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Abstract

We investigate the directional sensitivity to plane gravitational waves (GWs)
of DUAL detectors of cylindrical shape. Calculations make use of the finite
element method to simulate the responses to the GW Riemann tensor of a single-
mass DUAL (SMD) and of a tapered cylinder (TC) in their wide sensitivity
bandwidth. We show that one SMD or a pair of TCs is able to cover both
GW polarization amplitudes from almost all incoming directions. We discuss
the achievable enhancement in tackling the inverse problem for high frequency
[∼(2–5) kHz] GWs by adding a TC detector to the future advanced LIGO–
VIRGO network.

PACS numbers: 04.80.Nn, 95.55.Ym

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The search for gravitational waves (GWs) represents a major challenge in experimental physics.
A crucial problem of the GW detection is the reconstruction of the wave parameters (direction
and polarizations) from the detector outputs, i.e. solving the inverse problem. For GW bursts
this is even more problematic due to the lack of knowledge of their time–frequency contents and
to the very high rates of spurious signals in ground-based detectors. The observational results
from burst searches have been either autonomous [1–3] or triggered by other astrophysical
observations [4–6]. A single detector readout cannot measure both polarization components
of a GW, so to assign a GW signal we must consider the synthesis of several detector outputs
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[7]. Only a spherical GW detector [8, 9] could in principle solve the inverse problem by
itself. The inverse problem has already been discussed for networks of GW detectors: three
[7, 10], four and five detectors, either resonant or interferometric [11], giving rise to novel
data analysis methods (e.g. based on aperture synthesis [12], constrained likelihood [13] or
null streams [14]). The network data analysis of GW detectors requires the knowledge of the
directional (angular) response of the detectors, the so-called antenna pattern.

In general, it is not easy to accurately reconstruct a GW signal using the noisy data of a
detector network as its amplitude is expected to be of the same order of the noise fluctuations
[14].

The current most sensitive searches for GWs are carried out by the LIGO–VIRGO laser
interferometers, which have recently achieved their design sensitivity goal [15–17], exhibiting
their best sensitivity in the range ∼(100–1000) Hz.

Due to the actual detector positions and orientations, the existing network of
interferometers is almost blind to one of the two GW polarization amplitudes and the inverse
problem is ill-conditioned [18]. The main motivation of this paper is the fact that the integration
of one single-mass DUAL (SMD) [19] or one tapered cylinder (TC) [20] can considerably
improve the network performances with respect to sky coverage and spurious rejection, at
least in frequency bands where detector sensitivities can be of the same order of magnitude.

In this paper, we compute the response functions to GWs of SMD and TCs, equipped with
geometrically selective readouts [21, 22]. It has been shown [19] that a SMD, consisting of a
hollow cylinder optimized for the frequency range ∼(2–5) kHz, can offer all the advantages
of a previous configuration, namely a DUAL detector [22], but with a simpler practical
realization. To make such a SMD configuration feasible, noise matching between the test
mass and the readout must be achieved, for instance, by using realistic capacitive readouts
mounted on a hollow cylinder modified with transverse displacement concentrators (whips)
[20]. The resulting TC detector exhibits a sensitivity comparable to that of an ordinary SMD
detector [20], with a standard quantum limit sensitivity comparable to the design sensitivity
of advanced interferometers in the ∼(2–5) kHz band [15].

This paper is organized as follows. In section 2, we derive the expression for the
GW equivalent force, coming from any direction of the sky and with arbitrary polarization
and describe how the antenna pattern is computed by the finite element method (FEM). In
section 3, we present the case study of the SMD and TC detectors. Section 4 describes the
antenna patterns of the SMD and TC detectors and comments the selectivity of their response
to a GW. In section 5, we discuss the GW inverse problem, by providing a brief overview of
its applications to a detector network. Section 6 presents the significant improvement of the
network performances that one can get by adding a TC detector to the advanced LIGO–VIRGO
interferometers. Finally, conclusions are drawn in section 7.

Throughout this paper, the bold fonts represent matrices and vectors, the middle-dots
indicate the ordinary matrix product and the superscript (·) T represents the transpose of
a matrix. Moreover, we use the Einstein convention, i.e. repeated indices are implicitly
summed over. We assume GW wavelengths to be much larger than the cylindrical detectors’
size [23].

