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Quantum noise of a Michelson-Sagnac interferometer with a translucent mechanical oscillator
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Quantum fluctuations in the radiation pressure of light can excite stochastic motions of mechanical oscillators
thereby realizing a linear quantum opto-mechanical coupling. When performing a precise measurement of the
position of an oscillator, this coupling results in quantum radiation pressure noise. Up to now this effect has not
been observed yet. Generally speaking, the strength of radiation pressure noise increases when the effective mass
of the oscillator is decreased or when the power of the reflected light is increased. Recently, extremely light SiN
membranes (≈100 ng) with high mechanical Q values at room temperature (�106) have attracted attention as
low thermal noise mechanical oscillators. However, the power reflectance of these membranes is much lower than
unity (<0.4 at a wavelength of 1064 nm) which makes the use of advanced interferometer recycling techniques
to amplify the radiation pressure noise in a standard Michelson interferometer inefficient. Here, we propose and
theoretically analyze a Michelson-Sagnac interferometer that includes the membrane as a common end mirror
for the Michelson interferometer part. In this topology, both power and signal recycling can be used even if the
reflectance of the membrane is much lower than unity. In particular, signal recycling is a useful tool because it
does not involve a power increase at the membrane. We derive the formulas for the quantum radiation pressure
noise and the shot noise of an oscillator position measurement and compare them with theoretical models of the
thermal noise of a SiN membrane with a fundamental resonant frequency of 75 kHz and an effective mass of
125 ng. We find that quantum radiation pressure noise should be observable with a power of 1 W at the central
beam splitter of the interferometer and a membrane temperature of 1 K.
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I. INTRODUCTION

Laser interferometers are among the most sensitive mea-
surement devices ever built. The interferometric gravitational
wave detectors in their first generation achieve a linear noise
spectral density for the displacement measurement of as low
as 10−19 m/Hz1/2 [1]. The gravitational wave detectors of
the second generation [2–4] are designed to have 10 times
better sensitivity. The sensitivity of these interferometers will
be limited by quantum radiation pressure noise [5] at low
audio-band Fourier frequencies and by photon shot noise [5]
at higher frequencies. While the shot-noise-limited regime
of laser interferometers has been fully investigated and even
interferometers with squeezed shot noise were demonstrated
[6–9], the radiation pressure noise has not yet been observed.
The experimental investigation of this quantum measurement
regime is crucial in view of future gravitational wave detectors.
It is also interesting from the fundamental physics point
of view, because the successful observation of the quantum
radiation pressure noise will confirm the seminal principle of
back-action in a (continuous) quantum measurement [10,11]
when one quantum system (the light) serves as a probe for
another quantum system (the mechanical oscillator).

To observe quantum radiation pressure noise, the mechani-
cal oscillator under investigation should have a high suscepti-
bility to radiation pressure, i.e., a low effective mass [12]. The
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motion of the oscillator should show a low thermal noise, i.e.,
the oscillator should have a high mechanical Q value. Recently,
commercially available SiN membranes have attracted a lot of
attention and have been considered for experiments aiming
for nonlinear quantum effects of mechanical oscillators, i.e.,
the observation of quantum jumps [13–15]. The membranes
typically have an effective mass of the order of 100 ng, a
thickness of about 100 nm, and a surface area of about 1 mm2.
The Q values at their fundamental resonant frequency at
about 100 kHz were measured to 106 at room temperature
and 107 at 300 mK [14]. These properties of the membranes
make them also interesting for experiments aiming for the
linear quantum regime of light-matter systems as considered
here. In such experiments, the dynamic (small) displacement
of the oscillator scales linearly with the amplitude of the
incident-light amplitude modulation, and the amplitude of
the reflected-light phase modulation scales linearly with the
(small) displacement of the oscillator. In an actual experiment,
two identical oscillators might be used as the end mirrors of
a simple Michelson interferometer with homodyne readout.
A problem arises due to the rather low power reflectance of
the membrane (<40% at a wavelength of 1064 nm), because
the interferometer techniques of power recycling and signal
recycling [16–18] to amplify the radiation pressure noise
are not efficient for translucent mechanical oscillators. Power
recycling is used to resonantly enhance the light power inside
the interferometer without reducing the signal bandwidth of
the interferometer. Signal recycling is used to resonantly
enhance the signal without increasing the laser power inside
the interferometer.
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FIG. 1. (Color online) Schematic of a power- and signal-recycling
Michelson-Sagnac interferometer. The translucent mechanical oscil-
lator forms the joint end mirror of the two Michelson arms. While the
displacement of the oscillator is measured via the Michelson mode,
the transmitted light is stored in the Sagnac mode. The combination
of Michelson and Sagnac modes enables the resonant enhancement
of both the laser power and the displacement signal by placing
power- and signal-recycling mirrors in the input and output ports
of the interferometer, respectively. The parameter L is the length
of the Michelson interferometer arms, and LSR is the distance between
the beam splitter and the signal-recycling mirror.

