do exist ‘reduced systems’ for
which well-posed initial boundary value problems can be formulated whose solutions do
satisfy the complete system (3.1), (3.2), (3.3). The following discussion refers to this result.

It is well understood how to provide standard Cauchy data for Einstein’s vacuum field
equations on the space-like initial hypersurface S. The Weyl curvature is then derived from
these data S by using the Gauss-Codazzi equations. We shall not repeat the details here
and concentrate instead on the structure of the boundary conditions and the boundary
data on T , which are critical for our discussion.

It is convenient to use on T a double null frame l, k, m, m̄ so that, with i2 = −1,

l =
1√
2
(e0 + e3), k =

1√
2
(e0 − e3), m =

1√
2
(e1 + i e2).

Since the fields e1, e2 have been fixed only up to rotations m → ei φm with functions
φ ∈ C∞(Σ,R), there is a corresponding freedom in the data. The ‘spin-weights’ given
below refer to the phase factors picked up under these rotations by the various quantities.

In [16] the following data are prescribed on T :

− The mean extrinsic curvature χ ∈ C∞(T ,R),

− functions q, α, β, Γ ≡ Γ0
1

0 + iΓ0
2

0 ∈ C∞(T ,C) which are of spin-weight −2,−4, 0, 1
respectively and so that

[

Re(ᾱ β) − 1
2 (1 − |α|2 − |β|2) Im(ᾱ β)
Im(ᾱ β) −Re(ᾱ β) − 1

2 (1 − |α|2 − |β|2)

]

≤ 0,

in the sense of quadratic forms.
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The following boundary condition is required on T :

q = −Ψ4 + αΨ0 + β Ψ̄0, (3.5)

where
with Ψ0 = Cµνλρ l

µmν lλmρ, Ψ4 = Cµνλρ m̄
µ kν m̄λ kρ.

3.2 Properties of the setting and the main problem

If the gauge source functions and the functions α, β have been prescribed, the symmetric
hyperbolic reduced system and the Cauchy data allows us to determine for all unknowns
their time derivatives at of any order on S. The boundary condition (3.5) then gives us
restrictions on the function q on Σ. If q is chosen accordingly, the consistency conditions
will be satisfied.

Because the gauge conditions of the present setting are explicit, an analogue of (2.7)
is not required. Instead of controlling the gauge condition one has to control constraints.
This task more or less motivated the way the problem has been arranged in [16].

The functions α and β do not carry critical information but they allow us to obtain
physically or geometrically convenient formulations of the problem. As an example we
note that special choices of α and β lead to expressions for (3.5) which only involve certain
components of either the electric or the magnetic part of the conformal Weyl tensor with
respect to e0 or e3.

The freedom which remains in the definition of the admissible gauge would allow us
to choose Γ = 0 near Σ. This implies, however, that the field e0 is geodesic with respect to
the metric induced on T , that its flow lines may develop caustics, and that the gauge may
break down after some finite time. Finding good choices of Γ appears to correspond to
the usual gauge problem in long term evolutions which also occur in the Cauchy problem.
As seen below, there is much more to it.

A priori it cannot be excluced that parts of the boundary converge towards each
other with a tendency to form selfintersections so that the boundary would stop being
diffeomorphic to R

+
0 × Σ. One would try to avoid this by choosing χ suitably. This is

different from a change of gauge because it may lead to changes of the geometry. It is not
only that the manifold underlying the metric may change its ‘size’ because the boundary
evolves in a different way but the metric itself may change in essential ways because the
function q, given now on a different boundary hypersurface, will acquire a new meaning
with respect to the curvature.

It is, of course, understood that the ‘free’ functions χ and Γ0
A

0 extend smoothly
into the interior of M as gauge source functions. The question whether the solution is
independent of the choice of extension has been discussed in detail in [16]. A certain
problem was left open there but I expect that it can be resolved.