2. Interaction of GWs with a detector

Let us assume that the gravitational radiation impinges on a GW detector of cylindrical shape,
coming from a direction k and with an arbitrary polarization. To calculate the detector angular
sensitivity, we choose a coordinate system {x1, x2, x3} with the x3-axis (i.e. the local vertical)
aligned along the cylinder symmetry axis and origin in the center of mass of the cylinder.
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Given the short interaction time with the GW and the small volume of the detector, the
detector reference frame can be considered a reasonable approximation of the Fermi normal
coordinates system [23]. According to the geodesic deviation equation, a test particle of mass
M, position vector x (i.e. at a distance ‖x‖ from the origin) experiences a force given by

fi = Mc2Rijxj , (1)

where Rij ≡ R0i0j is the tidal matrix and R0i0j are components of the Riemann curvature tensor
on the detector reference frame [23]. Assuming the linearized theory of general relativity on
the Minkowski spacetime, the Riemann tensor describing a plane GW reads

Rij = − 1

2c2

[
ḧ+(t)e

+
ij + ḧ×(t)e×

ij

]
, (2)

where h+(t) and h×(t) are the independent amplitudes of the wave and e
+,×
ij are the polarization

tensors. They have simple components in the wave basis:

e+ =
⎡
⎣1 0 0

0 −1 0
0 0 0

⎤
⎦ e× =

⎡
⎣0 1 0

1 0 0
0 0 0

⎤
⎦ . (3)

Their components in a detector-fixed basis depend on the direction of the incoming wave
k = (cos ϕ sin θ, sin ϕ sin θ, cos θ), with θ and ϕ being spherical angles in {x1, x2, x3}.

In order to evaluate the directional sensitivity of the SMD/TC elastic cylinders, we
performed, by means of the ANSYS code [24], three-dimensional FEM full method 5 harmonic
analyses.

The SMD is sketched in figure 1, while its readout configuration is shown in figure 2. It
is worth noting that the combination of ξSMD

1 with a second readout ξSMD
2 , rotated with respect

to the first by π/4 and shown in figure 2(a2), allows one to measure both GW polarization
states. The FEM computes the average deformation of the detector along four stripes in the
inner hole surface. These deformations are then combined as described in [22]: the expansion
along one diameter is summed to the shrinking along the perpendicular diameter (this is very
similar to what accomplished in a Michelson interferometric detector with arms at 90◦). In
this way, the resulting detector response, ξ(ω), is sensitive only to quadrupolar deformations,
rejecting other deformation symmetries.

The resulting GW transfer function H +,×(θ, ϕ;ω) depends on the GW direction and
frequency. In principle, it can be obtained in the frequency domain by a sum of the
contributions of each normal mode of the detector weighted by the Lorentzian factor
ω2

/[(
ω2

m − ω2
)

+ iω2
mφm(ω)

]
[19, 25], where ωm represents the resonance angular frequency

of the normal mode m. For frequency-independent losses, the phase lag φm is equal to the
inverse of the detector mechanical quality factor Q [26]. Since each normal mode of a resonant
detector has its own directional sensitivity, generally it is not possible to separate the frequency
and directional dependences of the GW transfer function in a wide sensitivity bandwidth. A
different factorization of H +,× in general holds around different resonant frequencies. In the
case of cylindrical DUAL detectors, however, the geometrical selectivity of the readout for
quadrupolar modes allows one to factorize H +,×(θ, ϕ;ω) as H +,×(θ, ϕ;ω) ≡ F +,×(θ, ϕ)G(ω)

over the very wide bandwidth of sensitivity [19, 20]; here G(ω) and F +,× are the usual

5 The full method is the most common and accurate method used to determine the response of a structure to
harmonically time-varying excitation. The FEM method is employed in solving approximately problems which
involve partial derivatives. The main feature of the FEM method is the discretization (mesh) of the continuous body
by using finite elements of simple shape [24]. A suitable mesh reduces the continuous system dynamics to algebraic
equations that allow the calculation of the elastic body dynamical impedance. The ANSYS solver computes also the
transfer functions from the input GW equivalent force to the output displacement readouts.
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Figure 1. FEM-simulated SMD detector and readout. (a) The deformations due to a GW are
measured along surface stripes in the inner hole extending over the entire cylinder height L with
an angular aperture 2α. We used the value α = 0.2 rad as in [19]. (b) Transverse section of the
detector where we have indicated with a black tile one of the sensing surfaces; rext and rint are the
outer and inner radii of the hollow cylinder.