Here we propose a recycling Michelson-Sagnac interfer-
ometer in order to access the radiation pressure noise regime
of a translucent mechanical oscillator. In this interferometer
topology, a single oscillator forms the joint end mirror of a
Michelson interferometer with folded arms [19]. While the
reflected light forms a Michelson mode, the light transmitted
through the oscillator forms a Sagnac mode (see Fig. 1). Since
all the light, including the signal, is kept within the two modes,
power as well as signal recycling can be used to enhance the
radiation pressure noise. We calculate the quantum noise of
the Michelson-Sagnac interferometer and discuss the role of
the power- and signal-recycling techniques for the observation
of quantum radiation pressure noise. We finally compare the
power spectral densities of radiation pressure noise, shot noise,
and thermal noise for an oscillator displacement measurement
and answer the question as to what values of light power and
temperature of the membrane would allow an observation of
radiation pressure noise.

II. QUANTUM NOISE OF A MICHELSON-SAGNAC
INTERFEROMETER

For a displacement measurement of a mechanical oscillator,
photon shot noise as well as radiation pressure noise has to
be taken into account. In a Michelson-Sagnac interferom-
eter, the corresponding spectral densities differ from those
in a simple Michelson or Sagnac [20–22] interferometer
due to the interference of the Michelson and the Sagnac
modes.

A. Photon shot noise of membrane displacement measurement

Let us first consider a bare laser Sagnac interferometer that
does not rotate. If the beam splitter has a perfect 50/50 splitting
ratio, all the incident light is back-reflected toward the laser

source. It is assumed that the Sagnac mode has a waist at half
the round-trip length. In this case, a reflecting plane surface
with amplitude reflectance r (a membrane) can be put into the
waist in such a way that the light is not scattered out of the
interferometer and additionally creates a Michelson mode that
is sensitive to the motion of the membrane. Note that the length
change in each Michelson arm is twice the displacement of the
membrane, and the differential length change in the two arms
is twice times that change. Then the power at the output port
is given by

Pout = r2P0

2

[
1 − cos

(
�0 + 8π

λ
x

)]
, (1)

where x is the displacement of the membrane from its
operating point �0, and P0 is the incident power. If the
displacement is much smaller than the wavelength of light
λ, Eq. (1) can be approximated using a Taylor expansion
yielding

Pout ∼ r2P0

2

(
1 − cos �0 + 8π

λ
x sin �0

)
. (2)

The single-sided linear spectral density
√

Gout of the shot noise
of the light at the output port is described as [23]

√
Gout =

√
2h̄ω0Pout =

√
4πh̄cPout

λ
, (3)

where h̄ is the reduced Planck constant, ω0(=2πc/λ) is the
angular frequency of light, and c is the speed of light. The
signal-normalized shot noise is then given by

√
Gshot =

√
4πh̄cPout

λ

[∣∣∣∣∂Pout

∂x

∣∣∣∣
x=0

]−1

=
√

2πh̄cr2P0(1 − cos �0)