Irrespective of this problem the results of [16] guarantee the existence of (unique)
solutions locally near S for given initial-boundary data. In particular, given an ST –
vacuum-space-time in one of the standard gauges, we can prescribe functions α and β on
T with the appropriate spin weights and read off the boundary datum q satisfying (3.5).
Given now the implied boundary data on T and the Cauchy data on S, the solution can
be reconstructed uniquely by solving the field equations.
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Let some ST –vacuum-space-time (M, g) be given in two different admissible gauges
which coincide on S but which are such that their respective time-like unit vector fields e0
and e′0 do not coincide on T in the future of Σ. Corresponding to the two gauges choose
functions α, β and α′, β′ respectively in (3.5). If the initial data induced on S and the two
sets of data (χ, q,Γ) and (χ′, q′,Γ′) induced on T in are read off in these different gauges
and the corresponding gauge source functions are use together with the field equations to
reconstruct the space-times, we can conclude by PDE uniqueness that the two resulting
solutions are isometric because we know them to represent (M, g) in two different gauges.

We can now state our main question:
What could be said about the relation between the solutions determined by the two sets

of initial boundary data without having the information that the data have been derived
from the same solution by employing two different admissible gauges ?

Given two sets of Cauchy data one can ask the analogous question whether the cor-
responding maximal, globally hyperbolic developments in time admit an isometry which
maps the respective emdedded data hypersurfaces onto each other. This may be quite
difficult to decide in a concrete case but in principle there exists a clear criterion which
only involves the two Cauchy data sets: they must be isometric. Unfortunately, such a
straightforward answer seems not to be available in the general situation considered above.

Both the functions χ and χ′ represent the mean extrinsic curvature of the hypersur-
face T . They must be given, however, in the form χ = χ(xα) respectively χ′ = χ′(xα

′

)
with coordinates xα and xα

′

, α, α′ = 0, 1, 2, which are different from each other on T \ Σ
because e0 6= e′0 there. To see that χ and χ′ represent the same object the coordinate
transformation xα = xα(xβ

′

) needs to be known. One might think of deriving this trans-
formation by using the data Γ, Γ′ in the last two equations of (3.4). But the boundary
data do not contain any information on the metric induced on T . The operators D and
D′ are thus only available after the full solution has been determined on T .

The functions q and q′ are difficult to compare for still another reason. The frames
ek, e

′
j corresponding to the two gauges are related on T by a point dependent Lorentz

transformation which leaves e3 invariant. In Newman-Penrose notation one finds that the
the components Ψl and Ψ′

k, of the conformal Weyl tensor in the two frames are related by
a transformation

Ψk → Ψ′
k = Ψl s

l
k with sl k 6= 0, l, k = 0, . . . , 4.

This implies a relation

q′ = −Ψ′
4 + α′ Ψ′

0 + β′ Ψ̄′
0 = η q + ξ q̄ +

3
∑

k=0

ηk Ψk +

3
∑

k=0

ξk Ψ̄k

with coeffficients ηk, ξk which do not all vanish. The calculation shows that one cannot
have η2 = 0, η3 = 0 simultaneously near Σ in T \ Σ if e′0 6= e0 there. The relation above
thus involves components of the conformal Weyl tensor which are not provided by the
given boundary data and which will become available only after the development of the
solutions in time has been determined.

This suggests that under general assumption there does not exist a reasonable concept
of a ‘diffeomorphism class of initial boundary data’. The boundary data sets (χ, q,Γ) and
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(χ′, q′,Γ′) cannot be compared by operations on T which only involve these data sets and
possibly interior equations induced by the field equations on T . The comparison requires
knowledge of the development in time of the two initial boundary data sets.

It should be emphasized that rotations of the frame eA tangential to Sc are reflected in
the boundary data by simple phase transformations. The problems of the present approach
arise from the need to single out a time-like vector field tangential to the boundary T . In
general, there does not exist a distinguished choice.