(a2)(a1)

1x

2x

SMD
1ξξξξ SMD

2ξξξξ

Figure 2. Detector transverse sections and readout measurement strategy. The measuring surfaces
are constituted by independent readout configurations. The configurations in the panels (a1), (a2)

are sensitive to the quadrupolar modes of the test mass (α = 0.2 rad was used). The joint use of
such configurations allows one to detect both GW polarizations.

detector transfer function and antenna pattern, respectively. By definition, the antenna pattern
F +,×(θ, ϕ) of a GW detector gives the dependence of the response on the wave direction and
polarization.

The FEM analysis allows us to compute H +,×(θ, ϕ;ω) in the presence of complicated
shapes of the elastic body or arbitrary readout surfaces with a different approach, i.e. without
performing a normal mode expansion, but by computing directly the resulting deformation
ξ(ω) with the external force field.

To handle non-resonant readout configurations, e.g. the evaluation of SMD antenna
pattern, we must resort to this approach because it is more direct and accurate than considering
the superposition of a very large number of normal modes, at the cost of a reasonable increase
in computational requirements.
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Figure 3. Geometrical parameters used for the FEM simulations of the Mo TC detector: rext =
0.35 m, rint = 0.091 m, L = 1.19 m; rext does not include the displacement concentrators. In
particular, the whip length extends from the rext up to ∼16% (the drawings are not in scale).
The cylinder symmetry axis is aligned with the x3-axis (i.e. the local vertical) and the whips are
optimized to ensure a high mechanical gain. The sensing surfaces are indicated by the black
segments at the end of each whip and make four gaps. Opposite gaps make a pair and related gap
changes are summed together. The detector response is then the differential change in the two
orthogonal pairs of gaps.

Table 1. Parameters used for the FEM simulations of the Mo cylinder in figure 1. We indicate
the cylinder’s outer and inner radii, and its length with rext, rint and L, respectively. The density,
the Poisson’s ratio and the quality factor of the Mo material are denoted by ρ, σ and Q [27],
respectively.

rext (m) rint (m) L (m) ρ (kg m−3) σ Q

0.5 0.15 3 10 280 0.31 107

The FEM simulations are repeated for different GW directions k sampled on a discrete
grid of the angles θ and ϕ.

In our simulations, we assume elastic behaviour and take h+,× to be unity. This unphysical
value is suitable to keep ξ(ω) large enough to avoid underflow problems due to the finite
numerical accuracy of the FEM simulations.

3. Case study on cylindrical DUAL GW detectors

As a case study, we consider two types of three-dimensional models of cylindrical DUAL
detectors made of molybdenum (Mo). Molybdenum is a material with low mechanical losses,
useful to reduce the thermal noise contribution; in fact, the ratio between the temperature and
quality factor is T/Q � 5 × 10−9 K for acoustic modes at 50 mK [27]. The case study for the
SMD (see figure 1) has been modelled with the parameters presented in table 1. The model of
the TC detector is described in figure 3.

In order to fully exploit the SMD sensitivity [19], both the transducer configurations of
figures 2(a1) and (a2) must be taken into account. Therefore, we consider such a cylinder
equipped with the couple of these transducers, and we study their response to the two
independent polarizations of the wave. Unfortunately, the noise stiffness required to optimize
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Figure 4. |H +| computed for the three-dimensional elastic models of SMD, equipped with a
readout as in figure 2(a1), and of TC (panels (a) and (b), respectively). These functions describe
the dynamical response of the hollow cylindrical detector to a plus wave propagating in the
direction: (i) (θ=0, ϕ = 0), solid line; (ii) (θ = π

4 , ϕ = 0), dashed line; (iii) (θ = π
2 , ϕ = 0),

dotted line. The horizontal dashed and dotted lines represent the ratio between the |H +| of a wave
travelling in the directions described in (ii) and (i), (iii) and (i), respectively. The frequency is
defined by ν = ω/(2π). Similar plots also hold for the cross polarization.

the SMD sensitivity is two or three orders of magnitude larger than the noise stiffness of any
realistic readout, both electromechanical or optomechanical.

On the TC detector only one transducer configuration can be provided. The more
complex model geometry of the TC detector has been developed to fulfil a crucial experimental
requirement: the noise matching between the test mass and the readout [20]. This matching
is also necessary to fully exploit the readout sensitivity, up to its standard quantum limit [28].
As sketched in figure 3, displacement concentrators can be obtained by radial grooves and
properly tapered whips on the external surface of the hollow cylinder. This new design allows
us to achieve an amplification of the mechanical displacement on a large band by a factor
of ∼20 with respect to the standard SMD configuration [20]. Here the whips provide an
amplification of their transverse displacement, making a tangential sensing of the test mass
deformations possible. In fact, the readout measures the gaps between the tips of two-faced
whips (black segment in figure 3(b)). These faced surfaces could represent either the plates
of a capacitor [20, 29, 30] or the mirrors of a Fabry–Perot cavity [31–33].