λ

2

r2P0

λ

8π |sin �0|

=
√

h̄cλ

16πr2P0

1

|cos(�0/2)| . (4)

Hence, for �0 = 0 corresponding to the dark fringe, the
signal-normalized shot noise is minimum for a given
power P0:

√
Gshot =

√
h̄cλ

16πr2P0
. (5)

B. Quantum radiation pressure noise of membrane
displacement measurement

The radiation pressure force is equal to the momentum
transferred from the light to the membrane per unit time. This is
the difference of the light-field momentum flux between outgo-
ing and incident beam, at the reflecting surface integrated over
the effective area A of the light beam. The total momentum
flux results from two pairs of incident (EA, EB) and outgoing
(EC, ED) traveling waves (see Fig. 2). The momentum density
for each wave is equal to ε0|Eα|2/c, where α = A, B, C, D.
Eα is the electric-field strain in the corresponding wave, ε0 is
the permittivity of vacuum, and |Eα|2 stands for time average
of |Eα|2 over many periods of light oscillation. Taking into

033849-2



QUANTUM NOISE OF A MICHELSON-SAGNAC . . . PHYSICAL REVIEW A 81, 033849 (2010)

FIG. 2. The four arrows represent the incident-light fields
(EA, EB) and outgoing interference of the reflected and transmitted
light (EC, ED). These four fields give rise to radiation pressure effects
at the membrane.

account the directions of light propagation and choosing signs
in front of each wave momentum flux correspondingly, one
gets the following expression for the radiation pressure force
exerted by light on the membrane:

FRP = c × Aε0

c
[(|EC|2 − |ED|2) − (|EB|2 − |EA|2)]. (6)

The dc components of the force in Eq. (6) cancel because of
the symmetry of the membrane. However, vacuum fluctuations
enter the interferometer from the output port. This results
in quantum amplitude fluctuations via the interference with
the carrier light. In this case, there is a perfectly negative
correlation between the fluctuations of EA and EB because
of the energy conservation at the beam splitter [5]. This is
the origin of quantum radiation pressure noise. The vacuum
fluctuations from the input port do not lead to a displacement
of the membrane, because the correlation between EA and EB

is perfectly positive.
The incident-light-field amplitudes are

EA = 1√
2

√
h̄ω0

Acε0
[
√

2D + Ev1] cos(ω0t)

+ 1√
2

√
h̄ω0

Acε0
Ev2 sin(ω0t), (7)

EB = 1√
2

√
h̄ω0

Acε0
[
√

2D − Ev1] cos(ω0t)

− 1√
2

√
h̄ω0

Acε0
Ev2 sin(ω0t). (8)

(In Ref. [24], these formulas are written in cgs-Gauss units.
However, in this paper, we use International System of units.)
Here D represents the amplitude of the carrier before the beam
splitter, in such a way that D2 is the number of photons per
unit time in the beam. The relation between D and the incident
power P0 is given by

P0 = h̄ω0D2. (9)

The parameters Ev1 and Ev2 stand for amplitude and
phase quadrature of vacuum fields, respectively, that enter
the interferometer from the output port and propagate to
the membrane. The phase shift of transmittance of the
membrane is not independent of that of the reflectance owing

to energy conservation (E2
A + E2

B = E2
C + E2

D). Since the
membrane is symmetric, the phase difference between the
reflectance and transmittance must be π/2. It is possible to
assume a phase shift in the reflection of π/2, while the phase
shift in transmission is zero, without losing generality. The
outgoing fields are written as

EC = 1√
2

√
h̄ω0

Acε0
[
√

2tD − tEv1 + rEv2] cos(ω0t)

+ 1√
2

√
h̄ω0

Acε0
[−

√
2rD − rEv1 − tEv2] sin(ω0t), (10)

ED = 1√
2

√
h̄ω0

Acε0
[
√

2tD + tEv1 − rEv2] cos(ω0t)

+ 1√
2

√
h̄ω0

Acε0
[−

√
2rD + rEv1 + tEv2] sin(ω0t). (11)

The parameters r and t are amplitude reflectance and trans-
mittance of the membrane, respectively.