While this is also true in the case of solutions of Anti-de Sitter type studied in [14],
geometric uniqueness can be shown. It follows because the initial boundary data are given
by standard Cauchy data on S and a Lorentzian conformal structure on the conformal
boundary J which satisfy the appropriate consistency conditions. The possibility to arrive
at such a geometric statement, which has no need for a time-like vector field, is related
to the fact that the boundary is not simply ‘put in by hand’ but a consequence of the
compatibility of the field equations with the requirement of the existence of a conformal
boundary J .

As a consequence, the geometric fields induced on the boundary have the following
special properties. There exists a gauge based on the conformal structure of g which
reduces on J to an analogous gauge based on the induced conformal structure on J . With
a suitable choice of α and β a certain component of the ‘boundary-magnetic part’ of the
rescaled Weyl tensor represents the free datum q. This component is related to the Coton
tensor of the intrinsic conformal structure on J . Via this relation it gives precisely the
information needed in the structural equations of the normal conformal Cartan connection
to determine from q the conformal structure induced on J and vice versa.

4 An approach based on wave equations

To see how the features pointed out above are reflected in a different formulation, we
give an outline of the approach of [19], in which Einstein’s vacuum field equations are
understood as equations of second order for the metric coefficients.

4.1 Setting up the PDE problem

The authors of [19] consider a fixed background metric ĝµν on M = [0, t∗[×S with some
t∗ > 0 so that the slices {t} × S, with 0 ≤ t < t∗, S ≡ {0} × S, are space-like and the
boundary T = [0, t∗[×∂S is time-like with respect to ĝµν . They impose on M the gauge
condition

0 = Cµ ≡ gλρ (Γλ
µ
ρ − Γ̂λ

µ
ρ) −Hµ = gλρ gµν (∇̂λ hρν − 1/2 ∇̂ν hλρ) −Hµ, (4.1)

where Hµ denotes a given vector field, Γλ
µ
ρ, Γ̂λ

µ
ρ denote the Christoffel symbols of gµν ,

ĝµν respectively, ∇, ∇̂ denote the covariant operators defined by g and ĝ, and

hµν = gµν − ĝµν .
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In this gauge the reduced vacuum field equations take the form of a system of wave
equations

gλρ ∇̂λ ∇̂ρ hµν = Fµν(h, ∇̂h, g, Riem[ĝ]) + ∇(µHν), (4.2)

with a certain polynomial function Fµν .

Boundary conditions are imposed as follows. With respect to g let T denote a future
directed time-like unit vector field tangential to T , N the outward directed unit normal to
T , and define the real null vectors K = T +N, L = T −N . Let Q be a complex linear
combination of vectors orthogonal to K and L which satisfies together with its complex
conjugate Q̄ the normalization conditions g(Q,Q) = 0, g(Q, Q̄) = 2. The metric can then
be written

gµν = 1/2
(

Qµ Q̄ν + Q̄µQν −Kµ Lν − LµKν

)

. (4.3)

With suitable functions

qKK , qQQ̄ ∈ C∞(T ,R), qKQ, qQQ ∈ C∞(T ,C),

as boundary data, the gauge requirements

(KµCµ)T = 0, (LµCµ)T = 0, (QµCµ)T = 0,

on T , where the metric on the right hand side of (4.1) is written as in (4.3), are supple-
mented by the boundary conditions

(

KµKνKρ ∇̂µ hνρ +
2

r
Kν Kρ hνρ

)

T

= −qKK , (4.4)

(

KµKν Lρ ∇̂µ hνρ +
1

r
Kν Lρ hνρ +

1

r
Qν Q̄ρ hνρ

)

T

= −qQQ̄, (4.5)

(

KµKν Qρ ∇̂µ hνρ +
2

r
Kν Qρ hνρ

)

T

= −qKQ, (4.6)

(

KµQν Qρ ∇̂µ hνρ −QµQν Kρ ∇̂µ hνρ

)

T
= −qQQ, (4.7)

where the function r denotes the areal radius of the cross section {t}× ∂S with respect to
the background metric.