We have shown in [20] that a TC equipped with the external readout exhibits the same
directional sensitivity as a SMD equipped with only one readout (see figure 2(a1)), i.e. the
same antenna pattern as an interferometric detector with two 90◦ arms. Such TC is not
omnidirectional, since it exploits only one single readout system, because of an unavoidable
symmetry break with respect to rotation by a ϕ = π/4 angle. To recover the directional
properties of a SMD equipped with two π/4 readouts, it is convenient to consider a composite
detector made of two co-located TCs with parallel cylindrical axes and rotated in the {x1, x2}
plane by π/4 with respect to each other.

In figure 4, the plots of |H +| and their ratios (horizontal lines) are shown for different
travelling directions of a plus-polarized GW. In figure 4(a), the frequency response of the
first two quadrupolar modes of the sample SMD is at about 1740 Hz and 4650 Hz, and the
in-between interval approximately sets the detector bandwidth. In figure 4(b), five resonant
modes of the sample TC appear with favourable coupling to GW. The |H +,×| curves for
different GW directions are the same apart from a scale factor within the detection band. As
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Figure 5. Arg{H +} for a plus-wave travelling in the direction: (i) (θ = 0, ϕ = 0), solid line;
(ii) (θ = π

4 , ϕ = 0), dashed line; (iii) (θ = π
2 , ϕ = 0), dotted line. The lines described

in (ii) and (iii) overlap in almost all the bandwidth. The phase was calculated as Arg{H +} =
arccos{�[H +]/|H +|} and, as usual, ν = ω/(2π). The lines in the panels (a) and (b) refer to one
SMD with a readout as in figure 2(a1) and to one TC, respectively. Similar plots also hold for the
cross polarization.

expected, the direction (θ = 0, ϕ = 0), i.e. x3-axis, represents the optimal direction for the
plus- and cross-polarized GWs detected by the readouts implemented on the configurations of
figures 2(a1) and (a2), respectively.

In general, the transfer function of a detector is a complex number. However, for
a SMD/TC detector we found that the imaginary part of H +,× is zero in the frequency
band between the modes of good GW coupling, within the numerical accuracy of the FEM
simulations [34]. Most important, as can be seen in figure 5, is that also the phase of H +

(Arg{H +}) is independent of the wave direction. To be more precise, Arg{H +} depends on
wave travelling directions only in narrow bandwidths around normal modes of the elastic body.

4. Directional sensitivity and test for monopole rejection

We discuss here the four antenna patterns F
+,×
1, 2 , computed by the FEM simulations, related

to plus/cross-polarized waves detected by the first ξSMD
1 and second ξSMD

2 transducer
implemented on the configurations of figures 2(a1) and (a2), respectively. The resulting
F

+,×
1, 2 are the same if we consider two co-located TC detectors or interferometric detectors

rotated by π/4.
As expected from the transducer configurations, a plus-polarized GW, impinging on a

SMD read by a transducer as in figure 2(a1), produces an antenna pattern represented in
figure 6, while the antenna pattern for cross-polarized waves, seen by the same transducer, is
shown in figure 7. Both directional responses are equal, within the accuracy of the ANSYS
code (∼1%), to those of an interferometric GW detector, with two orthogonal arms oriented
along the x1 and x2-axes of figures 6 and 7. The transducer shown in figure 2(a2) features the
same antenna patterns of figures 6(a) and 7(a), but rotated by ϕ = π/4.

The equivalence between the antenna pattern of a DUAL detector and an interferometer
cannot be easily guessed as DUAL is not a resonant detector, and therefore the simple approach
of the normal mode expansion is not viable. However, with the help of the FEM simulations,
we were able to check that the selective readout allows us the factorization of the complete
transfer function in two parts: (1) source position and polarization (antenna pattern), and (2)

7
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Figure 6. Directional response function, calculated by the FEM simulations, of a SMD equipped
with a transducer as in figure 2(a1) or of a TC detector in: (a) Cartesian coordinates {x1, x2, x3} and
(b) spherical-polar coordinates {r, θ, ϕ}. (c) Real part of the detector response in spherical-polar
coordinates. In panel (a), the cylinder is vertically placed at the center of the surrounding box.
These plots refer to plus linearly polarized waves. If we define the parametric two-dimensional
surface as r(θ, ϕ) ≡ |F +,×

1, 2 (θ, ϕ)|, the distance r from a point of the surface {r(θ, ϕ), θ, ϕ} to the
origin is a measure for the GW sensitivity in the (θ, ϕ) direction.