Substituting Eqs. (7), (8), (10), and (11) in Eq. (6),
we obtain the force exerted by the radiation on the
membrane

FRP = 2

c

√
2h̄ω0P0r

2Ev1 + 2

c

√
2h̄ω0P0rtEv2. (12)

Let us assume that the field entering from the output port
is a vacuum state. The single-sided spectral densities of Ev1

and Ev2 are equal to 1 (this spectral density has no dimension
because the dimension of Ev1 and Ev2 are the same as that of
D, which is the square root of photon number per unit time)
while their cross-correlation vanishes [24], thus one can easily
get the following expression for single-sided spectral density
of radiation pressure force

√
GFRP =

√(
2

c

√
2h̄ω0P0r2

)2

+
(

2

c

√
2h̄ω0P0rt

)2

=
√

16πh̄r2P0

cλ
. (13)

The motion of the membrane caused by this force is

√
Grad = H

√
16πh̄r2P0

cλ
, (14)

H =
∣∣∣∣ 1

−mmem(2πf )2 + mmem(2πfmem)2[1 + if/(Qfmem)]

∣∣∣∣ .
(15)

The function H shows the (complex) mechanical suscep-
tibility of the membrane, defined by its effective mass
mmem [25], resonant frequency fmem, and mechanical Q

value Qmem.

C. Power- and signal-recycling techniques

The membrane in the Michelson-Sagnac interferometer can
be positioned such that not only the Sagnac mode but also
the Michelson mode is on a dark fringe at the signal port.
In this case (almost) all the input light power is back-reflected
toward the laser source and power and signal recycling [16–18]
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can be used to increase the quantum radiation pressure
noise. Power- and signal-recycling techniques are realized
via additional mirrors (see Fig. 1) which together with the
Michelson-Sagnac interferometer form cavities for carrier
light (power recycling) and signals and vacuum fluctuation
entering the signal port (signal recycling). In this paper, we
consider only the signal-recycling cavity tuned to the carrier
frequency [26].

In the case of power recycling [16,17], the recycling cavity
enhances the incident (carrier) power by a factor gPR, which
is the power-recycling (energy) gain. The incident power P0

in formulas of shot noise [Eq. (5)] and radiation pressure
noise [Eq. (14)] is replaced by gPRP0. In the case of using
signal recycling [18], the amplitude of sidebands caused by
the membrane motion [|∂Pout/∂x| in Eq. (4)] and the vacuum
fluctuations from the output port are amplified by

√
gSR, which

is the signal-recycling (amplitude) gain.
It should be noted that the sideband frequency of the signal

and the corresponding vacuum fluctuation is preferred to be
smaller than the signal-recycling cavity bandwidth fSR. If
the sideband frequency is larger than fSR, amplification of
signal sidebands and vacuum fluctuation decreases. Hence,
the signal-normalized shot noise increases, while the radiation
pressure noise decreases. If the lengths of the two optical
paths from the beam splitter to membrane are equal, the cutoff
frequency fSR is inversely proportional to the summation of
the distance between beam splitter and signal-recycling mirror
LSR and the arm length L (see Fig. 1). The formulas of
shot noise and radiation pressure noise with power and signal
recycling are written as [18,27,28]

√
Gshot =

√
h̄cλ

16πgPRgSRr2P0

√
1 +

(
f

fSR

)2

, (16)

√
Grad = H

√
16πh̄gPRgSRr2P0

cλ

1√
1 + (f/fSR)2

. (17)

If the reflectance of the recycling mirrors is close to unity
but still lower than the reflectance of the Michelson-Sagnac
interferometer, the cutoff frequency and recycling gains are

fSR = c(1 − rSR)

4π (LSR + L)
, (18)

gPR = 1 + rPR

1 − rPR
, (19)

gSR = 1 + rSR

1 − rSR
, (20)

where rPR and rSR are amplitude reflectance of power- and
signal-recycling mirrors, respectively.