4.2 Some features of the PDE problem

No detailed specification of the frame K, L, Q, Q̄ has been made in [19]. To obtain a well
defined PDE problem one has to decide, however, on a definit prescription. This choice
enters the consistency conditions, it determines the evolution of the boundary and the
gauge, and it affects the isometry class of the solution if the right hand sides of (4.4) -
(4.7) are given.

Since the metric is not available on T at this stage, one has to give an abstract
prescription for the frame field. Assuming ∂0 to be time-like and ∂a, a = 1, 2, 3, to be
space-like on Σ = S ∩ T , the specification of the frame can then be made in terms of a
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Gram-Schmidt orthonormalization of the coordinate frame, which gives the frame K, L,
Q, Q̄ in terms of the yet unknown metric coefficients gµν near Σ. Note that there is a large
freedom in doing this and that it will not be clear a priori for how long into the future a
particular choice will be well behaved.

Again it is the choice of the time-like unit vector field T which is decisive here. The
dependence of the boundary data on the complex vector fields Q and Q̄ orthogonal to
T and N is well controlled because the boundary data pick up phase factors ei k ψ, with
certain k ∈ Z, under rotations Qµ → ei ψ Qµ with ψ ∈ C∞(T ,R). In the following a
definite prescription of the frame will be assumed.

The meaning of the boundary conditions has been discussed to some extent in [19], but
it is not easy to analyse and probably not fully understood yet. They affect in particular the
gauge defined by (4.1). The tensorial nature of this gauge condition allows one to change
the coordinates conveniently without affecting the hyperbolicity of the reduced equations.
The fields Hµ reflect the usual freedom to prescribe four gauge source functions. Their
use allows us to generalize the maps of (M, g) onto (M, ĝ) considered below to general
wave maps.

To simplify the discussion we consider here only the case where Hµ = 0. If g exists
on M, relation (4.1) then tells us that the identity map of M defines a wave map of
(M, g) onto (M, ĝ). More generally, a map Φ : M → M is a wave map for g and ĝ if it
satisfies the variational principle δ

∫

trg(Φ
∗ĝ) dµg = 0. Let (U, xµ

′

) denote a coordinate

patch on M, xµ coordinates defined on Φ(U), and Φµ(xµ
′

) the local representation of Φ.
The Euler-Lagrange equations of this principle are then equivalent to the system of wave
equations

gµ
′ν′

(

Φρ ,µ′ν′ − Γµ′

λ′

ν′ Φρ ,λ′ + Γ̂µ
ρ
ν Φµ ,µ′ Φν ,ν′

)

= 0, (4.8)

where Γµ′
λ′

ν′ and Γ̂µ
ρ
ν denote the Christoffel symbols of the metrics gµ′ν′ and ĝµν

respectively and Γ̂µ
ρ
ν is taken at Φµ(xµ

′

).
Such maps may be constructed by solving initial boundary value problems for (4.8)

with Cauchy data on S and boundary conditions resp. data on T . To allow them to
define diffeomorphisms M → M of the desired type, the data should given such that the
maps induce diffeomorphisms of S and T onto themselves respectively and such that the
tangent maps TqΦ have maximal rank at points q in S or T . A solution will then map some
neighbourhood of S in M diffeomorphically onto another such neighbourhood. Depending
on the prescribed data and the metrics g and ĝ, its life time as a diffeomorphism may be
limited, however.

Assume such a map Φ to be given, denote its inverse by Ψ and the pull back of g
under Ψ by g′ = Ψ∗g. Writing the left hand side of (4.8) in terms of the argument xµ, one
finds that the equations can be rewritten in the form

g′λρ (Γ′
λ
µ
ρ − Γ̂λ

µ
ρ) = 0. (4.9)

This is (4.1) with g and its Christoffel symbols replaced by g′ and its derived fields.
Condition (4.1) thus remains unchanged if we allow for pull backs of g by inverses of wave
maps. This freedom is removed by the initial boundary conditions for (4.8) which are
implicit in the initial boundary conditions for (4.2).
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It is not easy to see whether the boundary conditions (4.4) - (4.7) contain information
which can be related directly to the behaviour of the geometry defined by g near the
boundary. We shall ignore that point here, though the question becomes important when
the geometry develops a tendency to collapse near the boundary.