GW frequency. By changing the readout system, e.g. by reading only one instead of four
sensing surfaces, the resulting antenna pattern is quite complicated and completely different
from that of interferometers.

Figure 6 shows that the readout of figure 2(a1) detects plus GWs: (i) with maximum
sensitivity when they propagate in the directions θ = 0 or θ = π and ϕ = nπ/2 with
n = 1, 2, 3, 4; (ii) with half of the maximum sensitivity for θ = π/2 and ϕ = nπ/2; however,
this readout is completely blind to plus GWs coming from (0 < θ � π, ϕ = (2n + 1)π/4)

(meridians of the unit sphere).
As shown in figure 7, the same readout is maximally sensitive to cross waves travelling

in the directions θ = 0 or θ = π and ϕ = (2n + 1)π/4; however, it is blind to cross waves
coming from (0 < θ � π, ϕ = nπ/2) and (θ = π/2, 0 < ϕ � 2π) (equator of the unit
sphere).

The responses of the two readout systems can be combined in different ways, allowing
the reconstruction of signal properties when additional information is available. For instance,
as in the case of triggered searches, when the wave propagation direction (θ, ϕ) is known, the
SMD with its two independent readout channels, or a pair of TCs, π/4 apart, can solve both
amplitude polarizations of the incoming GW. As a comparison, let us recall that the proposed

8
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Figure 7. As in figure 6, but for cross-polarized waves.

spherical resonant detectors, equipped with six radial displacement transducers, can measure
amplitudes and direction for both GW polarizations, with isotropic sensitivity [35].

4.1. Circularly polarized GWs

The antenna patterns for circularly polarized waves detected by the readout systems oriented
as in figures 2(a1) and (a2), given by F1 = [(

F +
1

)2
+

(
F×

1

)2]1/2
and F2 = [(

F +
2

)2
+

(
F×

2

)2]1/2
,

are plotted in figures 8(a) and (b), respectively. Both responses show that each readout
system is completely blind in four perpendicular directions in the equatorial plane, and that
the maximum sensitivity is achieved for GWs propagating along the cylinder symmetry axis.
For symmetry reasons, F2 is equal to F1 after a rotation by π/4 in the {x1, x2} plane.

The two detector responses can be combined for instance by taking the maximum of the
responses of the two readouts (corresponding to independent GW searches in the two readout
channels), and so the resulting directional sensitivity can be represented by the envelope of the
two antenna patterns of figure 8 (see [19, 34]). Such a synthesis of the two antenna patterns
does not show blind directions; thus a SMD detector with two readouts can be considered
omnidirectional, even if it is not isotropic: the antenna pattern for GWs coming in the {x1, x2}
plane ranges from 30% to 55% of the response to an optimally oriented GW. Of course, the
same result can be obtained by considering two co-located GW interferometers, rotated by
π/4.
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Figure 8. FEM antenna patterns for circularly polarized GWs detected by a transducer as in
figures 2(a1) (left) and (a2) (right).

An alternative synthesis of the readout channels is to consider the quadratic sum of the
two responses for circularly polarized waves, i.e.

(
F 2

1 + F 2
2

)1/2
. This synthesis shows a

performance similar to the previous case, except for the directions in the equatorial plane
(θ = π/2, 0 < ϕ � π); in fact, the response to GWs coming from any direction in the
equatorial plane is ∼35% of the response to an optimally oriented GW.

4.2. Rejection of monopole disturbances

To figure out the effectiveness of the selective readout system in rejecting deformations
of different geometrical symmetries, we ran a different FEM simulation, i.e. with a
trace contribution to the tidal matrix R. In particular, we considered the matrix R̂ =
(ω2/c2) diag[1, 1, 1] as a model of possible class of spurious external forces. This is the
simplest choice for a force perturbation with a monopole contribution, i.e. an isotropic force
per unit of mass f iso = −ω2x. For symmetry reasons, we expect a null response for
the assumed selective readout systems [19, 20]. In fact, the vector field f iso contains no
quadrupolar component. The results of the FEM simulations confirm this expectation, turning
out to be zero within the numerical accuracy of the FEM analysis: the selective readout system
rejects disturbances which do not have quadrupolar symmetry, even if the spatial projection
of quadrupolar normal modes is only approximate.