III. SPECIFICATIONS FOR A LINEAR QUANTUM
OPTO-MECHANICAL COUPLING

In this section, we specify a design example of a Michelson-
Sagnac interferometer that should allow for the generation and
observation of the linear quantum opto-mechanical coupling
of a light field with the motion of a SiN membrane. The
design parameters are chosen such that the regime dominated
by radiation pressure noise can be reached for some low
temperature of the membrane. In our analysis, we in particular

TABLE I. Example specifications of a Michelson-Sagnac
interferometer [14].

Light wavelength (λ) 1064 nm
Arm length of Michelson interferometer (L) 0.6 m
Length between signal-recycling mirror and 3 cm

beam splitter (LSR)
Amplitude reflectance of signal-recycling 0.998

mirror (rSR)
Signal-recycling (amplitude) gain (

√
gSR) 32

Power at beam splitter (gPRP0) (with/without 1 W/1 kW
signal recycling)

Power reflectance of membrane (r2) 0.35
Resonant frequency of membrane (fmem) 75 kHz
Effective mass of membrane (mmem) 125 ng
Q value of membrane (Qmem) 107

Temperature of membrane (Tmem) 1 K

compared designs with and without signal recycling and found
that the implementation of the signal-recycling technique is
beneficial for the purpose of observing radiation pressure
noise. The results of our comparison are based on the
parameters given in Table I [14] and are illustrated in Fig. 3.
In our design example, the radiation pressure noise is two
times larger than the shot noise below resonant frequency; and
even the standard quantum limit [10,11,24], where shot noise
and radiation pressure noise are of equal size, can be reached.
Indeed, as one can see from Eq. (17), the optical power that
determines the level of radiation pressure noise as well as
shot noise always enters the formulas in the combination:
gPRgSRP0/[1 + (f/fSR)2]. Therefore for frequencies below
the signal-recycling cavity cutoff frequency fSR (76 kHz
for our choice of parameters), one needs gSR times lower
optical power gPRP0 at the beam splitter to provide the same
level of radiation pressure noise as in the the case without
signal recycling. In our example, just 1 W is required when
the signal-recycling technique is adopted compared to 1 kW
without signal recycling. [We need a high signal-recycling
gain

√
gSR = 32. According to Eq. (20), the loss in the

Michelson-Sagnac interferometer must be smaller than 0.4%,
which is a realistic value [29]]. Signal recycling reduces
the heat from the absorption in the membrane and beam
splitter without sacrificing the radiation pressure noise. For
frequencies > fSR, signal recycling is less effective, as shown
in Fig. 3 and Sec. II C. The signal-recycling cutoff frequency
should therefore be designed to be above the observation band
where the measurement is performed.

The observation of a quantum opto-mechanical coupling
requires a low enough thermal noise. The off-resonant
spectrum of thermal noise of an oscillator is not precisely
known. Here, we consider two different dissipation mech-
anisms, namely, viscous and structural damping [30]. The
thermal noise formulas are

Gthermal = |H (f )|2 4kBTmemmmem(2πfmem)

Qmem

(viscous damping), (21)
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FIG. 3. (Color online) Goal sensitivity of the Michelson-Sagnac
interferometer to measure radiation pressure noise based on the
parameters in Table I. The graphs show the sensitivity with and
without signal recycling, as labeled. Thick solid and dashed lines
(red) are the radiation pressure noise and shot noise, respectively.
Thin solid and dashed lines (blue) are thermal noise at 1 K in the
cases of the viscous damping and structural damping [30].