On the boundary T we have the freedom to choose the time-like vector field T and the
related frame and the data q = (qKK , qQQ̄, qKQ, qQQ). The question arises what happens
under a transition

(T, q) → (T ′, q′) with T 6= T ′.

It could be that it is just implied by a change of the gauge and the frame but it could also
correspond to a transition to a different isometry class of metrics. Again it turns out to
be impossible to decide this only on the basis of the data given on T .

The boundary conditions (4.4) - (4.7) are covariant with respect to coordinate trans-
formations but they have a complicated behaviour under gauge transformations. It is
natural to accompany the gauge transformation g → Ψ∗g leading to (4.9) by the push
forward of the frame based on the harmonic map Φ. The defining properties of the frame
will be preserved and some calculations will be simplified. The transformation laws of the
functions comprised by q follow from the transformation laws of the left hand sides of the
boundary conditions. Because the background metric ĝ and thus the operatore ∇̂ is kept
fixed, the field h = g − ĝ transforms into Ψ∗g − ĝ and the transformation of q will involve
derivatives of Ψ up to second order. Without knowing the transformed solution near T
these derivatives cannot be determined on T .

Even if the transition(T, q) → (T ′, q′) above would result from a simple redefinition of
the frame we would not be able to recognize that. The transformation formula for q under
transformations of the frame which leave the normal vector N fixed requires information
on the unkowns which is only available when the solutions are known near T .

We conclude that in both approaches, [16] and [19], the problem with geometric
uniqueness is related to the frame dependence of the boundary data. There is an ‘in-
ner frame dependence’, which refers, depending on the method, to the coordinates in
which the boundary data are given or to the inverse wave map acting on the metric, and
an ‘outer frame dependence’ which refers to the need to perform in a transformation linear
combinations of some of the given data with other data which are not available. In both
cases it is the choice of the time-like vector field tangential to T which is critical. In
general there does not exist a distinguished one. Because it is based on a very general
analysis of initial boundary value problems for systems of wave equations, the approach
of [19] and of previous articles by the same authors may offer more flexibility than that of
[16] and it may offer new and unexpected possibilities to address the problem of geometric
uniqueness.

5 Covariant boundary data and distinguished

time-like vector fields

To avoid problems arising from the frame dependence one may wish to find formulations
in which the boundary data which do not serve to control the gauge are prescribed in
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terms of frame independent fields. In an approach which employs gauge conditions such
as (2.7) and uses wave equations as reduced equations they should be given in terms of
the first and second fundamental form

kµν = gµν −NµNν , χµν = kµ
λ kν

ρ∇λNρ,

induced on T . Here N denotes the outward pointing unit normal to T with respect to g.
The first invariant associated with these fields in the mean extrinsic curvature χ = kµν χµν .
Two further invariants are supplied by the eigenvalues of the trace free part

χ∗
µν = χµν −

χ

3
kµν ,

of the second fundamental form. In local coordinates xα on T in which the induced metric
takes at a given point p′ ∈ T the standard form kαβ = ηαβ ≡ diag(−1, 1, 1) the field
χ∗µ

ν = kµρ χ∗
ρν is represented at p′, possibly after a rotation of the coordinates which

leaves the x0-axis fixed, by a matrix of the form

χ∗α
β =





b+ d −c1 −c2
c1 −b 0
c2 0 −d



 .

The eigenvalues λi, i = 0, 1, 2, of χ∗
αβ , which satisfy λ0 + λ1 + λ2 = 0, are then the roots

of the equation

0 = det(χ∗α
β − λ δα β) = −λ3 + 1/2χ∗α

β χ
∗β

α λ+ det(χ∗α
β).