We note that scalar GWs predicted by scalar–tensor theories of gravity [36] are not rejected
by the SMD/TC quadrupolar readout system. In fact, the polarization tensor of a scalar GW,
propagating in the x3-direction in the transverse gauge, reads es = diag [1, 1, 0] [37] and the
tidal matrix representing a scalar GW is Rs = −ḧs(t)e

s/(2c2), where hs is the amplitude of
the scalar transverse wave. Needless to say that scalar or tensor GWs can be discriminated in
a detector network.

5. Solution to the GW inverse problem

In the previous sections we assigned the GW and evaluated the directional response of a
SMD/TC detector equipped with suitable displacement transducers. Now we consider the
inverse problem for the detection of GW bursts by using some TCs. In general, a network

10
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of N � 3 non-aligned detectors provides redundant measurements of the two polarization
components of a GW. Thus, there are linear combinations of the detector outputs in which
gravitational signals cancel out (null streams), while detector noises and spurious signals
remain [14]. Null streams can be used to assess a GW signal without any assumption on its
waveform and to distinguish it from a spurious signal. This is the key feature of coherent
analysis methods with respect to the time coincidence analyses.

Let us consider N GW detectors, labelled by l = 1, 2, . . . , N , at different locations on
the Earth identified by the vectors rl joining the Earth center to the lth detector site. We can
express the response of the lth detector to an incoming GW, with polarization amplitudes h+,×,
as

ξl(ω) = e−iωk·rl
[
F +

l (θ, ϕ)h+(ω) + F×
l (θ, ϕ)h×(ω)

]
+ ηl(ω), (4)

where k represents the wave travelling direction, ηl represents the detector noise that
we model as zero mean and independent Gaussian stochastic processes, with variance
〈ηl(ω)ηl′(ω

′)〉 = δll′Shh; l(ω)δ(ω − ω′), where δll′ and δ(ω − ω′) are Kronecker delta and
Dirac delta, respectively; Shh; l(ω) represents the power spectral density expressed in terms of
GW amplitude at the input of the lth detector.

After multiplying each detector response ξl(ω) by the phase factor eiωk·rl , which
corresponds to the synchronization of all responses on the same wavefront, we can recast
equation (4) in the matrix form

ξ(ω) = F (θ, ϕ) · h(ω) + η(ω), (5)

where

ξ(ω) =

⎡
⎢⎢⎢⎣

ξ1(ω)

ξ2(ω)

...

ξN(ω)

⎤
⎥⎥⎥⎦ , h(ω) =

[
h+(ω)

h×(ω)

]
, η(ω) =

⎡
⎢⎢⎢⎣

η1(ω)

η2(ω)

...

ηN(ω)

⎤
⎥⎥⎥⎦ , (6)

and the network response matrix is given by

F (θ, ϕ) =

⎡
⎢⎢⎢⎣

F +
1 F×

1

F +
2 F×

2
...

...

F +
N F×

N

⎤
⎥⎥⎥⎦ ≡ [F + F ×]. (7)

When the number of equations is larger than the number of unknown wave parameters,
we can use the additional detector outputs as linear constraints, with the aim of discriminating
local spurious disturbances from true GWs. To better elaborate this point, let us consider the
functional

�(h) = ‖ξ(ω) − F · h(ω)‖2, (8)

where ‖·‖ is the usual norm of a vector. The minimum of �(h) can be found by means of
the Moore–Penrose inverse of the rectangular N × 2 matrix F [38]. The calculation leads to
the estimate of the two independent GW polarization components, h+ and h× [13]. In fact,
by differentiating equations (8) with respect to h, and setting them equal to zero, we obtain a
system of linear equations that, written in the matrix form, reads

M · h(ω) = F T · ξ(ω), (9)

where M = F T · F . Therefore, the solution to the first part of the inverse problem, i.e. the
reconstruction of h+ and h×, is given by

h(ω) = F † · ξ(ω), (10)
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where F † ≡ M−1 · F T is the Moore–Penrose inverse, or pseudo-inverse, of F . The Moore–
Penrose inverse also provides a least squares solution to the system of linear equations (5). In
fact, if detector noises can be described as independent, quasi-stationary Gaussian stochastic
processes, one can demonstrate that the minimum of the functional �(h) in equation (8)
corresponds to the global maximum of the network likelihood function, defined as the product
of the likelihood of each detector in the network [13].