Gthermal = |H (f )|2 4kBTmemmmem(2πfmem)2

Qmem(2πf )
(structural damping), (22)

where kB is the Boltzmann constant and Tmem is the temper-
ature of the membrane. Figure 3 shows the thermal noise of
the membrane position measurement for the two dissipation
mechanisms. For viscous damping the thermal noise spectrum
is flat below the resonance (thin solid blue line). For structural
damping the thermal noise spectrum falls with 1/f 1/2 (thin
dashed blue line) because Fig. 3 shows the square root of
Eqs. (21) and (22). Both thermal noise spectra are plotted for a
membrane temperature of 1 K. At this temperature, the thermal
noise level is about a factor of 3 smaller than the radiation
pressure noise around the membrane resonance frequency. At
room temperature, the thermal noise is about 50 times larger,
also partly because the Q value of the membrane is 10 times

smaller than at about 1 K [14]. In this case, the power at
the beam splitter must be 3 kW even if signal recycling is
adopted. Such a high power can in principle be achieved with
the help of power recycling. However, light absorption in the
membrane and in the interferometer will most likely cause
thermal problems at these high powers. Note, that for a Q

measurement, a membrane temperature below 1 K was reached
in Ref. [14].

To reduce the heat, the membrane should be placed at a node
of the standing wave of the Sagnac mode. If the membrane is
at the node, the output port is dark. The recycling techniques
are compatible. Even at the node, the radiation pressure noise
is not zero, because the radiation pressure noise depends on
the momentum flux, not energy density as shown in Eq. (6).
The signal sideband of the Michelson mode depends always
linearly on the membrane displacement.

The displacement signal of the interferometer can be
detected using a homodyne detector that is realized as a
single photo diode if the Michelson-Sagnac interferometer is
operated close to, but not exactly at, a dark fringe. In this
case the interferometer laser field provides the optical local
oscillator for homodyne detection. Alternatively, a balanced
homodyne detector can be used if the interferometer is
operated exactly at a dark fringe. Such a detection scheme
uses a beam splitter, an external local oscillator field, and two
photo diodes and was previously used as an interferometer
readout in, for example, Refs. [8,9]. A balanced homodyne
detector might be useful in order to increase the reflectance
of the Michelson-Sagnac interferometer allowing for high
signal-recycling gains.

IV. SUMMARY AND CONCLUSION

Interferometer recycling techniques are useful in exper-
iments that aim for the observation of radiation pressure
noise of the position and displacement measurement of a
mechanical oscillator. The Michelson-Sagnac interferometer
topology, as proposed here, is compatible with power and
signal recycling and is able to incorporate a mechanical
oscillator that transmits a major part of the incident laser
light. We have presented spectral densities for the shot noise
and radiation pressure noise for a position measurement of a
translucent SiN membrane. The expressions differ from those
of a usual Michelson interferometer because of the interference
between the beams reflected and transmitted by the membrane.
Signal recycling can reduce the power in the interferometer
required for pushing the radiation pressure noise above the
shot noise. We have found that the radiation pressure noise
of the interferometer signal is twice as large as the shot
noise below the membrane resonant frequency of 75 kHz for
a laser power of 1 W incident on the beam splitter and a
signal-recycling amplitude gain of 32. To realize such a high
signal-recycling gain, the Michelson-Sagnac interferometer
has to show a high reflectance. Such a high value is realistic
if the optical loss inside the interferometer is kept to a
minimum (less than 0.4%) and the interferometer is operated
very close to a dark fringe. For an operation at exactly the
dark fringe, a balanced homodyne detector has to be used.
The membrane can be positioned in a node of the standing
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wave of the Sagnac mode in order to make absorption smaller
without losing the proportionality between signal field and
membrane displacement. If the membrane temperature is 1 K,
the calculated thermal noise of the oscillator fundamental
mode is below the radiation pressure noise. This might turn
out to be important in reducing the heating of the membrane
due to absorbed laser power.

ACKNOWLEDGMENTS

This work is supported by the Deutsche Forschungsge-
meinschaft and is part of Sonderforschungsbereich 407. K.S.
is supported by the Japanese Society for the Promotion of
Science. We are grateful to Yanbei Chen, Thomas Corbitt, and
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