They are functions of the coefficients of this equation and one might try to use directly
the invariants

χ, χ∗α
β χ

∗β
α, det(χ∗α

β), (5.1)

as boundary data. Even if they could be used for that purpose there remains the problem
that the way they must be given may depend on the time-like vector field T .

One of the eigenvalues of χ∗α
β is necessarily real and we may ask whether the real

eigenvectors of χ∗α
β can be of any use for us. If b = d = 0 and cA 6= 0 two of the

eigenvalues are complex conjugates of each other and there is one real eigenvector which
turns out to be space-like. This remains true if |c| =

√

(c1)2 + (c2)2 is much larger than
|b| and |d|. If cA = 0 there exists an orthonormal frame of eigenvectors of χ∗α

β but the
time-like eigenvector need not be unique. In fact, if b = −2 d or d = −2 b there exists a
2-dimensional, time-like subspace of eigenvectors.

A view at the space-time setting underlying the flat, linear model problem considered
in the beginning may suggest a reasonable condition under which χ∗α

β can be expected
to admit a unique time-like eigenvector. In that case we find χ = 2/R > 0 and χ∗α

β =
1
R

(1
3 kµν+T∗µ T∗ν). It follows that χ∗α

β admits T∗ = ∂t as its unique future directed, time-
like unit eigenvector. The property that T∗ is orthogonal to the hypersurfaces {t = const.}
cannot be expected to extend to the curved case but the fact that the pull-back of χ∗

αβ to
the plane orthogonal to T∗ is (positive) definite suggests a useful generalization.

Back to the general case, suppose that χ∗α
β has a time-like eigenvector T 6= 0 tangen-

tial to T at p′ with eigenvalue λ0. With a suitable scaling of T we can assume, possibly after
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a Lorentz-Transformation, which leaves the form kαβ = ηαβ unchanged, that Tα = δα0 . It
follows that

χ∗
α0 = −λ0 δ

0
α.

By a rotation about the x0-axis, which leaves the form of kαβ and Tα unchanged, the
symmetric trace free tensor χ∗

αβ can then be brought into the diagonal form

χ∗
αβ = (λ1 + λ2) δ

0
α δ

0
β + λ1 δ

1
α δ

1
β + λ2 δ

2
α δ

2
β .

Cases in which the time-like eigendirection is not unique are excluded if we assume
that the pull- back of χ∗

αβ to the hyperplane orthogonal to T is positive definite (negative
definite, with corresponding changes below, might also be considered). The representation
above then implies

(∗) the quadratic form χ∗
αβ X

αXβ on the tangent space Tp′T is positive definite.

Conversely, consider on Tp′T the functions h = kαβ X
αXβ, f = χ∗

αβX
αXβ, and the set

H = {X ∈ TpT | h(X) = −1}. Assuming (∗), we conclude that f(X) → ∞ on H if the
direction of X approaches the null cone of k. The restriction of f to H thus assumes a
minimum at some pointX∗ ∈ H and by Lagrange’s method of underdetermined multipliers
there exists a real constant λ with

χ∗
αβ X

β
∗ = λkαβ X

β
∗ ,

so that X∗ is a time-like eigenvector of χ∗
αβ . Because the restriction of the form χ∗

αβ X
αXβ

to the plane orthogonal to X∗ is positive definite, we are again in the situation which led
to (∗).

We complement the assumption above by

(∗∗) the mean extrinsic curvature χ is positive.

Conditions (∗) and (∗∗) then imply that the set M is locally convex at T in the following
sense. Suppose that (M′, g′) is a smooth extension of the space-time (M, g) for which T
is an interior hypersurface. Any geodesics γ(τ) in this extension which is tangential to T
at the point γ(0) ∈ T will only be tangential to T at first order and remain outside M
for 0 < |τ | << 1 if its tangent vector γ′(0) belongs to the set {X ∈ Tγ(0)T | k(X,X) ≥ 0}
or is sufficiently close to it.