In general, the problem described above is an ill-posed problem. In fact, due to detector
alignments in the network, rows of F could be proportional to each others for some source
positions in the sky, leading to rank deficiency in F . For such positions, h cannot be
straightforwardly recovered by means of F †. The condition number of F , expressed by
cond(F ) ≡ ‖F ‖‖F †‖,6 gives an estimate of how the matrix is close to these singularities. An
ill-conditioned matrix, i.e. with cond(F ) 
 1, produces a high instability in the solution
of the inverse problem. In particular, the condition number associated with the linear
equation (5) gives a bound on how inaccurate the solution h will be due to noise η. We
can roughly consider the condition number as the rate at which the solution h will change
with respect to a change in the responses ξ. Thus, if the condition number is large, even a
small error in ξ (high signal-to-noise ratio) may cause a large error in h. On the other hand,
if the condition number is small then the error in h will not be much larger than the noise
fluctuations in ξ. It is worth noting that the conditioning is a property of the matrix F , not of
the algorithm used to reconstruct the source position and polarization.

Many methods have been devised to face ill-posed problems; among them the most
noticeable is the regularization method proposed by Tikhonov [40].

The solution of the inverse problem not only reconstructs the GW polarization amplitudes
h+,× and its direction k (θ, ϕ) but it can also discriminate genuine from spurious signals by
means of two suitable statistics. In fact, we can introduce two linear operators, P = F · F †

and Q = I − F · F †, where I is the N × N identity matrix. One can easily show that P
and Q are two projection operators, orthogonal and complementary. The operators P and Q
project the detector outputs in the vectorial space spanned by F and in the null space of F ,
i.e. the space orthogonal to F , respectively. Then, for each sky position, we can define two
positive definite statistics: the network power E(θ, ϕ) ≡ ‖P · ξ‖2 and the residual function
R(θ, ϕ) ≡ ‖Q · ξ‖2. The corresponding expected values, under the hypothesis of a true GW,
reach a maximum and a minimum, respectively [14]; therefore the desired source location
and spurious discrimination can be obtained by requiring the simultaneous level crossing of
E(θ, ϕ) and uncrossing of R(θ, ϕ).

6. TCs and LIGO–VIRGO–TC networks

6.1. Homogeneous network

In the case of N = 2 aligned TC detectors, located in the same place, the vectors F +

and F × represent the whole two-dimensional space, therefore the complementary space,
i.e. the null space, consists of the null vector. The solution of the problem is represented by
equations (10), with F † = F −1, because in this case F is a square matrix of rank 2. Therefore,
P = F · F −1,Q = 0 and R(θ, ϕ) = 0 for all (θ, ϕ), then it is not possible either to infer
the source position or to discriminate spurious events. It would need at least another detector
to solve the problem. In fact, in the case of N = 4 TC detectors, the vectors F + and F ×

generate a two-dimension subspace, and then a two-dimensional complementary subspace
(i.e. the null space) exists [14]. If we arrange the four TCs in two pairs to form two equivalent

6 In calculating cond(F ) we used the induced matrix 2-norm (see e.g. [39]).
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Figure 9. Sky map of the condition number for a homogeneous network of N = 4 TCs. The
four detectors form two pairs with symmetry axes aligned along the (θ = π/2, ϕ = 0) and
(θ = π/2, ϕ = π/4) directions.

SMD detectors, and we align their symmetry axes to form a π/4 angle, we have the very good
conditioning shown in figure 9. Another notable feature of such a homogeneous network is
the invariance of the condition number for rigid rotation of each SMD about its symmetry
axis.

In any case, if the polarization of gravitational signals were known, it would be possible
to estimate the wave direction by means of a pair of TC detectors. In fact, in this case, the null
space would be one dimensional and so we could form the E(θ, ϕ) and R(θ, ϕ) statistics.

As we have already said, a TC is equivalent in terms of antenna pattern to an interferometer
with two orthogonal arms. Thus, instead of considering a homogeneous network made of
several TCs, we think that it is more plausible to investigate the integration of one highly
sensitive TC in the advanced LIGO–VIRGO network, as discussed in the next paragraph.

6.2. Heterogeneous network

A network of advanced interferometric detectors will be in operation by the next half-
decade. The bandwidth of these high-sensitivity detectors will reach ∼5 kHz and will overlap
significantly with that of a TC with comparable sensitivity (�10−23 Hz−1/2) in the range
∼(2–5) kHz. Then, it is worth investigating the contribution of a TC to the advanced
interferometric network.

In figure 10, the power spectral sensitivities expected for a Mo TC, advanced LIGO and
VIRGO detectors are shown. The performance of a TC detector in terms of strain sensitivity
could be improved by considering a material with a coupling to GWs higher than that of Mo,
such as for instance the C/SiC material [20, 42].