Assumptions (∗), (∗∗) are quite natural if we want to pose an initial boundary value
problem for an interior part of an asymptotically flat solution whose boundary is suffi-
ciently close to space-like infinity. They single out a future directed, time-like unit vector
field tangential to T which is distinguished by the geometry of the problem. The question
about the dependence of the invariants (5.1) on the frame does not arise any longer. More-
over, conditions (∗), (∗∗) are preserved under small perturbations. If χ and the eigenvalues
could be prescribed as boundary data the conditions could in fact be ensured during the
development in time.

Whether the invariants (5.1) can be used to encode the two degrees of freedom of
the gravitational fields is not obvious. As mentioned before, the right hand side of the
boundary condition (3.5) can be expressed completely in terms of the e3-magnetic part
of the conformal Weyl tensor. By the Codazzi equations the latter is given by certain
covariant derivatives of χαβ on T so that the function q is related to χ and the eigenvalues.
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Because the covariant derivatives involve the connection defined by kαβ it is not easy to
see that the information encoded in q can be extracted from the λi and χ. It may be that
the situation is more easily analysed in the setting of [19].

There is a test which may shed some light on this question. Consider one of the
two approaches above and assume that the initial and boundary data are given such that
the solutions will coincide for 0 ≤ t < ǫ with the space-time setting of the flat, linear
model case for some small ǫ > 0. Assume for t ≥ ǫ the free functions entering the gauge
condition and the specification of the boundary evolution to be given such that the gauge
and the boundary reduce to that of the flat model case if the boundary data which refer
to the gravitational degrees of freedom are given such as to imply the setting of the flat
model case. Consider now a solution which is determined by some given but unspecified
boundary data. We can ask then whether the additional requirement that the eigenvalues
of χαβ coincide with those of the flat model case implies that the solution must be flat.
A positive answer can be expected to indicate that the eigenvalues constitute suitable
boundary data. Moreover, the argument which leads to this answer may give some insight
into how initial boundary value problems which include these data must be formulated.

There remains, of course, the complicated question whether a time-like eigenvector or
even an eigenframe of the second fundamental form can be implemented together with a
condition of the type (2.7) and possibly a prescription of the eigenvalues of the second
fundamental form in a formulation of a well posed initial boundary value problem. The
answer requires a detailed analysis which will not be attempted here.

6 Conclusions

The formulations of the boundary conditions considered in [16] and [19] require the choice
of a future directed, time-like unit vector field T tangential to the boundary. With the
resulting initial boundary conditions and data one arrives at well posed PDE problems
which determine ST -vacuum-space-times locally in time near the initial hypersurface S.
The latter are unique apart from possible extensions into the future. Moreover, any ST -
vacuum-space-time which is given in one of the gauges considered above can be constructed
in this way locally in time.

The vector field T , for which no natural choice exists in general, is characterized
indirectly and becomes explicitly available only after solving the equations. Problems arise
if one wants to compare solutions pertaining to boundary conditions based on different
choices of T and on different boundary data.

The boundary conditions and data contain only very little direct information on the
geometry on the boundary and the meaning of the boundary data is related to the choice
of T . As a consequence, the question whether solutions determined by two different sets of
boundary conditions and data are isometric can not be answered in terms of the boundary
conditions and data alone. The complete solutions must be available along the boundary
to perform a comparison.

This situation leads to awkward practical problems if gauge transformations need to be
considered in the course of an evolution. It is an open question whether this is an intrinsic
problem of the initial boundary value problem for Einstein’s field equations or whether
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there can be formulated, under general assumptions, initial boundary value problems for
Einstein’s field equations which avoid these difficulties.

We pointed out a class of initial boundary value problem for which a time-like vector
field T is distinguished by the geometry of the boundary. Its defining property is stable
under perturbations and the class is fairly large and quite important from the point of
view of applications. If there existed formulations of well posed initial boundary problems
based on this vector field and possibly on the invariants considered above the problem
with geometric uniqueness arising in more general situations would not be present.
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