As a possible site for operating a TC, we considered the INFN—National Laboratory
of Gran Sasso (LNGS) in Italy. The remaining degree of freedom of a TC orientation is
the azimuth angle ζ between the local north direction and the readout system, measured
clockwise in the horizontal plane. Figure 11 shows that a TC detector improves considerably
the condition number of the network and that the best conditioning is achieved at ζ ∼ 75◦. To
appreciate the reconstruction ability of the LIGO–VIRGO–TC network, we show in figure 12
the condition number as a function of source angles θ and ϕ, with a TC located at LNGS and
ζ ∼ 75◦.

The very low achieved values of cond(F ) clearly indicate that the solution of the inverse
problem is stable and that R(θ, ϕ) can be estimated all over the sky. To show the TC
contribution to network performances, we report in table 2 the results of a Monte Carlo
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Figure 10. Standard quantum limit strain sensitivities for the Mo TC detector of figure 3 (solid
curve), advanced LIGO (dashed curve) [41] and advanced VIRGO (dotted curve). The inset
represents an enlargement of the noise spectra in the (2–7) kHz frequency band; ν = ω/ (2π).
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Figure 11. Condition number of the response matrix for the LIGO–VIRGO–TC network, with
the TC detector located at LNGS, as a function of the local azimuth angle ζ . The solid, dashed
and dotted lines refer to a TC detector with the same, half or double strain sensitivity, respectively.
The three upper and lower lines show the worst and the average conditioning, respectively. The
two dashed-dotted horizontal lines represent the worst (upper line) and the average (lower line)
conditioning of the advanced LIGO–VIRGO network. The average conditioning is evaluated
assuming a uniform source distribution.

simulation of the fraction of the sky covered by the two network configurations, where the
conditioning is lower than a given threshold. The Monte Carlo consists of 105 random
directions of the sky, uniformly distributed over the unit sphere. As clearly evident from
table 2, a LIGO–VIRGO–TC network better reconstructs GW signals irrespective of their
direction and polarization, within the TC frequency band.

It is worth noting that the improvement of adding SMD/TC detectors to the LIGO–VIRGO
network comes from the ability to search for both polarizations, thanks to the optimization of
the ζ angle.
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Figure 12. Sky map of the condition number for the LIGO–VIRGO–TC network, assuming the
best TC orientation ζ ∼ 75◦.

Table 2. Fraction of the sky where conditioning is less than the given threshold of maximum
conditioning (Max Cond). We assume the same sensitivity for the advanced LIGO/VIRGO and
TC detectors in the ∼(2–5) kHz band and the best orientation angle ζ ∼ 75◦ for the TC detector.

Max Cond LIGO–VIRGO (%) LIGO–VIRGO–TC (%)

4.5 73 100
4.0 67 99
3.5 59 93
3.0 48 85
2.5 36 73
2.0 22 58
1.5 7 39

7. Conclusions

In this paper we discussed the directional sensitivity to GWs of a single-mass DUAL (SMD)
and a tapered cylinder (TC) equipped with selective readout. The dynamics of the detectors
was simulated on the basis of three-dimensional FEM numerical analyses, by computing the
SMD/TC transfer function H +,×(θ, ϕ;ω) to plus- and cross-polarized GWs coming from
any direction. The main result was the factorization of H +,× in the angular and frequency
dependences within the ∼(2–5) kHz detection band. Such a factorization is due to the selective
quadrupolar readout configuration and allows one to compute the SMD/TC antenna pattern.
We showed that a SMD, or a pair of TC detectors with parallel symmetry axes, but rotated by
π/4 one with respect to the other, does not have blind directions in the sky. In addition, we
analysed an example of rejection of monopole spurious signal by a SMD/TC in confirmation
of the capability of the selective readout system to reject disturbances which do not have a
quadrupolar symmetry.

We also discussed the inverse problem of detecting and reconstructing gravitational signals
by exploiting the FEM frequency-dependent harmonic analyses for a couple of TCs, π/4 apart.

In this framework, we investigated the possibility of adding a TC in the network of
advanced LIGO–VIRGO detectors, since the expected strain sensitivities of the detectors are
comparable above 2 kHz. The improvements of detection performances of such a network are
of some relevance. In fact, the region of likely detection is significantly extended and the sky
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coverage of the overall network is high enough: the resulting sky map exhibits the worst case
corresponding to a condition number of 4.5. The same figure for the conditioning is achieved
by the LIGO–VIRGO network on ∼70% of the sky.
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